Nucleus Basalis of Meynert Volume and Cognitive Impairment in Parkinson’s Disease Before and After Deep Brain Stimulation of the Subthalamic Nucleus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Neuropsychological Assessment
2.3. Imaging
2.4. Statistical Analysis
3. Results
3.1. Imaging Parameters
3.2. NBM Volume and Preoperative Cognition
3.3. NBM Volume and Cognitive Decline Six Months After STN DBS
3.4. Sensitivity Analyses
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BNT | Boston naming test |
CI | Confidence interval |
DBS | Deep brain stimulation |
JOLO | Judgement of line orientation |
MCI | Mild cognitive impairment |
MMSE | Mini-Mental State Examination (MMSE) |
MNI | Montreal Neurological Institute |
MOCA | Montreal Cognitive Assessment |
MRI | Magnetic Resonance Imaging |
NBM | Nucleus basalis of Meynert |
NPA | Neuropsychological assessment |
PET | Positron emission tomography |
PD | Parkinson’s disease |
PDD | Parkinson’s disease dementia |
STN | Subthalamic nucleus |
TFE | Turbo Field Echo |
TIV | Total intracranial volume |
TMT | Trail making test |
RAVLT | Rey Auditory Verbal Learning Test |
RBMT | Rivermead Behavioural Memory Test |
RCI | Reliability change index |
WAIS | Wechsler Adult Intelligence Scale |
References
- Fang, C.; Lv, L.; Mao, S.; Dong, H.; Liu, B. Cognition Deficits in Parkinson’s Disease: Mechanisms and Treatment. Parkinsons Dis. 2020, 2020, 2076942. [Google Scholar] [CrossRef] [PubMed]
- Sezgin, M.; Bilgic, B.; Tinaz, S.; Emre, M. Parkinson’s Disease Dementia and Lewy Body Disease. Semin. Neurol. 2019, 39, 274–282. [Google Scholar] [CrossRef] [PubMed]
- Weil, R.S.; Costantini, A.A.; Schrag, A.E. Mild Cognitive Impairment in Parkinson’s Disease-What Is It? Curr. Neurol. Neurosci. Rep. 2018, 18, 17. [Google Scholar] [CrossRef]
- Weintraub, D.; Troster, A.I.; Marras, C.; Stebbins, G. Initial cognitive changes in Parkinson’s disease. Mov. Disord. 2018, 33, 511–519. [Google Scholar] [CrossRef]
- Bode, M.; Kalbe, E.; Liepelt-Scarfone, I. Cognition and Activity of Daily Living Function in people with Parkinson’s disease. J. Neural. Transm. 2024, 131, 1159–1186. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Liang, X.; Han, L.; Peng, F.; Shen, B.; Yu, H.; Shen, Y.; Shen, C.; Yu, J.; Wang, J. Cognitive Function and Quality of Life in Parkinson’s Disease: A Cross-Sectional Study. J. Park. Dis. 2020, 10, 1209–1216. [Google Scholar] [CrossRef]
- Lawson, R.A.; Yarnall, A.J.; Duncan, G.W.; Breen, D.P.; Khoo, T.K.; Williams-Gray, C.H.; Barker, R.A.; Collerton, D.; Taylor, J.P.; Burn, D.J.; et al. Cognitive decline and quality of life in incident Parkinson’s disease: The role of attention. Park. Relat. Disord. 2016, 27, 47–53. [Google Scholar] [CrossRef]
- Dumas, J.A.; Newhouse, P.A. The cholinergic hypothesis of cognitive aging revisited again: Cholinergic functional compensation. Pharmacol. Biochem. Behav. 2011, 99, 254–261. [Google Scholar] [CrossRef]
- Li, H.; Jia, X.; Qi, Z.; Fan, X.; Ma, T.; Ni, H.; Li, C.R.; Li, K. Altered Functional Connectivity of the Basal Nucleus of Meynert in Mild Cognitive Impairment: A Resting-State fMRI Study. Front. Aging Neurosci. 2017, 9, 127. [Google Scholar] [CrossRef]
- Hatton, C.; Reeve, A.; Lax, N.Z.; Blain, A.; Ng, Y.S.; El-Agnaf, O.; Attems, J.; Taylor, J.P.; Turnbull, D.; Erskine, D. Complex I reductions in the nucleus basalis of Meynert in Lewy body dementia: The role of Lewy bodies. Acta Neuropathol. Commun. 2020, 8, 103. [Google Scholar] [CrossRef]
- Liu, A.K.; Chang, R.C.; Pearce, R.K.; Gentleman, S.M. Nucleus basalis of Meynert revisited: Anatomy, history and differential involvement in Alzheimer’s and Parkinson’s disease. Acta Neuropathol. 2015, 129, 527–540. [Google Scholar] [CrossRef] [PubMed]
- Slater, N.M.; Melzer, T.R.; Myall, D.J.; Anderson, T.J.; Dalrymple-Alford, J.C. Cholinergic Basal Forebrain Integrity and Cognition in Parkinson’s Disease: A Reappraisal of Magnetic Resonance Imaging Evidence. Mov. Disord. 2024, 39, 2155–2172. [Google Scholar] [CrossRef] [PubMed]
- Buttner, C.; Maack, M.; Janitzky, K.; Witt, K. The Evolution of Quality of Life After Subthalamic Stimulation for Parkinson’s Disease: A Meta-Analysis. Mov. Disord. Clin. Pract. 2019, 6, 521–530. [Google Scholar] [CrossRef]
- Limousin, P.; Pollak, P.; Benazzouz, A.; Hoffmann, D.; Broussolle, E.; Perret, J.E.; Benabid, A.L. Bilateral subthalamic nucleus stimulation for severe Parkinson’s disease. Mov. Disord. 1995, 10, 672–674. [Google Scholar] [CrossRef]
- Groiss, S.J.; Wojtecki, L.; Sudmeyer, M.; Schnitzler, A. Deep brain stimulation in Parkinson’s disease. Ther. Adv. Neurol. Disord. 2009, 2, 20–28. [Google Scholar] [CrossRef]
- Sisodia, V.; Malekzadeh, A.; Verwijk, E.; Schuurman, P.R.; de Bie, R.M.A.; Swinnen, B. Bidirectional Interplay between Deep Brain Stimulation and Cognition in Parkinson’s Disease: A Systematic Review. Mov. Disord. 2024, 39, 910–915. [Google Scholar] [CrossRef]
- Xie, Y.; Meng, X.; Xiao, J.; Zhang, J.; Zhang, J. Cognitive Changes following Bilateral Deep Brain Stimulation of Subthalamic Nucleus in Parkinson’s Disease: A Meta-Analysis. BioMed Res. Int. 2016, 2016, 3596415. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Pan, R.; Cui, Y.; Wang, Z.; Li, Q. Effects of Deep Brain Stimulation in the Subthalamic Nucleus on Neurocognitive Function in Patients With Parkinson’s Disease Compared With Medical Therapy: A Meta-Analysis. Front. Neurol. 2021, 12, 610840. [Google Scholar] [CrossRef]
- Jahanshahi, M.; Leimbach, F.; Rawji, V. Short and Long-Term Cognitive Effects of Subthalamic Deep Brain Stimulation in Parkinson’s Disease and Identification of Relevant Factors. J. Park. Dis. 2022, 12, 2191–2209. [Google Scholar] [CrossRef]
- Filip, P.; Mana, J.; Lasica, A.; Keller, J.; Urgosik, D.; May, J.; Mueller, K.; Jech, R.; Bezdicek, O.; Ruzicka, F. Structural and microstructural predictors of cognitive decline in deep brain stimulation of subthalamic nucleus in Parkinson’s disease. Neuroimage Clin. 2024, 42, 103617. [Google Scholar] [CrossRef]
- Kubler, D.; Wellmann, S.K.; Kaminski, J.; Skowronek, C.; Schneider, G.H.; Neumann, W.J.; Ritter, K.; Kuhn, A. Nucleus basalis of Meynert predicts cognition after deep brain stimulation in Parkinson’s disease. Park. Relat. Disord. 2022, 94, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Schulz, J.; Pagano, G.; Fernandez Bonfante, J.A.; Wilson, H.; Politis, M. Nucleus basalis of Meynert degeneration precedes and predicts cognitive impairment in Parkinson’s disease. Brain 2018, 141, 1501–1516. [Google Scholar] [CrossRef]
- Sisodia, V.; Swinnen, B.; Dijk, J.M.; Verwijk, E.; van Rooijen, G.; Lemstra, A.W.; Schuurman, P.R.; de Bie, R.M.A. Protocol of a randomized controlled trial investigating Deep Brain Stimulation for MOtor symptoms in patients with Parkinson’s disease DEmentia (DBS-MODE). BMC Neurol. 2023, 23, 160. [Google Scholar] [CrossRef] [PubMed]
- Holewijn, R.A.; Verbaan, D.; de Bie, R.M.A.; Schuurman, P.R. General Anesthesia versus Local Anesthesia in StereotaXY (GALAXY) for Parkinson’s disease: Study protocol for a randomized controlled trial. Trials 2017, 18, 417. [Google Scholar] [CrossRef]
- Holewijn, R.A.; Verbaan, D.; van den Munckhof, P.M.; Bot, M.; Geurtsen, G.J.; Dijk, J.M.; Odekerken, V.J.; Beudel, M.; de Bie, R.M.A.; Schuurman, P.R. General Anesthesia vs Local Anesthesia in Microelectrode Recording-Guided Deep-Brain Stimulation for Parkinson Disease: The GALAXY Randomized Clinical Trial. JAMA Neurol. 2021, 78, 1212–1219. [Google Scholar] [CrossRef] [PubMed]
- Agrell, B.; Dehlin, O. The clock-drawing test. Age Ageing 1998, 27, 399–403. [Google Scholar] [CrossRef]
- Bean, J. Rey auditory verbal learning test, Rey AVLT. In Encyclopedia of Clinical Neuropsychology; Kreutzer, J.S., DeLuca, J., Caplan, B., Eds.; Springer: New York, NY, USA, 2011. [Google Scholar]
- Roth, C.R.; Helm-Estabrooks, N. Boston naming test. In Encyclopedia of Clinical Neuropsychology; Kreutzer, J.S., DeLuca, J., Caplan, B., Eds.; Springer: New York, NY, USA, 2011. [Google Scholar]
- Spencer, R.J.; Wendell, C.R.; Giggey, P.P.; Seliger, S.L.; Katzel, L.I.; Waldstein, S.R. Judgment of Line Orientation: An examination of eight short forms. J. Clin. Exp. Neuropsychol. 2013, 35, 160–166. [Google Scholar] [CrossRef]
- Wilson, B.A.; Cockburn, J.; Baddeley, A.D. The Rivermead Behavioural Memory Test; Pearson Assessment: London, UK, 1985. [Google Scholar]
- Venegas, J.; Clark, E. National adult reading test. In Encyclopedia of Clinical Neuropsychology; Kreutzer, J.S., DeLuca, J., Caplan, B., Eds.; Springer: New York, NY, USA, 2011. [Google Scholar]
- Erdodi, L.A.; Abeare, C.A.; Lichtenstein, J.D.; Tyson, B.T.; Kucharski, B.; Zuccato, B.G.; Roth, R.M. Wechsler Adult Intelligence Scale-Fourth Edition (WAIS-IV) processing speed scores as measures of noncredible responding: The third generation of embedded performance validity indicators. Psychol. Assess. 2017, 29, 148–157. [Google Scholar] [CrossRef]
- Reitan, R.M.; Wolfson, D. The Trail Making Test as an initial screening procedure for neuropsychological impairment in older children. Arch. Clin. Neuropsychol. 2004, 19, 281–288. [Google Scholar] [CrossRef]
- Stroop, J.R. Studies of interference in serial verbal reactions. J. Exp. Psychol. 1935, 18, 643–662. [Google Scholar] [CrossRef]
- de Vent, N.R.; Agelink van Rentergem, J.A.; Schmand, B.A.; Murre, J.M.; Consortium, A.; Huizenga, H.M. Advanced Neuropsychological Diagnostics Infrastructure (ANDI): A Normative Database Created from Control Datasets. Front. Psychol. 2016, 7, 1601. [Google Scholar] [CrossRef] [PubMed]
- Litvan, I.; Goldman, J.G.; Troster, A.I.; Schmand, B.A.; Weintraub, D.; Petersen, R.C.; Mollenhauer, B.; Adler, C.H.; Marder, K.; Williams-Gray, C.H.; et al. Diagnostic criteria for mild cognitive impairment in Parkinson’s disease: Movement Disorder Society Task Force guidelines. Mov. Disord. 2012, 27, 349–356. [Google Scholar] [CrossRef]
- Emre, M.; Aarsland, D.; Brown, R.; Burn, D.J.; Duyckaerts, C.; Mizuno, Y.; Broe, G.A.; Cummings, J.; Dickson, D.W.; Gauthier, S.; et al. Clinical diagnostic criteria for dementia associated with Parkinson’s disease. Mov. Disord. 2007, 22, 1689–1707; quiz 1837. [Google Scholar] [CrossRef] [PubMed]
- Smeding, H.M.; Speelman, J.D.; Huizenga, H.M.; Schuurman, P.R.; Schmand, B. Predictors of cognitive and psychosocial outcome after STN DBS in Parkinson’s Disease. J. Neurol. Neurosurg. Psychiatry 2011, 82, 754–760. [Google Scholar] [CrossRef]
- Zaborszky, L.; Hoemke, L.; Mohlberg, H.; Schleicher, A.; Amunts, K.; Zilles, K. Stereotaxic probabilistic maps of the magnocellular cell groups in human basal forebrain. Neuroimage 2008, 42, 1127–1141. [Google Scholar] [CrossRef]
- Ray, N.J.; Bradburn, S.; Murgatroyd, C.; Toseeb, U.; Mir, P.; Kountouriotis, G.K.; Teipel, S.J.; Grothe, M.J. In vivo cholinergic basal forebrain atrophy predicts cognitive decline in de novo Parkinson’s disease. Brain 2018, 141, 165–176. [Google Scholar] [CrossRef] [PubMed]
- Rong, S.; Li, Y.; Li, B.; Nie, K.; Zhang, P.; Cai, T.; Mei, M.; Wang, L.; Zhang, Y. Meynert nucleus-related cortical thinning in Parkinson’s disease with mild cognitive impairment. Quant. Imaging Med. Surg. 2021, 11, 1554–1566. [Google Scholar] [CrossRef]
- Zhang, P.; Rong, S.; He, C.; Li, Y.; Li, X.; Chen, Z.; Nie, K.; Wang, L.; Wang, L.; Zhang, Y. Cortical connectivity of cholinergic basal forebrain in Parkinson’s disease with mild cognitive impairment. Quant. Imaging Med. Surg. 2023, 13, 2167–2182. [Google Scholar] [CrossRef]
- Zhang, C.; Wu, C.; Zhang, H.; Dou, W.; Li, W.; Sami, M.U.; Xu, K. Disrupted Resting-state Functional Connectivity of the Nucleus Basalis of Meynert in Parkinson’s Disease with Mild Cognitive Impairment. Neuroscience 2020, 442, 228–236. [Google Scholar] [CrossRef]
- Legault-Denis, C.; Aumont, E.; Onuska, K.M.; Schmitz, T.W.; Bussy, A.; Chakravarty, M.; Soucy, J.P.; Bedard, M.A. Parkinson’s disease CA2-CA3 hippocampal atrophy is accompanied by increased cholinergic innervation in patients with normal cognition but not in patients with mild cognitive impairment. Brain Imaging Behav. 2024, 18, 783–793. [Google Scholar] [CrossRef]
- Berlot, R.; Pirtosek, Z.; Brezovar, S.; Koritnik, B.; Teipel, S.J.; Grothe, M.J.; Ray, N.J. Cholinergic basal forebrain and hippocampal structure influence visuospatial memory in Parkinson’s disease. Brain Imaging Behav. 2022, 16, 118–129. [Google Scholar] [CrossRef] [PubMed]
- Pereira, J.B.; Hall, S.; Jalakas, M.; Grothe, M.J.; Strandberg, O.; Stomrud, E.; Westman, E.; van Westen, D.; Hansson, O. Longitudinal degeneration of the basal forebrain predicts subsequent dementia in Parkinson’s disease. Neurobiol. Dis. 2020, 139, 104831. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhan, M.; Roebroeck, A.; De Weerd, P.; Kashyap, S.; Roberts, M.J. Inconsistencies in atlas-based volumetric measures of the human nucleus basalis of Meynert: A need for high-resolution alternatives. Neuroimage 2022, 259, 119421. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.H.; Jung, T.M.; Lee, J.E.; Lee, S.K.; Sohn, Y.H.; Lee, P.H. Volumetric analysis of the substantia innominata in patients with Parkinson’s disease according to cognitive status. Neurobiol. Aging 2012, 33, 1265–1272. [Google Scholar] [CrossRef]
- Schmitz, T.W.; Soreq, H.; Poirier, J.; Spreng, R.N. Longitudinal Basal Forebrain Degeneration Interacts with TREM2/C3 Biomarkers of Inflammation in Presymptomatic Alzheimer’s Disease. J. Neurosci. 2020, 40, 1931–1942. [Google Scholar] [CrossRef]
- Fernandez-Cabello, S.; Kronbichler, M.; Van Dijk, K.R.A.; Goodman, J.A.; Spreng, R.N.; Schmitz, T.W.; Alzheimer’s Disease Neuroimaging Initiative. Basal forebrain volume reliably predicts the cortical spread of Alzheimer’s degeneration. Brain 2020, 143, 993–1009. [Google Scholar] [CrossRef]
- Teipel, S.; Raiser, T.; Riedl, L.; Riederer, I.; Schroeter, M.L.; Bisenius, S.; Schneider, A.; Kornhuber, J.; Fliessbach, K.; Spottke, A.; et al. Atrophy and structural covariance of the cholinergic basal forebrain in primary progressive aphasia. Cortex 2016, 83, 124–135. [Google Scholar] [CrossRef]
- Yuan, R.; Biswal, B.B.; Zaborszky, L. Functional Subdivisions of Magnocellular Cell Groups in Human Basal Forebrain: Test-Retest Resting-State Study at Ultra-high Field, and Meta-analysis. Cereb. Cortex 2019, 29, 2844–2858. [Google Scholar] [CrossRef]
- Markello, R.D.; Spreng, R.N.; Luh, W.M.; Anderson, A.K.; De Rosa, E. Segregation of the human basal forebrain using resting state functional MRI. Neuroimage 2018, 173, 287–297. [Google Scholar] [CrossRef]
- Wolf, D.; Grothe, M.; Fischer, F.U.; Heinsen, H.; Kilimann, I.; Teipel, S.; Fellgiebel, A. Association of basal forebrain volumes and cognition in normal aging. Neuropsychologia 2014, 53, 54–63. [Google Scholar] [CrossRef]
- Grothe, M.J.; Schuster, C.; Bauer, F.; Heinsen, H.; Prudlo, J.; Teipel, S.J. Atrophy of the cholinergic basal forebrain in dementia with Lewy bodies and Alzheimer’s disease dementia. J. Neurol. 2014, 261, 1939–1948. [Google Scholar] [CrossRef] [PubMed]
- Grinberg, L.T.; Heinsen, H. Computer-assisted 3D reconstruction of the human basal forebrain complex. Dement. Neuropsychol. 2007, 1, 140–146. [Google Scholar] [CrossRef] [PubMed]
- Halliday, G.M.; Cullen, K.; Cairns, M.J. Quantitation and three-dimensional reconstruction of Ch4 nucleus in the human basal forebrain. Synapse 1993, 15, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Hoogland, J.; Boel, J.A.; de Bie, R.M.A.; Schmand, B.A.; Geskus, R.B.; Dalrymple-Alford, J.C.; Marras, C.; Adler, C.H.; Weintraub, D.; Junque, C.; et al. Risk of Parkinson’s disease dementia related to level I MDS PD-MCI. Mov. Disord. 2019, 34, 430–435. [Google Scholar] [CrossRef]
- Hoogland, J.; Boel, J.A.; de Bie, R.M.A.; Geskus, R.B.; Schmand, B.A.; Dalrymple-Alford, J.C.; Marras, C.; Adler, C.H.; Goldman, J.G.; Troster, A.I.; et al. Mild cognitive impairment as a risk factor for Parkinson’s disease dementia. Mov. Disord. 2017, 32, 1056–1065. [Google Scholar] [CrossRef]
- Broeders, M.; Velseboer, D.C.; de Bie, R.; Speelman, J.D.; Muslimovic, D.; Post, B.; de Haan, R.; Schmand, B. Cognitive change in newly-diagnosed patients with Parkinson’s disease: A 5-year follow-up study. J. Int. Neuropsychol. Soc. 2013, 19, 695–708. [Google Scholar] [CrossRef]
Characteristic | Total Study Population (n = 129) |
---|---|
Age, mean (SD), years | 62.1 (8.4) |
Age at onset of Parkinson’s disease, mean (SD), years | 51.5 (8.9) |
Male, no. (%) | 89 (69%) |
Duration of Parkinson’s disease, mean (SD), years | 10.7 (5.0) |
On-drug phase Hoehn and Yahr stage, no. (%) | |
1 | 1 (1%) |
2 | 93 (72%) |
3 | 31 (24%) |
4 | 4 (3%) |
5 | 1 (1%) |
Levodopa equivalent daily dose, mean (SD) | 1544.0 (566.8) |
Mattis dementia rating scale, mean (SD) | 138.8 (4.7) |
PD-CRS, mean (SD) | 96.2 (18.1) |
Cognitive Assessment | SPM-12 Derived Normalized NBM Volume | Brainlab Derived Normalized NBM Volume |
---|---|---|
NPA score at baseline | NBM: B = 1.1, p = 0.416 | NBM: B = 4.9, p = 0.116 |
Age: B = −0.3, p < 0.001 * | Age: B = −0.3, p < 0.001 * | |
Disease duration: B = 0.1, p = 0.555 | Disease duration: B = 0.0, p = 0.663 | |
MRI scanner: B = 0.0, p = 0.738 | MRI scanner: B = 0.0, p = 0.817 | |
PD-MCI at baseline a | NBM: B = 0.6, p = 0.251 | NBM: B = 2.5, p = 0.065 |
Age: B = 0.0, p = 0.182 | Age: B = 0.0, p = 0.095 | |
Disease duration: B = 0.0, p = 0.094 | Disease duration: B = 0.0, p = 0.674 | |
MRI scanner: B = 0.0, p = 0.239 | MRI scanner: B = 0.0, p = 0.300 | |
PDD at baseline a | NBM: B = −2.2, p = 0.036 * | NBM: B = −4.8, p = 0.006 * |
Age: B = 0.3, p < 0.001 * | Age: B = 0.2, p < 0.001 * | |
Disease duration: B = 0.0, p = 0.659 | Disease duration: B = 0.0, p = 0.870 | |
MRI scanner: B = 0.0, p = 0.847 | MRI scanner: B = 0.0, p = 0.918 |
Cognitive Assessment | SPM-12 Derived Normalized NBM Volume | Brainlab Derived Normalized NBM Volume |
---|---|---|
Change in NPA score | NBM: B = −0.4, p = 0.615 | NBM: B = −1.3, p = 0.515 |
Age: B = 0.0, p = 0.696 | Age: B = 0.0, p = 0.589 | |
Disease duration: B = −0.2, p = 0.010 * | Disease duration: B = −0.2, p = 0.010 * | |
MCI at baseline: B = 1.7, p = 0.011 * | MCI at baseline: B = 1.7, p = 0.017 * | |
MRI scanner: B = 0.0, p = 0.189 | MRI scanner: B = 0.0, p = 0.182 | |
Cognitive decline based on RCI | NBM: B= −1.3, p = 0.141 | NBM: B = −3.9, p = 0.107 |
Age: B = 0.0, p = 0.519 | Age: B = 0.0, p = 0.959 | |
Disease duration: B = −0.1, p = 0.118 | Disease duration: B = −0.1, p = 0.130 | |
MCI at baseline: B = 1.8, p = 0.012 * | MCI at baseline: B = 1.5, p = 0.036 * | |
MRI scanner: B = 0.0, p = 0.958 | MRI scanner: B = 0.0, p = 0.892 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sisodia, V.; Wiggerts, Y.; Boogaard, A.A.; Buijink, A.W.G.; Holewijn, R.A.; Swinnen, B.E.K.S.; Geurtsen, G.J.; Schuurman, R.; de Bie, R.M.A. Nucleus Basalis of Meynert Volume and Cognitive Impairment in Parkinson’s Disease Before and After Deep Brain Stimulation of the Subthalamic Nucleus. Brain Sci. 2025, 15, 630. https://doi.org/10.3390/brainsci15060630
Sisodia V, Wiggerts Y, Boogaard AA, Buijink AWG, Holewijn RA, Swinnen BEKS, Geurtsen GJ, Schuurman R, de Bie RMA. Nucleus Basalis of Meynert Volume and Cognitive Impairment in Parkinson’s Disease Before and After Deep Brain Stimulation of the Subthalamic Nucleus. Brain Sciences. 2025; 15(6):630. https://doi.org/10.3390/brainsci15060630
Chicago/Turabian StyleSisodia, Vibuthi, Yarit Wiggerts, Anouk A. Boogaard, Arthur W. G. Buijink, Rozemarije A. Holewijn, Bart E. K. S. Swinnen, Gert J. Geurtsen, Rick Schuurman, and Rob M. A. de Bie. 2025. "Nucleus Basalis of Meynert Volume and Cognitive Impairment in Parkinson’s Disease Before and After Deep Brain Stimulation of the Subthalamic Nucleus" Brain Sciences 15, no. 6: 630. https://doi.org/10.3390/brainsci15060630
APA StyleSisodia, V., Wiggerts, Y., Boogaard, A. A., Buijink, A. W. G., Holewijn, R. A., Swinnen, B. E. K. S., Geurtsen, G. J., Schuurman, R., & de Bie, R. M. A. (2025). Nucleus Basalis of Meynert Volume and Cognitive Impairment in Parkinson’s Disease Before and After Deep Brain Stimulation of the Subthalamic Nucleus. Brain Sciences, 15(6), 630. https://doi.org/10.3390/brainsci15060630