The Remapping of Peripersonal Space in a Real but Not in a Virtual Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Procedure
2.1.1. Session 1 and 3
2.1.2. Session 2
3. Data analysis and Results
3.1. Multisensory Tactile RTs
3.2. Unisensory Tactile RTs
3.3. Peripersonal Space Estimation
3.4. Slopes Estimation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rizzolatti, G.; Fadiga, L.; Fogassi, L.; Gallese, V. The space around us. Science 1997, 277, 190–191. [Google Scholar] [CrossRef] [PubMed]
- Làdavas, E. Functional and dynamic properties of visual peripersonal space. Trends Cogn. Sci. 2002, 6, 17–22. [Google Scholar] [CrossRef]
- Graziano, M.S.; Cooke, D.F. Parieto-frontal interactions, personal space, and defensive behavior. Neuropsychologia 2006, 44, 845–859. [Google Scholar] [CrossRef] [PubMed]
- Fogassi, L.; Gallese, V.; Di Pellegrino, G.; Fadiga, L.; Gentilucci, M.; Luppino, G.; Matelli, M.; Pedotti, A.; Rizzolatti, G. Space coding by premotor cortex. Exp. Brain Res. 1992, 89, 686–690. [Google Scholar] [CrossRef]
- Fogassi, L.; Gallese, V.; Fadiga, L.; Luppino, G.; Matelli, M.; Rizzolatti, G. Coding of peripersonal space in inferior premotor cortex (area F4). J. Neurophysiol. 1996, 76, 141–157. [Google Scholar] [CrossRef]
- Gross, C.G.; Graziano, M.S.A. Review: Multiple Representations of Space in the Brain. Neuroscientist 1995, 1, 43–50. [Google Scholar] [CrossRef]
- Canzoneri, E.; Ubaldi, S.; Rastelli, V.; Finisguerra, A.; Bassolino, M.; Serino, A. Tool-use reshapes the boundaries of body and peripersonal space representations. Exp. Brain Res. 2013, 228, 25–42. [Google Scholar] [CrossRef]
- Ferroni, F.; Ardizzi, M.; Ferri, F.; Tesanovic, A.; Langiulli, N.; Tonna, M.; Marchesi, C.; Gallese, V. Schizotypy and individual differences in peripersonal space plasticity. Neuropsychologia 2020, 147, 107579. [Google Scholar] [CrossRef]
- Ferroni, F.; Ardizzi, M.; Magnani, F.; Langiulli, N.; Rastelli, F.; Lucarini, V.; Giustozzi, F.; Volpe, R.; Marchesi, C.; Tonna, M.; et al. Tool-use Extends Peripersonal Space Boundaries in Schizophrenic Patients. Schizophr. Bull. 2022, sbac067. [Google Scholar] [CrossRef]
- Iriki, A.; Tanaka, M.; Iwamura, Y. Coding of modified body schema during tool use by macaque postcentral neurones. NeuroReport 1996, 7, 2325–2330. [Google Scholar]
- Serino, A.; Bassolino, M.; Farnè, A.; Làdavas, E. Extended Multisensory Space in Blind Cane Users. Psychol. Sci. 2007, 18, 642–648. [Google Scholar] [CrossRef] [PubMed]
- Bassolino, M.; Finisguerra, A.; Canzoneri, E.; Serino, A.; Pozzo, T. Dissociating effect of upper limb non-use and overuse on space and body representations. Neuropsychologia 2015, 70, 385–392. [Google Scholar] [CrossRef] [PubMed]
- Noel, J.-P.; Park, H.-D.; Pasqualini, I.; Lissek, H.; Wallace, M.; Blanke, O.; Serino, A. Audio-visual sensory deprivation degrades visuo-tactile peri-personal space. Conscious. Cogn. 2018, 61, 61–75. [Google Scholar] [CrossRef]
- Teneggi, C.; Canzoneri, E.; Di Pellegrino, G.; Serino, A. Social modulation of peripersonal space boundaries. Curr. Biol. 2013, 23, 406–411. [Google Scholar] [CrossRef]
- Pellencin, E.; Paladino, M.P.; Herbelin, B.; Serino, A. Social perception of others shapes one’s own multisensory peripersonal space. Cortex 2018, 104, 163–179. [Google Scholar] [CrossRef] [PubMed]
- Holmes, N.P.; Sanabria, D.; Calvert, G.A.; Spence, C. Tool-use: Capturing multisensory spatial attention or extending multisensory peripersonal space? Cortex 2007, 43, 469–489. [Google Scholar] [CrossRef]
- Maravita, A.; Iriki, A. Tools for the body (schema). Trends Cogn. Sci. 2004, 8, 79–86. [Google Scholar] [CrossRef]
- Maravita, A.; Spence, C.; Kennett, S.; Driver, J. Tool-use changes multimodal spatial interactions between vision and touch in normal humans. Cognition 2002, 83, B25–B34. [Google Scholar] [CrossRef]
- Horgan, S.; Vanuno, D. Robots in laparoscopic surgery. J. Laparoendosc. Adv. Surg. Tech. 2001, 11, 415–419. [Google Scholar] [CrossRef] [PubMed]
- Ayav, A.; Bresler, L.; Brunaud, L.; Boissel, P. Early results of one-year robotic surgery using the Da Vinci system to perform advanced laparoscopic procedures. J. Gastrointest. Surg. 2004, 8, 720–726. [Google Scholar] [CrossRef]
- Maeso, S.; Reza, M.; Mayol, J.; Blasco, J.A.; Guerra, M.; Andradas, E.; Plana, M.N. Efficacy of the da vinci surgical system in abdominal surgery compared with that of laparoscopy: A systematic review and meta-analysis. Ann. Surg. 2010, 252, 254–262. [Google Scholar] [CrossRef] [PubMed]
- Bassolino, M.; Serino, A.; Ubaldi, S.; Làdavas, E. Everyday use of the computer mouse extends peripersonal space representation. Neuropsychologia 2010, 48, 803–811. [Google Scholar] [CrossRef] [PubMed]
- Rognini, G.; Sengül, A.; Aspell, J.E.; Salomon, R.; Bleuler, H.; Blanke, O. Visuo-tactile integration and body ownership during self-generated action. Eur. J. Neurosci. 2013, 37, 1120–1129. [Google Scholar] [CrossRef]
- Sengül, A.; Van Elk, M.; Rognini, G.; Aspell, J.E.; Bleuler, H.; Blanke, O. Extending the body to virtual tools using a robotic surgical interface: Evidence from the crossmodal congruency task. PLoS ONE 2012, 7, e49473. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, A.A.; Schultheis, M.; Kerns, K.A.; Mateer, C. Analysis of assets for virtual reality applications in neuropsychology. Neuropsychol. Rehabil. 2004, 14, 207–239. [Google Scholar] [CrossRef]
- Powers, M.B.; Emmelkamp, P.M.G. Virtual reality exposure therapy for anxiety disorders: A meta-analysis. J. Anxiety Disord. 2008, 22, 561–569. [Google Scholar] [CrossRef] [PubMed]
- Fox, J.; Arena, D.; Bailenson, J.N. Virtual Reality: A Survival Guide for the Social Scientist. J. Media Psychol. 2009, 21, 95–113. [Google Scholar] [CrossRef]
- Wang, P.; Becker, A.; Jones, I.; Glover, A.; Benford, S.; Greenhalgh, C.; Vloeberghs, M. A virtual reality surgery simulation of cutting and retraction in neurosurgery with force-feedback. Comput. Methods Programs Biomed. 2006, 84, 11–18. [Google Scholar] [CrossRef]
- Masson, C.; van der Westhuizen, D.; Noel, J.-P.; Prevost, A.; van Honk, J.; Fotopoulou, A.; Solms, M.; Serino, A. Testosterone administration in women increases the size of their peripersonal space. Exp. Brain Res. 2021, 239, 1639–1649. [Google Scholar] [CrossRef]
- Serino, A.; Noel, J.-P.; Mange, R.; Canzoneri, E.; Pellencin, E.; Ruiz, J.B.; Bernasconi, F.; Blanke, O.; Herbelin, B. Peripersonal space: An index of multisensory body-environment interactions in real, virtual, and mixed realities. Front. ICT 2018, 4, 31. [Google Scholar] [CrossRef]
- Iachini, T.; Coello, Y.; Frassinetti, F.; Ruggiero, G. Body Space in Social Interactions: A Comparison of Reaching and Comfort Distance in Immersive Virtual Reality. PLoS ONE 2014, 9, e111511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iachini, T.; Coello, Y.; Frassinetti, F.; Senese, V.P.; Galante, F.; Ruggiero, G. Peripersonal and interpersonal space in virtual and real environments: Effects of gender and age. J. Environ. Psychol. 2016, 45, 154–164. [Google Scholar] [CrossRef]
- Noel, J.P.; Pfeiffer, C.; Blanke, O.; Serino, A. Peripersonal space as the space of the bodily self. Cognition 2015, 144, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Buck, L.E.; Park, S.; Bodenheimer, B. Determining Peripersonal Space Boundaries and Their Plasticity in Relation to Object and Agent Characteristics in an Immersive Virtual Environment. In Proceedings of the 2020 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), Atlanta, GA, USA, 22–26 March 2020; pp. 332–342. [Google Scholar] [CrossRef]
- Sengül, A.; Rognini, G.; van Elk, M.; Aspell, J.E.; Bleuler, H.; Blanke, O. Force feedback facilitates multisensory integration during robotic tool use. Exp. Brain Res. 2013, 227, 497–507. [Google Scholar] [CrossRef]
- Sengül, A.; van Elk, M.; Blanke, O.; Bleuler, H. Congruent Visuo-Tactile Feedback Facilitates the Extension of Peripersonal Space. Lect. Notes Comput. Sci. 2018, 10894, 673–684. [Google Scholar] [CrossRef]
- Galigani, M.; Castellani, N.; Donno, B.; Franza, M.; Zuber, C.; Allet, L.; Garbarini, F.; Bassolino, M. Effect of tool-use observation on metric body representation and peripersonal space. Neuropsychologia 2020, 148, 107622. [Google Scholar] [CrossRef]
- Oldfield, R.C. The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia 1971, 9, 97–113. [Google Scholar] [CrossRef]
- Canzoneri, E.; Magosso, E.; Serino, A. Dynamic sounds capture the boundaries of peripersonal space representation in humans. PLoS ONE 2012, 7, e44306. [Google Scholar] [CrossRef]
- Noel, J.-P.; Failla, M.D.; Quinde-Zlibut, J.M.; Williams, Z.J.; Gerdes, M.; Tracy, J.M.; Zoltowski, A.R.; Foss-Feig, J.H.; Nichols, H.; Armstrong, K.; et al. Visual-Tactile Spatial Multisensory Interaction in Adults with Autism and Schizophrenia. Front. Psychiatry 2020, 11, 578401. [Google Scholar] [CrossRef]
- Serino, A.; Noel, J.-P.; Galli, G.; Canzoneri, E.; Marmaroli, P.; Lissek, H.; Blanke, O. Body part-centered and full body-centered peripersonal space representations. Sci. Rep. 2015, 5, 18603. [Google Scholar] [CrossRef]
- Serino, A.; Canzoneri, E.; Marzolla, M.; di Pellegrino, G.; Magosso, E. Extending peripersonal space representation without tool-use: Evidence from a combined behavioral-computational approach. Front. Behav. Neurosci. 2015, 9, 4. [Google Scholar] [CrossRef] [PubMed]
- Noel, J.; Marta, Ł.; Wallace, M.; Serino, A. Multisensory simultaneity judgment and proximity to the body. J. Vis. 2018, 16, 21. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-S.; Hong, S.-J.J.; Baxter, T.; Scott, J.; Shenoy, S.; Buck, L.; Bodenheimer, B.; Park, S. Altered Peripersonal Space and the Bodily Self in Schizophrenia: A Virtual Reality Study. Schizophr. Bull. 2021, 47, 927–937. [Google Scholar] [CrossRef] [PubMed]
- Canzoneri, E.; Marzolla, M.; Amoresano, A.; Verni, G.; Serino, A. Amputation and prosthesis implantation shape body and peripersonal space representations. Sci. Rep. 2013, 3, 2844. [Google Scholar] [CrossRef]
- Noel, J.-P.; Paredes, R.; Terrebonne, E.; Feldman, J.I.; Woynaroski, T.; Cascio, C.J.; Seriès, P.; Wallace, M.T. Inflexible Updating of the Self-Other Divide During a Social Context in Autism: Psychophysical, Electrophysiological, and Neural Network Modeling Evidence. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2021, 7, 756–764. [Google Scholar] [CrossRef]
- Bausenhart, K.M.; Di Luca, M.; Ulrich, R. Assessing Duration Discrimination: Psychophysical Methods and Psychometric Function Analysis. In Timing and Time Perception: Procedures, Measures, & Applications; Brill: Leiden, The Netherlands, 2018; pp. 52–78. [Google Scholar]
- Miller, J.; Ulrich, R. On the analysis of psychometric functions: The Spearman-Kärber method. Percept. Psychophys. 2001, 63, 1399–1420. [Google Scholar] [CrossRef]
- Farnè, A.; Iriki, A.; Làdavas, E. Shaping multisensory action-space with tools: Evidence from patients with cross-modal extinction. Neuropsychologia 2005, 43, 238–248. [Google Scholar] [CrossRef]
- Biggio, M.; Bisio, A.; Avanzino, L.; Ruggeri, P.; Bove, M. This racket is not mine: The influence of the tool-use on peripersonal space. Neuropsychologia 2017, 103, 54–58. [Google Scholar] [CrossRef]
- Tsakiris, M.; Haggard, P. The rubber hand illusion revisited: Visuotactile integration and self-attribution. J. Exp. Psychol. Hum. Percept. Perform. 2005, 31, 80. [Google Scholar] [CrossRef]
- Brechet, L.; Mange, R.; Herbelin, B.; Theillaud, Q.; Gauthier, B.; Serino, A.; Blanke, O. First-person view of one’s body in immersive virtual reality: Influence on episodic memory. PLoS ONE 2019, 14, e0197763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bréchet, L.; Hausmann, S.B.; Mange, R.; Herbelin, B.; Blanke, O.; Serino, A. Subjective feeling of re-experiencing past events using immersive virtual reality prevents a loss of episodic memory. Brain Behav. 2020, 10, e01571. [Google Scholar] [CrossRef] [PubMed]
- Gauthier, B.; Bréchet, L.; Lance, F.; Mange, R.; Herbelin, B.; Faivre, N.; Bolton, T.A.; Van De Ville, D.; Blanke, O. First-person body view modulates the neural substrates of episodic memory and autonoetic consciousness: A functional connectivity study. NeuroImage 2020, 223, 117370. [Google Scholar] [CrossRef]
- Okamura, A.M. Haptic feedback in robot-assisted minimally invasive surgery. Curr. Opin. Urol. 2009, 19, 102–107. [Google Scholar] [CrossRef]
- Simaan, N.; Yasin, R.M.; Wang, L. Medical Technologies and Challenges of Robot-Assisted Minimally Invasive Intervention and Diagnostics. Annu. Rev. Control Robot. Auton. Syst. 2018, 1, 465–490. [Google Scholar] [CrossRef]
- Soccini, A.M.; Ferroni, F.; Ardizzi, M. From Virtual Reality to Neuroscience and Back: A Use Case on Peripersonal Hand Space Plasticity. In Proceedings of the 2020 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR), Utrecht, The Netherlands, 14–18 December 2020; pp. 394–396. [Google Scholar] [CrossRef]
- Ferri, F.; Costantini, M.; Huang, Z.; Perrucci, M.G.; Ferretti, A.; Romani, G.L.; Northoff, G. Intertrial variability in the premotor cortex accounts for individual differences in peripersonal space. J. Neurosci. 2015, 35, 16328–16339. [Google Scholar] [CrossRef] [PubMed]
- Noel, J.-P.; Bertoni, T.; Terrebonne, E.; Pellencin, E.; Herbelin, B.; Cascio, C.; Blanke, O.; Magosso, E.; Wallace, M.T.; Serino, A. Rapid recalibration of peri-personal space: Psychophysical, electrophysiological, and neural network modeling evidence. Cereb. Cortex 2020, 30, 5088–5106. [Google Scholar] [CrossRef] [PubMed]
- Bernasconi, F.; Noel, J.-P.; Park, H.D.; Faivre, N.; Seeck, M.; Spinelli, L.; Schaller, K.; Blanke, O.; Serino, A. Audio-tactile and peripersonal space processing around the trunk in human parietal and temporal cortex: An intracranial EEG study. Cereb. Cortex 2018, 28, 3385–3397. [Google Scholar] [CrossRef]
- Ronga, I.; Galigani, M.; Bruno, V.; Castellani, N.; Sebastiano, A.R.; Valentini, E.; Fossataro, C.; Neppi-Modona, M.; Garbarini, F. Seeming confines: Electrophysiological evidence of peripersonal space remapping following tool-use in humans. Cortex 2021, 144, 133–150. [Google Scholar] [CrossRef]
- Soccini, A.M.; Cena, F. The Ethics of Rehabilitation in Virtual Reality: The Role of Self-Avatars and Deep Learning. In Proceedings of the 2021 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR), Taichung, Taiwan, 15–17 November 2021; pp. 324–328. [Google Scholar] [CrossRef]
- Soccini, A.M.; Clocchiatti, A.; Inamura, T. Effects of frequent changes in extended self- avatar movement on adaptation performance. J Robot. Mechatron. 2022, 34, 756–766. [Google Scholar] [CrossRef]
- Hobeika, L.; Taffou, M.; Carpentier, T.; Warusfel, O.; Viaud-Delmon, I. Capturing the dynamics of peripersonal space by integrating expectancy effects and sound propagation properties. J Neurosci Methods. 2020, 332, 108534. [Google Scholar] [CrossRef]
- Kandula, M.; Van der Stoep, N.; Hofman, D.; Dijkerman, H. On the contribution of overt tactile expectations to visuo-tactile interactions within the peripersonal space. Exp brain Res. 2017, 235, 2511–2522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferroni, F.; Gallese, V.; Soccini, A.M.; Langiulli, N.; Rastelli, F.; Ferri, D.; Bianchi, F.; Ardizzi, M. The Remapping of Peripersonal Space in a Real but Not in a Virtual Environment. Brain Sci. 2022, 12, 1125. https://doi.org/10.3390/brainsci12091125
Ferroni F, Gallese V, Soccini AM, Langiulli N, Rastelli F, Ferri D, Bianchi F, Ardizzi M. The Remapping of Peripersonal Space in a Real but Not in a Virtual Environment. Brain Sciences. 2022; 12(9):1125. https://doi.org/10.3390/brainsci12091125
Chicago/Turabian StyleFerroni, Francesca, Vittorio Gallese, Agata Marta Soccini, Nunzio Langiulli, Francesca Rastelli, Donato Ferri, Francesco Bianchi, and Martina Ardizzi. 2022. "The Remapping of Peripersonal Space in a Real but Not in a Virtual Environment" Brain Sciences 12, no. 9: 1125. https://doi.org/10.3390/brainsci12091125