Dyslexics’ Fragile Oculomotor Control Is Further Destabilized by Increased Text Difficulty
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Eye Movement Recording Device
2.3. Calibration of the Recording Device
2.4. Texts
2.5. Data Analysis
2.6. Statistical Analysis
3. Results
3.1. Comparing Reading Performance and Eye Movements in each Text by Population
3.2. Comparing Texts in Each Population
4. Discussion
4.1. Velocity Profile during Reading Demonstrate Poor Oculomotor Coordination
4.2. Regressive Saccades Provide Insight into How Dyslexics Internalize Reading Text
4.3. Cognitive Aspects of Reading Differences
4.4. Limitations
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. L’Alouette Text
Appendix B. 35 Kilos D’Espoir Text
References
- Rayner, K. Eye movements in reading and information processing: 20 years of research. Psychol. Bull. 1998, 124, 372–422. [Google Scholar] [CrossRef]
- O’Regan, K.; Levy-Schoen, A. Eye movements during reading. Annee Psychol. 1978, 78, 459–492. [Google Scholar] [PubMed]
- Jainta, S.; Kapoula, Z. Dyslexic Children Are Confronted with Unstable Binocular Fixation while Reading. PLoS ONE 2011, 6, e18694. [Google Scholar] [CrossRef] [Green Version]
- Seassau, M.; GeãRard, C.L.; Bui-Quoc, E.; Bucci, M.P. Binocular saccade coordination in reading and visual search: A developmental study in typical reader and dyslexic children. Front. Integr. Neurosci. 2014, 8, 85. [Google Scholar] [CrossRef] [Green Version]
- Raghuram, A.; Gowrisankaran, S.; Swanson, E.; Zurakowski, D.; Hunter, D.; Waber, D.P. Frequency of Visual Deficits in Children With Developmental Dyslexia. JAMA Ophthalmol. 2018, 136, 1089–1095. [Google Scholar] [CrossRef] [Green Version]
- Bucci, M.P.; Bremond-Gignac, D.; Kapoula, Z. Poor binocular coordination of saccades in dyslexic children. Graefes Arch. Clin. Exp. Ophthalmol. 2008, 246, 417–428. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Bucci, M.P.; Kapoula, Z. The latency of saccades, vergence, and combined eye movements in children and in adults. Investig. Ophthalmol. Vis. Sci. 2002, 43, 2939–2949. [Google Scholar]
- Daniel, F.; Kapoula, Z. Induced vergence-accommodation conflict reduces cognitive performance in the Stroop test. Sci. Rep. 2019, 9, 1247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daniel, F.; Morize, A.; Bremond-Gignac, D.; Kapoula, Z. Benefits from Vergence Rehabilitation: Evidence for Improvement of Reading Saccades and Fixations. Front. Integr. Neurosci. 2016, 10, 33. [Google Scholar] [CrossRef] [Green Version]
- Protopapas, A.; Parrila, R. Is Dyslexia a Brain Disorder? Brain Sci. 2018, 8, 61. [Google Scholar] [CrossRef] [Green Version]
- Stein, J. What is Developmental Dyslexia? Brain Sci. 2018, 8, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stein, J.; Riddell, P.; Fowler, S. Disordered vergence control in dyslexic children. Br. J. Ophthalmol. 1988, 72, 162–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ward, L.M.; Kapoula, Z. Differential diagnosis of vergence and saccade disorders in dyslexia. Sci. Rep. 2020, 10, 22116. [Google Scholar] [CrossRef] [PubMed]
- Eden, G.; Stein, J.; Wood, H.; Wood, F. Differences in eye movements and reading problems in dyslexic and normal children. Vis. Res. 1994, 34, 1345–1358. [Google Scholar] [CrossRef]
- Bucci, M.P.; Brémond-Gignac, D.; Kapoula, Z. Latency of saccades and vergence eye movements in dyslexic children. Exp. Brain Res. 2008, 188, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Kapoula, Z.; Bucci, M.P.; Jurion, F.; Ayoun, J.; Afkhami, F.; Brémond-Gignac, D. Evidence for frequent divergence impairment in French dyslexic children: Deficit of convergence relaxation or of divergence per se? Graefes Arch. Clin. Exp. Ophthalmol. 2007, 245, 931–936. [Google Scholar] [CrossRef]
- Eden, G.F.; Stein, J.F.; Wood, M.H.; Wood, F.B. Dyslexia: A Study of Preserved and Impaired Visuospatial and Phonological Functions. Ann. N. Y. Acad. Sci. 1993, 682, 335–338. [Google Scholar] [CrossRef]
- Blythe, H.I.; Kirkby, J.A.; Liversedge, S.P. Comments on: “What Is Developmental Dyslexia?” Brain Sci. 2018, 8, 26. The Relationship between Eye Movements and Reading Difficulties. Brain Sci. 2018, 8, 100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rayner, K. Do faulty eye movements cause dyslexia? Dev. Neuropsychol. 1985, 1, 3–15. [Google Scholar] [CrossRef]
- Pavlidis, G.T. Eye Movement Differences between Dyslexics, Normal, and Retarded Readers While Sequentially Fixating Digits. Optom. Vis. Sci. 1985, 62, 820–832. [Google Scholar] [CrossRef]
- Biscaldi, M.; Gezeck, S.; Stuhr, V. Poor saccadic control correlates with dyslexia. Neuropsychologia 1998, 36, 1189–1202. [Google Scholar] [CrossRef]
- Hutzler, F.; Kronbichler, M.; Jacobs, A.M.; Wimmer, H. Perhaps correlational but not causal: No effect of dyslexic readers&rsquo magnocellular system on their eye movements during reading. Neuropsychologia 2006, 44, 637–648. [Google Scholar] [CrossRef]
- De Luca, M.; Di Pace, E.; Judica, A.; Spinelli, D.; Zoccolotti, P. Eye movement patterns in linguistic and non-linguistic tasks in developmental surface dyslexia. Neuropsychologia 1999, 37, 1407–1420. [Google Scholar] [CrossRef]
- Black, J.L.; Collins, D.W.K.; De Roach, J.N.; Zubrick, S. A Detailed Study of Sequential Saccadic Eye Movements for Normal- and Poor-Reading Children. Percept. Mot. Ski. 1984, 59, 423–434. [Google Scholar] [CrossRef] [PubMed]
- Brown, B.; Haegerstrom-Portnoy, G.; Adams, A.J.; Yingling, C.D.; Galin, D.; Herron, J.; Marcus, M. Predictive eye movements do not discriminate between dyslexic and control children. Neuropsychologia 1983, 21, 121–128. [Google Scholar] [CrossRef]
- Olson, R.K.; Kliegl, R.; Davidson, B.J.; Foltz, G. Individual and Developmental Differences in Reading Disability; Academic Press: London, UK, 1985; Volume 4, pp. 1–64. [Google Scholar]
- Hogben, J.; Rayner, K. Eye Movements in Reading: Perceptual and Language Processes. Am. J. Psychol. 1985, 98, 479. [Google Scholar] [CrossRef]
- Fischer, B.; Hartnegg, K. Effects of Visual Training on Saccade Control in Dyslexia. Perception 2000, 29, 531–542. [Google Scholar] [CrossRef]
- Kapoula, Z.; Morize, A.; Daniel, F.; Jonqua, F.; Orssaud, C.; Bremond-Gignac, D. Objective Evaluation of Vergence Disorders and a Research-Based Novel Method for Vergence Rehabilitation. Transl. Vis. Sci. Technol. 2016, 5, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morize, A.; Brémond-Gignac, D.; Daniel, F.; Kapoula, Z. Effects of Pure Vergence Training on Initiation and Binocular Coordination of Saccades. Investig. Opthalmol. Vis. Sci. 2017, 58, 329–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biscaldi, M.; Fischer, B.; Hartnegg, K. Voluntary Saccadic Control in Dyslexia. Perception 2000, 29, 509–521. [Google Scholar] [CrossRef] [Green Version]
- Wollenberg, L.; Hanning, N.M.; Deubel, H. Visual attention and eye movement control during oculomotor competition. J. Vis. 2021, 20, 16. [Google Scholar] [CrossRef]
- Kreyenmeier, P.; Deubel, H.; Hanning, N.M. Theory of visual attention (TVA) in action: Assessing premotor attention in simultaneous eye-hand movements. Cortex 2020, 133, 133–148. [Google Scholar] [CrossRef]
- Smith, D.T.; Schenk, T. The Premotor theory of attention: Time to move on? Neuropsychologia 2012, 50, 1104–1114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rizzolatti, G.; Riggio, L.; Dascola, I.; Umiltá, C. Reorienting attention across the horizontal and vertical meridians: Evidence in favor of a premotor theory of attention. Neuropsychologia 1987, 25, 31–40. [Google Scholar] [CrossRef]
- Rizzolatti, G.; Riggio, L.; Sheliga, B.M. Space and selective attention. Atten. Perform. XV 1994, 15, 231–265. [Google Scholar]
- Jenkins, J.R.; Fuchs, L.S.; Broek, P.V.D.; Espin, C.; Deno, S.L. Sources of Individual Differences in Reading Comprehension and Reading Fluency. J. Educ. Psychol. 2003, 95, 719–729. [Google Scholar] [CrossRef]
- Torgesen, J.; Rashotte, C.; Alexander, A. Principles of fluency instruction in reading: Relationships with established empirical outcomes. Dyslexia Fluen. Brain 2001, 333–355. [Google Scholar]
- Levafrais, P. Test de L’alouette: Manuel; Les Éditions du Centre de Psychologie Appliquée: Paris, France, 1967. [Google Scholar]
- Gavalda, A. 35 Kilos D’espoir; Éditions des Terres Rouges: Carnoules, France, 2019. [Google Scholar]
- Trauzettel-Klosinski, S.; Koitzsch, A.M.; Dürrwächter, U.; Sokolov, A.N.; Reinhard, J.; Klosinski, G. Eye movements in German-speaking children with and without dyslexia when reading aloud. Acta Ophthalmol. 2009, 88, 681–691. [Google Scholar] [CrossRef] [PubMed]
- Werth, R. What causes dyslexia? Identifying the causes and effective compensatory therapy. Restor. Neurol. Neurosci. 2019, 37, 591–608. [Google Scholar] [CrossRef] [Green Version]
- Werth, R. Dyslexic Readers Improve without Training When Using a Computer-Guided Reading Strategy. Brain Sci. 2021, 11, 526. [Google Scholar] [CrossRef]
Dyslexic | Non-Dyslexic | p-Value | |||
---|---|---|---|---|---|
Median | SD | Median | SD | ||
Amplitude (deg) | 1.93 | 0.36 | 2.23 | 0.45 | <0.001 |
Duration (ms) | 64.97 | 67.99 | 44.07 | 48.70 | <0.001 |
Peak Velocity (deg/s) | 80.82 | 35.49 | 66.30 | 41.68 | 0.01 |
Average Velocity (deg/s) | 42.13 | 16.14 | 64.24 | 19.81 | <0.001 |
Fixation Disconjugacy 80 msec after Saccade (deg) | 0.36 | 0.37 | 0.037 | 0.43 | 0.92 |
Fixation Disconjugacy 160 msec after Saccade (deg) | 0.61 | 0.64 | 0.56 | 0.60 | 0.64 |
Disconjugacy During Saccade (deg) | 0.76 | 2.06 | 0.61 | 1.01 | 0.04 |
Fixation Duration (ms) | 410.28 | 88.08 | 447.58 | 91.49 | 0.05 |
Percent Regressive Saccades | 35.46 | 28.24 | 0.01 | ||
Mistakes per Word | 0.06 | 0.06 | 0.026 | 0.02 | <0.001 |
Words per Minute | 92 | 109 | 136 | 29 | <0.001 |
Dyslexic | Non-Dyslexic | p-Value | |||
---|---|---|---|---|---|
Median | SD | Median | SD | ||
Amplitude (deg) | 2.15 | 0.50 | 2.56 | 0.44 | 0.00 |
Duration (ms) | 55.71 | 21.97 | 40.54 | 111.66 | 0.04 |
Peak Velocity (deg/s) | 77.77 | 18.74 | 69.92 | 38.63 | 0.04 |
Average Velocity (deg/s) | 52.92 | 17.19 | 76.56 | 21.57 | 0.00 |
Fixation Disconjugacy 80 msec after Saccade (deg) | 0.32 | 0.19 | 0.37 | 0.27 | 0.28 |
Fixation Disconjugacy 160 msec after Saccade (deg) | 0.50 | 0.36 | 0.54 | 0.50 | 0.72 |
Disconjugacy During Saccade (deg) | 0.64 | 1.84 | 0.64 | 0.96 | 0.55 |
Fixation Duration (ms) | 381.66 | 54.99 | 406.15 | 93.06 | 0.10 |
Percent Regressive Saccades | 31.44 | 26.56 | 0.42 | ||
Mistakes per Word | 0.03 | 0.03 | 0.015 | 0.01 | 0.00 |
Words per Minute | 124 | 33 | 176 | 34 | 0.00 |
Text 1 | Text 2 | p-Value | |||
---|---|---|---|---|---|
Median | SD | Median | SD | ||
Amplitude (deg) | 1.93 | 0.36 | 2.15 | 0.50 | 0.00 |
Duration (ms) | 64.97 | 67.99 | 55.71 | 21.97 | 0.07 |
Peak Velocity (deg/s) | 80.82 | 35.49 | 77.77 | 18.74 | 0.22 |
Average Velocity (deg/s) | 42.13 | 16.14 | 52.92 | 17.19 | 0.01 |
Fixation Disconjugacy 80 msec after Saccade (deg) | 0.36 | 0.37 | 0.32 | 0.19 | 0.33 |
Fixation Disconjugacy 160 msec after Saccade (deg) | 0.61 | 0.64 | 0.50 | 0.36 | 0.29 |
Disconjugacy During Saccade (deg) | 0.76 | 2.06 | 0.64 | 1.84 | 0.11 |
Fixation Duration (ms) | 410.28 | 88.08 | 381.66 | 54.99 | 0.25 |
Percent Regressive Saccades | 35.46 | 31.44 | 0.04 | ||
Mistakes per Word | 0.06 | 0.06 | 0.03 | 0.03 | 0.00 |
Words per Minute | 92 | 109 | 124 | 33 | 0.00 |
Text 1 | Text 2 | p-Value | |||
---|---|---|---|---|---|
Median | SD | Median | SD | ||
Amplitude (deg) | 2.23 | 0.45 | 2.56 | 0.44 | 0.00 |
Duration (ms) | 44.07 | 48.70 | 40.54 | 111.66 | 0.70 |
Peak Velocity (deg/s) | 66.30 | 41.68 | 69.92 | 38.63 | 0.76 |
Average Velocity (deg/s) | 64.24 | 19.81 | 76.56 | 21.57 | 0.06 |
Fixation Disconjugacy 80 msec after Saccade (deg) | 0.037 | 0.43 | 0.37 | 0.27 | 0.97 |
Fixation Disconjugacy 160 msec after Saccade (deg) | 0.56 | 0.60 | 0.54 | 0.50 | 0.61 |
Disconjugacy During Saccade (deg) | 0.61 | 1.01 | 0.64 | 0.96 | 0.82 |
Fixation Duration (ms) | 447.58 | 91.49 | 406.15 | 93.06 | 0.22 |
Percent Regressive Saccades | 28.24 | 26.56 | 0.91 | ||
Mistakes per Word | 0.026 | 0.02 | 0.015 | 0.01 | 0.00 |
Words per Minute | 136 | 29 | 176 | 34 | 0.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ward, L.M.; Kapoula, Z. Dyslexics’ Fragile Oculomotor Control Is Further Destabilized by Increased Text Difficulty. Brain Sci. 2021, 11, 990. https://doi.org/10.3390/brainsci11080990
Ward LM, Kapoula Z. Dyslexics’ Fragile Oculomotor Control Is Further Destabilized by Increased Text Difficulty. Brain Sciences. 2021; 11(8):990. https://doi.org/10.3390/brainsci11080990
Chicago/Turabian StyleWard, Lindsey M., and Zoi Kapoula. 2021. "Dyslexics’ Fragile Oculomotor Control Is Further Destabilized by Increased Text Difficulty" Brain Sciences 11, no. 8: 990. https://doi.org/10.3390/brainsci11080990
APA StyleWard, L. M., & Kapoula, Z. (2021). Dyslexics’ Fragile Oculomotor Control Is Further Destabilized by Increased Text Difficulty. Brain Sciences, 11(8), 990. https://doi.org/10.3390/brainsci11080990