Sex and Gender Differences in the Effects of Novel Psychoactive Substances
Abstract
1. Introduction
2. Synthetic Cannabinoids
3. Synthetic Cathinones
4. Phenethylamines and Tryptamines
5. Synthetic Opioids
6. Other NPS
7. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Farkouh, A.; Riedl, T.; Gottardi, R.; Czejka, M.; Kautzky-Willer, A. Sex-Related differences in pharmacokinetics and pharmacodynamics of frequently prescribed drugs: A review of the literature. Adv. Ther. 2020, 37, 644–655. [Google Scholar] [CrossRef] [PubMed]
- Harris, R.Z.; Benet, L.Z.; Schwartz, J.B. Gender effects in pharmacokinetics and pharmacodynamics. Drugs 1995, 50, 222–239. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, E. Gender-related differences in pharmacokinetics and their clinical significance. J. Clin. Pharm. Ther. 1999, 24, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.X.; Piecoro, L.T.; Wermeling, D.P. Gender-related considerations in clinical pharmacology and drug therapeutics. Crit. Care Nurs. Clin. N. Am. 1997, 9, 459–468. [Google Scholar] [CrossRef]
- Fattore, L.; Altea, S.; Fratta, W. Sex differences in drug addiction: A review of animal and human studies. Womens Health 2008, 4, 51–65. [Google Scholar] [CrossRef]
- Fattore, L.; Fratta, W. How important are sex differences in cannabinoid action? Br. J. Pharmacol. 2010, 160, 544–548. [Google Scholar] [CrossRef]
- Mendrek, A.; Fattore, L. Sex differences in drug-induced psychosis. Curr. Opin. Behav. Sci. 2016, 13, 152–157. [Google Scholar] [CrossRef]
- Agabio, R.; Campesi, I.; Pisanu, C.; Gessa, G.L.; Franconi, F. Sex differences in substance use disorders: Focus on side effects. Addict. Biol. 2016, 21, 1030–1042. [Google Scholar] [CrossRef]
- Agabio, R.; Pisanu, C.; Gessa, G.L.; Franconi, F. Sex differences in alcohol use disorder. Curr. Med. Chem. 2017, 24, 2661–2670. [Google Scholar] [CrossRef]
- Struik, D.; Sanna, F.; Fattore, L. The Modulating Role of Sex and Anabolic-Androgenic Steroid Hormones in Cannabinoid Sensitivity. Front. Behav. Neurosci. 2018, 12, 249. [Google Scholar] [CrossRef]
- Fattore, L. Reward processing and drug addiction: Does sex matter? Front. Neurosci. 2015, 9, 329. [Google Scholar] [CrossRef] [PubMed]
- Becker, J.B.; McClellan, M.; Reed, B.G. Sociocultural context for sex differences in addiction. Addict. Biol. 2016, 21, 1052–1059. [Google Scholar] [CrossRef]
- United Nations. World Drug Report 2020; Sales No. E.20.XI.6; United Nations Office on Drugs and Crime: Vienna, Austria, 2020. [Google Scholar]
- Miliano, C.; Margiani, G.; Fattore, L.; De Luca, M.A. Sales and Advertising Channels of New Psychoactive Substances (NPS): Internet, Social Networks, and Smartphone Apps. Brain Sci. 2018, 8, 123. [Google Scholar] [CrossRef] [PubMed]
- Miliano, C.; Serpelloni, G.; Rimondo, C.; Mereu, M.; Marti, M.; De Luca, M.A. Neuropharmacology of New Psychoactive Substances (NPS): Focus on the rewarding and reinforcing properties of cannabimimetics and amphetamine-like stimulants. Front. Neurosci. 2016, 10, 153. [Google Scholar] [CrossRef]
- Zanda, M.T.; Fadda, P.; Chiamulera, C.; Fratta, W.; Fattore, L. Methoxetamine, a novel psychoactive substance with important pharmacological effects: A review of case reports and preclinical findings. Behav. Pharmacol. 2016, 27, 489–496. [Google Scholar] [CrossRef] [PubMed]
- Zanda, M.T.; Fadda, P.; Antinori, S.; Di Chio, M.; Fratta, W.; Chiamulera, C.; Fattore, L. Methoxetamine affects brain processing involved in emotional response in rats. Br. J. Pharmacol. 2017, 174, 3333–3345. [Google Scholar] [CrossRef] [PubMed]
- Bilel, S.; Tirri, M.; Arfè, R.; Stopponi, S.; Soverchia, L.; Ciccocioppo, R.; Frisoni, P.; Strano-Rossi, S.; Miliano, C.; De-Giorgio, F.; et al. Pharmacological and behavioral effects of the synthetic cannabinoid AKB48 in rats. Front. Neurosci. 2019, 13, 1163. [Google Scholar] [CrossRef]
- Bilel, S.; Tirri, M.; Arfè, R.; Ossato, A.; Trapella, C.; Serpelloni, G.; Neri, M.; Fattore, L.; Marti, M. Novel halogenated synthetic cannabinoids impair sensorimotor functions in mice. Neurotoxicology. 2020, 76, 17–32. [Google Scholar] [CrossRef]
- Costa, G.; De Luca, M.A.; Piras, G.; Marongiu, J.; Fattore, L.; Simola, N. Neuronal and peripheral damages induced by synthetic psychoactive substances: An update of recent findings from human and animal studies. Neural Regen. Res. 2020, 15, 802–816. [Google Scholar]
- De-Giorgio, F.; Bilel, S.; Tirri, M.; Arfè, R.; Trapella, C.; Camuto, C.; Foti, F.; Frisoni, P.; Neri, M.; Botrè, F.; et al. Methiopropamine and its acute behavioral effects in mice: Is there a gray zone in new psychoactive substances users? Int. J. Legal Med. 2020, 134, 1695–1711. [Google Scholar] [CrossRef]
- Frisoni, P.; Bacchio, E.; Bilel, S.; Talarico, A.; Gaudio, R.M.; Barbieri, M.; Neri, M.; Marti, M. Novel synthetic opioids: The pathologist’s point of view. Brain Sci. 2018, 8, 170. [Google Scholar] [CrossRef] [PubMed]
- Martinotti, G.; Corazza, O.; Achab, S.; Demetrovics, Z. Novel psychoactive substances and behavioral addictions. Biomed. Res. Int. 2014, 2014, 534523. [Google Scholar] [CrossRef] [PubMed]
- Orsolini, L.; Chiappini, S.; Papanti, D.; De Berardis, D.; Corkery, J.M.; Schifano, F. The Bridge Between Classical and “Synthetic”/Chemical Psychoses: Towards a Clinical, Psychopathological, and Therapeutic Perspective. Front. Psychiatry 2019, 10, 851. [Google Scholar] [CrossRef] [PubMed]
- Shafi, A.; Gallagher, P.; Stewart, N.; Martinotti, G.; Corazza, O. The risk of violence associated with novel psychoactive substance misuse in patients presenting to acute mental health services. Hum. Psychopharmacol. Clin. Exp. 2017, 32, e2606. [Google Scholar] [CrossRef]
- Bonaccorso, S.; Metastasio, A.; Ricciardi, A.; Stewart, N.; Jamal, L.; Rujully, N.U.D.; Theleritis, C.; Ferracuti, S.; Ducci, G.; Schifano, F. Synthetic Cannabinoid use in a Case Series of Patients with Psychosis Presenting to Acute Psychiatric Settings: Clinical Presentation and Management Issues. Brain Sci. 2018, 8, 133. [Google Scholar] [CrossRef]
- Patrick, M.E.; O’alley, P.M.; Kloska, D.D.; Schulenberg, J.E.; Johnston, L.D.; Miech, R.A.; Bachman, J.G. Novel psychoactive substance use by US adolescents: Characteristics associated with use of synthetic cannabinoids and synthetic ca thinones. Drug Alcohol Rev. 2016, 35, 586–590. [Google Scholar] [CrossRef]
- Heikman, P.; Sundström, M.; Pelander, A.; Ojanperä, I. New psychoactive substances as part of polydrug abuse within opioid maintenance treatment revealed by comprehensive high-resolution mass spectrometric urine drug screening. Hum. Psychopharmacol. 2016, 31, 44–52. [Google Scholar] [CrossRef]
- Kapitány-Fövény, M.; Farkas, J.; Pataki, P.A.; Kiss, A.; Horváth, J.; Urbán, R.; Demetrovics, Z. Novel psychoactive substance use among treatment-seeking opiate users: The role of life events and psychiatric symptoms. Hum. Psychopharmacol. 2017, 32, e2602. [Google Scholar] [CrossRef]
- Caloro, M.; Calabrò, G.; Kotzalidis, G.D.; Cuomo, I.; Corkery, J.M.; Vento, A.M.; Lionetto, L.; De Filippis, S.; Ranieri, V.; Lonati, D.; et al. Use of benzylglycinamide by a HIV-seropositive polysubstance user: The changing pattern of novel psychoactive substance use among youths. Addict. Behav. 2016, 60, 53–57. [Google Scholar] [CrossRef]
- De Luca, M.A.; Fattore, L. Therapeutic Use of Synthetic Cannabinoids: Still an Open Issue? Clin. Ther. 2018, 40, 1457–1466. [Google Scholar] [CrossRef]
- Fattore, L.; Fratta, W. Beyond THC: The New Generation of Cannabinoid Designer Drugs. Front. Behav. Neurosci. 2011, 5, 60. [Google Scholar] [CrossRef] [PubMed]
- Drug Enforcement Administration. 2017. Available online: https://www.dea.gov/sites/default/files/drug_of_abuse.pdf (accessed on 28 June 2020).
- Rech, M.A.; Donahey, E.; Cappiello Dziedzic, J.M.; Oh, L.; Greenhalgh, E. New drugs of abuse. Pharmacotherapy 2015, 35, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Vandrey, R.; Johnson, M.W.; Johnson, P.S.; Khalil, M.A. Novel Drugs of Abuse: A Snapshot of an Evolving Marketplace. Adolesc. Psychiatry (Hilversum) 2013, 3, 123–134. [Google Scholar] [CrossRef] [PubMed]
- Basavarajappa, B.S.; Subbanna, S. Potential Mechanisms Underlying the Deleterious Effects of Synthetic Cannabinoids Found in Spice/K2 Products. Brain Sci. 2019, 9, 14. [Google Scholar] [CrossRef] [PubMed]
- Palamar, J.J.; Acosta, P.; Calderón, F.F.; Sherman, S.; Cleland, C.M. Assessing self-reported use of new psychoactive substances: The impact of gate questions. Am. J. Drug Alcohol Abuse 2017, 43, 609–617. [Google Scholar] [CrossRef] [PubMed]
- Cohen, K.; Weinstein, A.M. Synthetic and Non-synthetic Cannabinoid Drugs and Their Adverse Effects-A Review from Public Health Prospective. Front. Public Health 2018, 6, 162. [Google Scholar] [CrossRef]
- Wells, D.L.; Ott, C.A. The “new” marijuana. Ann. Pharmacother. 2011, 45, 414–417. [Google Scholar] [CrossRef]
- Thomas, S.; Bliss, S.; Malik, M. Suicidal ideation and self-harm following K2 use. J. Okla. State Med. Assoc. 2012, 105, 430–433. [Google Scholar]
- Besli, G.E.; Ikiz, M.A.; Yildirim, S.; Saltik, S. Synthetic Cannabinoid Abuse in Adolescents: A Case Series. J. Emerg. Med. 2015, 49, 644–650. [Google Scholar] [CrossRef]
- Brents, L.K.; Prather, P.L. The K2/Spice phenomenon: Emergence, identification, legislation and metabolic characterization of synthetic cannabinoids in herbal incense products. Drug Metab. Rev. 2014, 46, 72–85. [Google Scholar] [CrossRef]
- Meijer, K.A.; Russo, R.R.; Adhvaryu, D.V. Smoking synthetic marijuana leads to self-mutilation requiring bilateral amputations. Orthopedics 2014, 37, 391–394. [Google Scholar] [CrossRef] [PubMed]
- Fattore, L. Synthetic Cannabinoids-Further Evidence Supporting the Relationship between Cannabinoids and Psychosis. Biol. Psychiatry 2016, 79, 539–548. [Google Scholar] [CrossRef]
- Cohen, K.; Kapitány-Fövény, M.; Mama, Y.; Arieli, M.; Rosca, P.; Demetrovics, Z.; Weinstein, A. The effects of synthetic cannabinoids on executive function. Psychopharmacology 2017, 234, 1121–1134. [Google Scholar] [CrossRef] [PubMed]
- De Luca, M.A.; Castelli, M.P.; Loi, B.; Porcu, A.; Martorelli, M.; Miliano, C.; Kellett, K.; Davidson, C.; Stair, J.L.; Schifano, F.; et al. Native CB1 receptor affinity, intrinsic activity and accumbens shell dopamine stimulant properties of third generation SPICE/K2 cannabinoids: BB-22, 5F-PB-22, 5F-AKB-48 and STS-135. Neuropharmacology 2016, 105, 630–638. [Google Scholar] [CrossRef] [PubMed]
- De Luca, M.A.; Bimpisidis, Z.; Melis, M.; Marti, M.; Caboni, P.; Valentini, V.; Margiani, G.; Pintori, N.; Polis, I.; Marsicano, G.; et al. Stimulation of in vivo dopamine transmission and intravenous self-administration in rats and mice by JWH-018, a Spice cannabinoid. Neuropharmacology 2015, 99, 705–714. [Google Scholar] [CrossRef] [PubMed]
- Amenta, P.S.; Jallo, J.I.; Tuma, R.F.; Hooper, D.C.; Elliott, M.B. Cannabinoid receptor type-2 stimulation, blockade, and deletion alter the vascular inflammatory responses to traumatic brain injury. J. Neuroinflamm. 2014, 11, 191. [Google Scholar] [CrossRef]
- Brents, L.K.; Gallus-Zawada, A.; Radominska-Pandya, A.; Vasilijevik, T.; Prisinzano, T.E.; Fantegrossi, W.E.; Moran, J.H.; Prather, P.L. Monohydroxylated metabolites of the K2 synthetic cannabinoid JWH-073 retain intermediate to high cannabinoid 1 receptor (CB1R) affinity and exhibit neutral antagonist to partial agonist activity. Biochem. Pharmacol. 2012, 83, 952–961. [Google Scholar] [CrossRef]
- Macrì, S.; Lanuzza, L.; Merola, G.; Ceci, C.; Gentili, S.; Valli, A.; Macchia, T.; Laviola, G. Behavioral responses to acute and sub-chronic administration of the synthetic cannabinoid JWH-018 in adult mice prenatally exposed to corticosterone. Neurotox. Res. 2013, 24, 15–28. [Google Scholar] [CrossRef] [PubMed]
- Wiebelhaus, J.M.; Poklis, J.L.; Poklis, A.; Vann, R.E.; Lichtman, A.H.; Wise, L.E. Inhalation exposure to smoke from synthetic “marijuana” produces potent cannabimimetic effects in mice. Drug Alcohol Depend. 2012, 126, 316–323. [Google Scholar] [CrossRef]
- Wiley, J.L.; Marusich, J.A.; Lefever, T.W.; Grabenauer, M.; Moore, K.N.; Thomas, B.F. Cannabinoids in disguise: Δ9-tetrahydrocannabinol-like effects of tetramethylcyclopropyl ketone indoles. Neuropharmacology 2013, 75, 145–154. [Google Scholar] [CrossRef]
- Wiley, J.L.; Marusich, J.A.; Lefever, T.W.; Antonazzo, K.R.; Wallgren, M.T.; Cortes, R.A.; Patel, P.R.; Grabenauer, M.; Moore, K.N.; Thomas, B.F. AB-CHMINACA, AB-PINACA, and FUBIMINA: Affinity and Potency of Novel Synthetic Cannabinoids in Producing Δ9-Tetrahydrocannabinol-Like Effects in Mice. J. Pharmacol. Exp. Ther. 2015, 354, 328–339. [Google Scholar] [CrossRef] [PubMed]
- Banister, S.D.; Stuart, J.; Kevin, R.C.; Edington, A.; Longworth, M.; Wilkinson, S.M.; Beinat, C.; Buchanan, A.S.; Hibbs, D.E.; Glass, M.; et al. Effects of bioisosteric fluorine in synthetic cannabinoid designer drugs JWH-018, AM-2201, UR-144, XLR-11, PB-22, 5F-PB-22, APICA, and STS-135. ACS Chem. Neurosci. 2015, 6, 1445–1458. [Google Scholar] [CrossRef]
- Banister, S.D.; Moir, M.; Stuart, J.; Kevin, R.C.; Wood, K.E.; Longworth, M.; Wilkinson, S.M.; Beinat, C.; Buchanan, A.S.; Glass, M.; et al. Pharmacology of Indole and Indazole Synthetic Cannabinoid Designer Drugs AB-FUBINACA, ADB-FUBINACA, AB-PINACA, ADB-PINACA, 5F-AB-PINACA, 5F-ADB-PINACA, ADBICA, and 5F-ADBICA. ACS Chem. Neurosci. 2015, 6, 1546–1559. [Google Scholar] [CrossRef] [PubMed]
- Vigolo, A.; Ossato, A.; Trapella, C.; Vincenzi, F.; Rimondo, C.; Seri, C.; Varani, K.; Serpelloni, G.; Marti, M. Novel halogenated derivates of JWH-018: Behavioral and binding studies in mice. Neuropharmacology 2015, 95, 68–82. [Google Scholar] [CrossRef] [PubMed]
- Barbieri, M.; Ossato, A.; Canazza, I.; Trapella, C.; Borelli, A.C.; Beggiato, S.; Rimondo, C.; Serpelloni, G.; Ferraro, L.; Marti, M. Synthetic cannabinoid JWH-018 and its halogenated derivatives JWH-018-Cl and JWH-018-Br impair Novel Object Recognition in mice: Behavioral, electrophysiological and neurochemical evidence. Neuropharmacology 2016, 109, 254–269. [Google Scholar] [CrossRef] [PubMed]
- Canazza, I.; Ossato, A.; Vincenzi, F.; Gregori, A.; Di Rosa, F.; Nigro, F.; Rimessi, A.; Pinton, P.; Varani, K.; Borea, P.A.; et al. Pharmaco-toxicological effects of the novel third-generation fluorinate synthetic cannabinoids, 5F-ADBINACA, AB-FUBINACA, and STS-135 in mice. In vitro and in vivo studies. Hum. Psychopharmacol. 2017, 32, e2601. [Google Scholar] [CrossRef]
- Canazza, I.; Ossato, A.; Trapella, C.; Fantinati, A.; De Luca, M.A.; Margiani, G.; Vincenzi, F.; Rimondo, C.; Di Rosa, F.; Gregori, A.; et al. Effect of the novel synthetic cannabinoids AKB48 and 5F-AKB48 on “tetrad”, sensorimotor, neurological and neurochemical responses in mice. In vitro and in vivo pharmacological studies. Psychopharmacology 2016, 233, 3685–3709. [Google Scholar] [CrossRef] [PubMed]
- Ossato, A.; Vigolo, A.; Trapella, C.; Seri, C.; Rimondo, C.; Serpelloni, G.; Marti, M. JWH-018 impairs sensorimotor functions in mice. Neuroscience 2015, 300, 174–188. [Google Scholar] [CrossRef]
- Ossato, A.; Uccelli, L.; Bilel, S.; Canazza, I.; Di Domenico, G.; Pasquali, M.; Pupillo, G.; De Luca, M.A.; Boschi, A.; Vincenzi, F.; et al. Psychostimulant Effect of the Synthetic Cannabinoid JWH-018 and AKB48: Behavioral, Neurochemical, and Dopamine Transporter Scan Imaging Studies in Mice. Front. Psychiatry 2017, 8, 130. [Google Scholar] [CrossRef]
- Ossato, A.; Canazza, I.; Trapella, C.; Vincenzi, F.; De Luca, M.A.; Rimondo, C.; Varani, K.; Borea, P.A.; Serpelloni, G.; Marti, M. Effect of JWH-250, JWH-073 and their interaction on “tetrad”, sensorimotor, neurological and neurochemical responses in mice. Prog. Neuropsychopharmacol. Biol. Psychiatry 2016, 67, 31–50. [Google Scholar] [CrossRef]
- Nia, A.B.; Mann, C.; Kaur, H.; Ranganathan, M. Cannabis Use: Neurobiological, behavioral, and sex/gender considerations. Curr. Behav. Neurosci. Rep. 2018, 5, 271–280. [Google Scholar] [PubMed]
- Fattore, L.; Fadda, P.; Fratta, W. Sex differences in the self-administration of cannabinoids and other drugs of abuse. Psychoneuroendocrinology 2009, 34, S227–S236. [Google Scholar] [CrossRef] [PubMed]
- Chapman, C.; Slade, T.; Swift, W.; Keyes, K.; Tonks, Z.; Teesson, M. Evidence for Sex Convergence in Prevalence of Cannabis Use: A Systematic Review and Meta-Regression. J. Stud. Alcohol Drugs 2017, 78, 344–352. [Google Scholar] [CrossRef] [PubMed]
- Johnson, R.M.; Fairman, B.; Gilreath, T.; Xuan, Z.; Rothman, E.F.; Parnham, T.; Furr-Holden, C.D.M. Past 15-year trends in adolescent marijuana use: Differences by race/ethnicity and sex. Drug Alcohol Depend. 2015, 155, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Pacek, L.R.; Mauro, P.M.; Martins, S.S. Perceived risk of regular cannabis use in the United States from 2002 to 2012: Differences by sex, age, and race/ethnicity. Drug Alcohol. Depend. 2015, 149, 232–244. [Google Scholar] [CrossRef] [PubMed]
- McConnell, B.V.; Applegate, M.; Keniston, A.; Kluger, B.; Maa, E.H. Use of complementary and alternative medicine in an urban county hospital epilepsy clinic. Epilepsy Behav. 2014, 34, 73–76. [Google Scholar] [CrossRef]
- Finseth, T.A.; Hedeman, J.L.; Brown, R.P., 2nd; Johnson, K.I.; Binder, M.S.; Kluger, B.M. Self-reported efficacy of cannabis and other complementary medicine modalities by Parkinson’s disease patients in Colorado. Evid. Based Complement. Alternat. Med. 2015, 2015, 874849. [Google Scholar] [CrossRef]
- Ryan-Ibarra, S.; Induni, M.; Ewing, D. Prevalence of medical marijuana use in California, 2012. Drug Alcohol Rev. 2015, 34, 141146. [Google Scholar] [CrossRef]
- Palamar, J.J.; Martins, S.S.; Su, M.K.; Ompad, D.C. Self-reported use of novel psychoactive substances in a US nationally representative survey: Prevalence, correlates, and a call for new survey methods to prevent underreporting. Drug Alcohol Depend. 2015, 156, 112–119. [Google Scholar] [CrossRef]
- Cooper, Z.D.; Haney, M. Investigation of sex-dependent effects of cannabis in daily cannabis smokers. Drug Alcohol Depend. 2014, 136, 85–91. [Google Scholar] [CrossRef]
- Fogel, J.S.; Kelly, T.H.; Westgate, P.M.; Lile, J.A. Sex differences in the subjective effects of oral Δ9-THC in cannabis users. Pharmacol. Biochem. Behav. 2017, 152, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Becker, J.B.; Hu, M. Sex differences in drug abuse. Front. Neuroendocrinol. 2008, 29, 36–47. [Google Scholar] [CrossRef] [PubMed]
- Greaves, L.; Hemsing, N. Sex and Gender Interactions on the Use and Impact of Recreational Cannabis. Int. J. Environ. Res. Public Health. 2020, 17, 509. [Google Scholar] [CrossRef] [PubMed]
- Vandrey, R.; Dunn, K.E.; Fry, J.A.; Girling, E.R. A survey study to characterize use of Spice products (synthetic cannabinoids). Drug Alcohol Depend. 2012, 120, 238–241. [Google Scholar] [CrossRef] [PubMed]
- Castellanos, D.; Singh, S.; Thornton, G.; Avila, M.; Moreno, A. Synthetic cannabinoid use: A case series of adolescents. J. Adolesc. Health 2011, 49, 347–349. [Google Scholar] [CrossRef] [PubMed]
- Forrester, M.B.; Kleinschmidt, K.; Schwarz, E.; Young, A. Synthetic cannabinoid exposures reported to Texas poison centers. J. Addict. Dis. 2011, 30, 351–358. [Google Scholar] [CrossRef]
- Gunderson, E.W.; Haughey, H.M.; Ait-Daoud, N.; Joshi, A.S.; Hart, C.L. A survey of synthetic cannabinoid consumption by current cannabis users. Subst. Abus. 2014, 35, 184–189. [Google Scholar] [CrossRef]
- Hu, X.; Primack, B.A.; Barnett, T.E.; Cook, R.L. College students and use of K2: An emerging drug of abuse in young persons. Subst. Abus. Treat. Prev. Policy 2011, 6, 16. [Google Scholar] [CrossRef]
- Gutierrez, K.M.; Cooper, T.V. Investigating correlates of synthetic marijuana and Salvia use in light and intermittent smokers and college students in a predominantly Hispanic sample. Exp. Clin. Psychopharmacol. 2014, 22, 524–529. [Google Scholar] [CrossRef]
- Caviness, C.M.; Tzilos, G.; Anderson, B.J.; Stein, M.D. Synthetic cannabinoids: Use and predictors in a community sample of young adults. Subst. Abus. 2015, 36, 368–373. [Google Scholar] [CrossRef]
- Egan, K.L.; Suerken, C.K.; Reboussin, B.A.; Spangler, J.; Wagoner, K.G.; Sutfin, E.L.; Debinski, B.; Wolfson, M. K2 and spice use among a cohort of college students in southeast region of the USA. Am. J. Drug Alcohol Abuse 2015, 41, 317–322. [Google Scholar] [CrossRef] [PubMed]
- Vidourek, R.A.; King, K.A.; Burbage, M.L. Reasons for synthetic THC use among college students. J. Drug Educ. 2013, 43, 353–363. [Google Scholar] [CrossRef] [PubMed]
- Tait, R.J.; Caldicott, D.; Mountain, D.; Hill, S.L.; Lenton, S. A systematic review of adverse events arising from the use of synthetic cannabinoids and their associated treatment. Clin. Toxicol. (Phila) 2016, 54, 1–13. [Google Scholar] [CrossRef]
- DAWN. The DAWN Report: Drug-Related Emergency Department Visits Involving Synthetic Cannabinoids; Substance Abuse and Mental Health Services Administration (SAMHSA), Center for Behavioral Health Statistics and Quality: Rockville, MD, USA, 2012.
- Nia, A.B.; Mann, C.L.; Spriggs, S.; DeFrancisco, D.R.; Carbonaro, S.; Parvez, L.; Galynker, I.I.; Perkel, C.A.; Hurd, Y.L. The Relevance of Sex in the Association of Synthetic Cannabinoid Use with Psychosis and Agitation in an Inpatient Population. J. Clin. Psychiatry 2019, 80, 18m12539. [Google Scholar] [CrossRef]
- Fattore, L.; Spano, M.S.; Altea, S.; Angius, F.; Fadda, P.; Fratta, W. Cannabinoid self-administration in rats: Sex differences and the influence of ovarian function. Br. J. Pharmacol. 2007, 152, 795–804. [Google Scholar] [CrossRef] [PubMed]
- Fattore, L.; Spano, M.S.; Altea, S.; Fadda, P.; Fratta, W. Drug- and cue-induced reinstatement of cannabinoid- seeking behaviour in male and female rats: Influence of ovarian hormones. Br. J. Pharmacol. 2010, 160, 724–735. [Google Scholar] [CrossRef] [PubMed]
- Wiley, J.L.; Walentiny, D.M.; Wright, M.J., Jr.; Beardsley, P.M.; Burston, J.J.; Poklis, J.L.; Lichtman, A.H.; Vann, R.E. Endocannabinoid contribution to Delta(9)-tetrahydrocannabinol discrimination in rodents. Eur. J. Pharmacol. 2014, 737, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Gatch, M.B.; Forster, M.J. Delta9-Tetrahydrocannabinol-like discriminative stimulus effects of compounds commonly found in K2/Spice. Behav. Pharmacol. 2014, 25, 750–757. [Google Scholar] [CrossRef]
- Järbe, T.U.; McMillan, D.E. Delta 9-THC as a discriminative stimulus in rats and pigeons: Generalization to THC metabolites and SP-111. Psychopharmacology 1980, 71, 281–289. [Google Scholar] [CrossRef]
- Solinas, M.; Goldberg, S.R. Involvement of mu-, delta- and kappa-opioid receptor subtypes in the discriminative-stimulus effects of delta-9-tetrahydrocannabinol (THC) in rats. Psychopharmacology 2005, 179, 804–812. [Google Scholar] [CrossRef]
- Winsauer, P.J.; Filipeanu, C.M.; Bailey, E.M.; Hulst, J.L.; Sutton, J.L. Ovarian hormones and chronic administration during adolescence modify the discriminative stimulus effects of delta-9-tetrahydrocannabinol (Δ9-THC) in adult female rats. Pharmacol. Biochem. Behav. 2012, 102, 442–449. [Google Scholar] [CrossRef]
- Wiley, J.L.; Lefever, T.W.; Marusich, J.A.; Craft, R.M. Comparison of the discriminative stimulus and response rate effects of Δ9-tetrahydrocannabinol and synthetic cannabinoids in female and male rats. Drug Alcohol Depend. 2017, 172, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Craft, R.M.; Marusich, J.A.; Wiley, J.L. Sex differences in cannabinoid pharmacology: A reflection of differences in the endocannabinoid system? Life Sci. 2013, 92, 476–481. [Google Scholar] [CrossRef] [PubMed]
- Borsoi, M.; Manduca, A.; Bara, A.; Lassalle, O.; Pelissier-Alicot, A.L.; Manzoni, O.J. Sex Differences in the Behavioral and Synaptic Consequences of a Single in vivo Exposure to the Synthetic Cannabimimetic WIN55,212-2 at Puberty and Adulthood. Front. Behav. Neurosci. 2019, 13, 23. [Google Scholar] [CrossRef] [PubMed]
- Castelli, M.P.; Fadda, P.; Casu, A.; Spano, M.S.; Casti, A.; Fratta, W.; Fattore, L. Male and female rats differ in brain cannabinoid CB1 receptor density and function and in behavioural traits predisposing to drug addiction: Effect of ovarian hormones. Curr. Pharm. Des. 2014, 20, 2100–2113. [Google Scholar] [CrossRef]
- Melis, M.; De Felice, M.; Lecca, S.; Fattore, L.; Pistis, M. Sex-specific tonic 2-arachidonoylglycerol signaling at inhibitory inputs onto dopamine neurons of Lister Hooded rats. Front. Integr. Neurosci. 2013, 7, 93. [Google Scholar] [CrossRef][Green Version]
- Rosas, M.; Porru, S.; Giugliano, V.; Antinori, S.; Scheggi, S.; Fadda, P.; Fratta, W.; Acquas, E.; Fattore, L. Sex-specific differences in cannabinoid-induced extracellular-signal-regulated kinase phosphorylation in the cingulate cortex, prefrontal cortex, and nucleus accumbens of Lister Hooded rats. Behav. Pharmacol. 2018, 29, 473–481. [Google Scholar] [CrossRef]
- Cooper, Z.D.; Craft, R.M. Sex-Dependent Effects of Cannabis and Cannabinoids: A Translational Perspective. Neuropsychopharmacology 2018, 43, 34–51. [Google Scholar] [CrossRef]
- Tseng, A.H.; Harding, J.W.; Craft, R.M. Pharmacokinetic Factors in Sex Differences in Delta 9-tetrahydrocannabinol-induced Behavioral Effects in Rats. Behav. Brain Res. 2004, 154, 77–83. [Google Scholar] [CrossRef]
- Narimatsu, S.; Watanabe, K.; Yamamoto, I.; Yoshimura, H. Sex difference in the oxidative metabolism of delta 9-tetrahydrocannabinol in the rat. Biochem. Pharmacol. 1991, 41, 1187–1194. [Google Scholar] [CrossRef]
- Baumann, M.H.; Partilla, J.S.; Lehner, K.R. Psychoactive “bath salts”: Not so soothing. Eur. J. Pharmacol. 2013, 698, 1–5. [Google Scholar] [CrossRef]
- Glennon, R.A.; Young, R. Neurobiology of 3,4-methylenedioxypyrovalerone (MDPV) and α-pyrrolidinovalerophenone (α-PVP). Brain Res. Bull. 2016, 126, 111–126. [Google Scholar] [CrossRef]
- Eshleman, A.J.; Wolfrum, K.M.; Reed, J.F.; Kim, S.O.; Swanson, T.; Johnson, R.A.; Janowsky, A. Structure-activity relationships of substituted cathinones, with transporter binding, uptake, and release. J. Pharmacol. Exp. Ther. 2017, 360, 33–47. [Google Scholar] [CrossRef] [PubMed]
- Simmler, L.D.; Rickli, A.; Hoener, M.C.; Liechti, M.E. Monoamine transporter and receptor interaction profiles of a new series of designer cathinones. Neuropharmacology 2014, 79, 152–160. [Google Scholar] [CrossRef]
- Weinstein, A.M.; Rosca, P.; Fattore, L.; London, E.D. Synthetic Cathinone and Cannabinoid Designer Drugs Pose a Major Risk for Public Health. Front. Psychiatry 2017, 8, 156. [Google Scholar] [CrossRef] [PubMed]
- Watterson, L.R.; Kufahl, P.R.; Nemirovsky, N.E.; Sewalia, K.; Grabenauer, M.; Thomas, B.F.; Marusich, J.A.; Wegner, S.; Olive, M.F. Potent rewarding and reinforcing effects of the synthetic cathinone 3,4-methylenedioxypyrovalerone (MDPV). Addict. Biol. 2014, 19, 165–174. [Google Scholar] [CrossRef] [PubMed]
- De-Giorgio, F.; Bilel, S.; Ossato, A.; Tirri, M.; Arfè, R.; Foti, F.; Serpelloni, G.; Frisoni, P.; Neri, M.; Marti, M. Acute and repeated administration of MDPV increases aggressive behaviour in mice: Forensic implications. Int. J. Legal Med. 2019, 33, 1797–1808. [Google Scholar] [CrossRef] [PubMed]
- De-Giorgio, F.; Bilel, S.; Ossato, A.; Tirri, M.; Arfè, R.; Foti, F.; Serpelloni, G.; Frisoni, P.; Neri, M.; Marti, M. Reply to ‘MDPV induced aggression in humans not established’. Int. J. Legal Med. 2020, 134, 263–265. [Google Scholar] [CrossRef]
- Javadi-Paydar, M.; Nguyen, J.D.; Kerr, T.M.; Grant, Y.; Vandewater, S.A.; Cole, M.; Taffe, M.A. Effects of Δ9-THC and cannabidiol vapor inhalation in male and female rats. Psychopharmacology 2018, 235, 2541–2557. [Google Scholar] [CrossRef]
- Giannotti, G.; Canazza, I.; Caffino, L.; Bilel, S.; Ossato, A.; Fumagalli, F.; Marti, M. The Cathinones MDPV and α-PVP Elicit Different Behavioral and Molecular Effects Following Acute Exposure. Neurotox. Res. 2017, 32, 594–602. [Google Scholar] [CrossRef]
- Zawilska, J.B. Mephedrone and other cathinones. Curr. Opin. Psychiatry 2014, 27, 256–262. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, D.L.; Nayak, S.U.; Oliver, C.F.; Rawls, S.M.; Rom, S. Methylenedioxypyrovalerone (MDPV) impairs working memory and alters patterns of dopamine signaling in mesocorticolimbic substrates. Neurosci. Res. 2020, 155, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Schiavi, S.; Melancia, F.; Carbone, E.; Buzzelli, V.; Manduca, A.; Jiménez Peinado, P.; Zwergel, C.; Mai, A.; Campolongo, P.; Vanderschuren, L.J.M.J.; et al. Detrimental effects of the ‘bath salt’ methylenedioxypyrovalerone on social play behavior in male rats. Neuropsychopharmacology 2020. [Google Scholar] [CrossRef]
- Lopez-Rodriguez, A.B.; Viveros, M.P. Bath salts and polyconsumption: In search of drug-drug interactions. Psychopharmacology 2019, 236, 1001–1014. [Google Scholar] [CrossRef] [PubMed]
- Winstock, A.; Mitcheson, L.; Ramsey, J.; Davies, S.; Puchnarewicz, M.; Marsden, J. Mephedrone: Use, subjective effects and health risks. Addiction 2011, 106, 1991–1996. [Google Scholar] [CrossRef] [PubMed]
- Schmoll, S.; Romanek, K.; Stich, R.; Bekka, E.; Stenzel, J.; Geith, S.; Eyer, F.; Rabe, C. An internet-based survey of 96 German-speaking users of “bath salts”: Frequent complications, risky sexual behavior, violence, and delinquency. Clin. Toxicol. (Phila) 2018, 56, 219–222. [Google Scholar] [CrossRef]
- Palamar, J.J.; Barratt, M.J.; Ferris, J.A.; Winstock, A.R. Correlates of new psychoactive substance use among a self-selected sample of nightclub attendees in the United States. Am. J. Addict. 2016, 25, 400–407. [Google Scholar] [CrossRef]
- Jones, L.; Reed, P.; Parrott, A. Mephedrone and 3,4-methylenedioxy-methamphetamine: Comparative psychobiological effects as reported by recreational polydrug users. J. Psychopharmacol. 2016, 30, 1313–1320. [Google Scholar] [CrossRef]
- Sande, M. Characteristics of the use of 3-MMC and other new psychoactive drugs in Slovenia, and the perceived problems experienced by users. Int. J. Drug Policy 2016, 27, 65–73. [Google Scholar] [CrossRef]
- Alsufyani, H.A.; Docherty, J.R. Investigation of gender differences in the cardiovascular actions of direct and indirect sympathomimetic stimulants including cathinone in the anaesthetized rat. Auton. Autacoid Pharmacol. 2016, 36, 14–19. [Google Scholar] [CrossRef]
- Daniel, J.J.; Hughes, R.N. Increased anxiety and impaired spatial memory in young adult rats following adolescent exposure to methylone. Pharmacol. Biochem. Behav. 2016, 146–147, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Milesi-Hallé, A.; McMillan, D.E.; Laurenzana, E.M.; Byrnes-Blake, K.A.; Owens, S.M. Sex differences in (+)-amphetamine- and (+)-methamphetamine-induced behavioral response in male and female Sprague–Dawley rats. Pharm. Biochem. Behav. 2007, 86, 140–149. [Google Scholar] [CrossRef] [PubMed]
- Alsufyani, H.A.; Docherty, J.R. Gender differences in the effects of cathinone and the interaction with caffeine on temperature and locomotor activity in the rat. Eur. J. Pharmacol. 2017, 809, 203–208. [Google Scholar] [CrossRef]
- McClenahan, S.J.; Hambuchen, M.D.; Simecka, C.M.; Gunnell, M.G.; Berquist, M.D.; Owens, S.M. Cardiovascular effects of 3,4-methylenedioxypyrovalerone (MDPV) in male and female Sprague-Dawley rats. Drug Alcohol Depend. 2019, 195, 140–147. [Google Scholar] [CrossRef] [PubMed]
- King, H.E.; Wakeford, A.; Taylor, W.; Wetzell, B.; Rice, K.C.; Riley, A.L. Sex differences in 3,4-methylenedioxypyrovalerone (MDPV)-induced taste avoidance and place preferences. Pharmacol. Biochem. Behav. 2015, 137, 16–22. [Google Scholar] [CrossRef]
- Aarde, S.M.; Creehan, K.M.; Vandewater, S.A.; Dickerson, T.J.; Taffe, M.A. In vivo potency and efficacy of the novel cathinone alpha-pyrrolidinopentiophenone and 3,4-methylenedioxypyrovalerone: Self-administration and locomotor stimulation in male rats. Psychopharmacology 2015, 232, 3045–3055. [Google Scholar] [CrossRef]
- Nelson, K.H.; Manke, H.N.; Imanalieva, A.; Rice, K.C.; Riley, A.L. Sex differences in α-pyrrolidinopentiophenone (α-PVP)-induced taste avoidance, place preference, hyperthermia and locomotor activity in rats. Pharmacol. Biochem. Behav. 2019, 185, 172762. [Google Scholar] [CrossRef]
- Borek, H.A.; Holstege, C.P. Hyperthermia and multiorgan failure after abuse of “bath salts” containing 3,4-methylenedioxypyrovalerone. Ann. Emerg. Med. 2012, 60, 103–105. [Google Scholar] [CrossRef]
- O’Connor, A.D.; Padilla-Jones, A.; Gerkin, R.D.; Levine, M. Prevalence of rhabdomyolysis in sympathomimetic toxicity: A comparison of stimulants. J. Med. Toxicol. 2015, 11, 195–200. [Google Scholar] [CrossRef]
- Goldsmith, R.; Pachhain, S.; Choudhury, S.R.; Phuntumart, V.; Larsen, R.; Sprague, J.E. Gender differences in tolerance to the hyperthermia mediated by the synthetic cathinone methylone. Temperature 2019, 6, 334–340. [Google Scholar] [CrossRef]
- Hambuchen, M.D.; Hendrickson, H.P.; Gunnell, M.G.; McClenahan, S.J.; Ewing, L.E.; Gibson, D.M.; Berquist, M.D.; Owens, S.M. The pharmacokinetics of racemic MDPV and its (R) and (S) enantiomers in female and male rats. Drug Alcohol Depend 2017, 179, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.W.; Tariq, M.; Ageel, A.M.; el-Feraly, F.S.; Al-Meshal, I.A.; Ashraf, I. An evaluation of the male reproductive toxicity of cathinone. Toxicology 1990, 60, 223–234. [Google Scholar] [CrossRef]
- Zhou, W.; Cunningham, K.A.; Thomas, M.L. Estrogen Regulation of Gene Expression in the Brain: A Possible Mechanism Altering the Response to Psychostimulants in female rats. Brain Res. Mol. Brain Res. 2002, 100, 75–83. [Google Scholar] [CrossRef]
- Zhang, L.; Ma, W.; Barker, J.L.; Rubinow, D.R. Sex differences in expression of serotonin receptors (subtypes 1A and 2A) in rat brain: A possible role of testosterone. Neuroscience 1999, 94, 251–259. [Google Scholar] [CrossRef]
- Hu, M.; Crombag, H.S.; Robinson, T.E.; Becker, J.B. Biological basis of sex differences in the propensity to self-administer cocaine. Neuropsychopharmacology 2004, 29, 81–85. [Google Scholar] [CrossRef]
- Larson, E.B.; Carroll, M.E. Estrogen receptor beta, but not alpha, mediates estrogen’s effect on cocaine-induced reinstatement of extinguished cocaine-seeking behavior in ovariectomized female rats. Neuropsychopharmacology 2007, 32, 1334–1345. [Google Scholar] [CrossRef]
- Lynch, W.J.; Taylor, J.R. Decreased motivation following cocaine self-administration under extended access conditions: Effects of sex and ovarian hormones. Neuropsychopharmacology 2005, 30, 927–935. [Google Scholar] [CrossRef]
- Sanders, B.; Lankenau, S.E.; Bloom, J.J.; Hathazi, D. “Research chemicals”: Tryptamine and phenethylamine use among high-risk youth. Subst. Use Misuse 2008, 43, 389–402. [Google Scholar] [CrossRef][Green Version]
- González, D.; Torrens, M.; Farré, M. Acute Effects of the Novel Psychoactive Drug 2C-B on Emotions. Biomed Res. Int. 2015, 2015, 643878. [Google Scholar] [CrossRef]
- Herian, M.; Wojtas, A.; Kamińska, K.; Świt, P.; Wach, A.; Gołembiowska, K. Hallucinogen-Like Action of the Novel Designer Drug 25I-NBOMe and Its Effect on Cortical Neurotransmitters in Rats. Neurotox. Res. 2019, 36, 91–100. [Google Scholar] [CrossRef]
- Lawn, W.; Barratt, M.; Williams, M.; Horne, A.; Winstock, A. The NBOMe hallucinogenic drug series: Patterns of use, characteristics of users and self-reported effects in a large international sample. J. Psychopharmacol. 2014, 28, 780–788. [Google Scholar] [CrossRef] [PubMed]
- Forrester, M.B. NBOMe designer drug exposures reported to Texas poison centers. J. Addict. Dis. 2014, 33, 196–201. [Google Scholar] [CrossRef] [PubMed]
- Srisuma, S.; Bronstein, A.C.; Hoyte, C.O. NBOMe and 2C substitute phenylethylamine exposures reported to the National Poison Data System. Clin. Toxicol. (Phila) 2015, 53, 624–628. [Google Scholar] [CrossRef]
- Suzuki, J.; Dekker, M.A.; Valenti, E.S.; Arbelo Cruz, F.A.; Correa, A.M.; Poklis, J.L.; Poklis, A. Toxicities associated with NBOMe ingestion-a novel class of potent hallucinogens: A review of the literature. Psychosomatics 2015, 56, 129–139. [Google Scholar] [CrossRef]
- Madsen, G.R.; Petersen, T.S.; Dalhoff, K.P. NBOMe hallucinogenic drug exposures reported to the Danish Poison Information Centre. Dan. Med. J. 2017, 64, A5386. [Google Scholar] [PubMed]
- Miliano, C.; Marti, M.; Pintori, N.; Castelli, M.P.; Tirri, M.; Arfè, R.; De Luca, M.A. Neurochemical and Behavioral Profiling in Male and Female Rats of the Psychedelic Agent 25I-NBOMe. Front. Pharmacol. 2019, 10, 1406. [Google Scholar] [CrossRef] [PubMed]
- Wood, D.M.; Sedefov, R.; Cunningham, A.; Dargan, P.I. Prevalence of use and acute toxicity associated with the use of NBOMe drugs. Clin. Toxicol. (Phila) 2015, 53, 85–92. [Google Scholar] [CrossRef]
- Lurie, Y.; Gopher, A.; Lavon, O.; Almog, S.; Sulimani, L.; Bentur, Y. Severe paramethoxymethamphetamine (PMMA) and paramethoxyamphetamine (PMA) outbreak in Israel. Clin. Toxicol. (Phila) 2012, 50, 39–43. [Google Scholar] [CrossRef]
- Vevelstad, M.; Øiestad, E.L.; Middelkoop, G.; Hasvold, I.; Delaveris, G.J.M.; Eggen, T.; Mørland, J.; Arnestad, M. The PMMA epidemic in Norway: Comparison of fatal and non-fatal intoxications. Forensic Sci. Int. 2012, 219, 151–157. [Google Scholar] [CrossRef]
- Lazenka, M.F.; Suyama, J.A.; Bauer, C.T.; Banks, M.L.; Negus, S.S. Sex differences in abuse-related neurochemical and behavioral effects of 3,4-methylenedioxymethamphetamine (MDMA) in rats. Pharmacol. Biochem. Behav. 2017, 152, 52–60. [Google Scholar] [CrossRef]
- Pardo-Lozano, R.; Farré, M.; Yubero-Lahoz, S.; O’Mathúna, B.; Torrens, M.; Mustata, C.; Pérez-Mañá, C.; Langohr, K.; Cuyàs, E.; de la Torre, R. Clinical pharmacology of 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”): The influence of gender and genetics (CYP2D6, COMT, 5-HTT). PLoS ONE 2012, 7, e47599. [Google Scholar] [CrossRef] [PubMed]
- European Monitoring Centre for Drugs and Drug Addiction (EMCDDA) European Drug Report. Trends and Developments; EMCDDA/Publications Office of the European Union: Luxembourg, 2018; Available online: https://www.emcdda.europa.eu/system/files/publications/8585/20181816_TDAT18001ENN_PDF.pdf (accessed on 28 June 2020).
- Centers for Disease Control and Prevention (CDC). Annual Surveillance Report of Drug-Related Risks and Outcomes—United States, 2017; Surveillance Special Report 1; CDC, US Department of Health and Human Services: Atlanta, GA, USA, 2017.
- Pergolizzi, J.V., Jr.; Taylor, R., Jr.; LeQuang, J.A.; Bisney, J.; Raffa, R.B.; Pergolizzi, F.; Colucci, D.; Batastini, L. Driving under the influence of opioids: What prescribers should know. J. Opioid Manag. 2018, 14, 415–427. [Google Scholar] [CrossRef] [PubMed]
- Raj, K.; Chawla, P.; Singh, S. Neurobehavioral Consequences Associated with Long Term Tramadol Utilization and Pathological Mechanisms. CNS Neurol. Disord. Drug Targets 2019, 18, 758–768. [Google Scholar] [CrossRef] [PubMed]
- Kinshella, M.W.; Gauthier, T.; Lysyshyn, M. Rigidity, dyskinesia and other atypical overdose presentations observed at a supervised injection site, Vancouver, Canada. Harm Reduct. J. 2018, 15, 64. [Google Scholar] [CrossRef] [PubMed]
- Coopman, V.; Blanckaert, P.; Van Parys, G.; Van Calenbergh, S.; Cordonnier, J. A case of acute intoxication due to combined use of fentanyl and 3,4-dichloro-N-[2-(dimethylamino) cyclohexyl]-N-methylbenzamide (U-47700). Forensic Sci. Int. 2016, 266, 68–72. [Google Scholar] [CrossRef] [PubMed]
- Domanski, K.; Kleinschmidt, K.C.; Schulte, J.M.; Fleming, S.; Frazee, C.; Menendez, A.; Tavakoli, K. Two cases of intoxication with new synthetic opioid, U-47700. Clin. Toxicol. (Phila) 2017, 55, 46–50. [Google Scholar] [CrossRef]
- Siddiqi, S.; Verney, C.; Dargan, P.; Wood, D.M. Understanding the availability, prevalence of use, desired effects, acute toxicity and dependence potential of the novel opioid MT-45. Clin. Toxicol. (Phila) 2015, 53, 54–59. [Google Scholar] [CrossRef]
- Seth, P.; Scholl, L.; Rudd, R.A.; Bacon, S. Overdose Deaths Involving Opioids, Cocaine, and Psychostimulants—United States, 2015–2016. MMWR Morb. Mortal. Wkly. Rep. 2018, 67, 349–358. [Google Scholar] [CrossRef]
- Scholl, L.; Seth, P.; Kariisa, M.; Wilson, N.; Baldwin, G. Drug and Opioid-Involved Overdose Deaths—United States, 2013–2017. MMWR Morb. Mortal. Wkly. Rep. 2018, 67, 1419–1427. [Google Scholar] [CrossRef]
- Lippold, K.M.; Jones, C.M.; Olsen, E.O.; Giroir, B.P. Racial/Ethnic and Age Group Differences in Opioid and Synthetic Opioid-Involved Overdose Deaths Among Adults Aged ≥18 Years in Metropolitan Areas—United States, 2015–2017. Morb. Mortal. Wkly. Rep. 2019, 68, 967–973. [Google Scholar] [CrossRef]
- Wilson, N.; Kariisa, M.; Seth, P.; Smith, H., IV; Davis, N.L. Drug and Opioid-Involved Overdose Deaths—United States, 2017–2018. MMWR Morb. Mortal. Wkly. Rep. 2020, 69, 290–297. [Google Scholar] [CrossRef] [PubMed]
- Armenian, P.; Olson, A.; Anaya, A.; Kurtz, A.; Ruegner, R.; Gerona, R.R. Fentanyl and a Novel Synthetic Opioid U-47700 Masquerading as Street “Norco” in Central California: A Case Report. Ann. Emerg. Med. 2017, 69, 87–90. [Google Scholar] [CrossRef] [PubMed]
- Martin, W.R. Opioid antagonists. Pharmacol. Rev. 1967, 19, 463–521. [Google Scholar] [PubMed]
- Martin, W.R.; Eades, C.G.; Thompson, J.A.; Huppler, R.E.; Gilbert, P.E. The effects of morphine- and nalorphine- like drugs in the nondependent and morphine-dependent chronic spinal dog. J. Pharmacol. Exp. Ther. 1976, 197, 517–532. [Google Scholar] [PubMed]
- Belknap, J.; Mogil, J.S.; Helms, M.L.; Richards, S.P.; O’Toole, L.A.; Bergeson, S.E.; Buck, K.J. Localization to chromosome 10 of a locus influencing morphine analgesia in crosses derived from C57BL/6 and DBA/2 strains. Life Sci. 1995, 57, 117–124. [Google Scholar] [CrossRef]
- Giros, B.; Pohl, M.; Rochelle, J.M.; Seldin, M.F. Chromosomal localization of opioid peptide and receptor genes in the mouse. Life Sci. 1995, 56, 369–375. [Google Scholar] [CrossRef]
- Kozak, C.A.; Filie, J.; Adamson, M.C.; Chen, Y.; Yu, L. Murine chromosomal location of the mu and kappa opioid receptor genes. Genomics 1994, 21, 659–661. [Google Scholar] [CrossRef]
- Wang, J.B.; Johnson, P.S.; Persico, A.M.; Hawkins, A.L.; Griffin, C.A.; Uhl, G.R. Human mu opiate receptor. cDNA and genomic clones, pharmacologic characterization and chromosomal assignment. FEBS Lett. 1994, 338, 217–222. [Google Scholar] [CrossRef]
- Pasternak, G.W.; Childers, S.R.; Pan, Y.X. Emerging insights into mu opioid pharmacology. Handb. Exp. Pharmacol. 2020, 258, 89–125. [Google Scholar]
- Xu, J.; Lu, Z.; Xu, M.; Rossi, G.C.; Kest, B.; Waxman, A.R.; Pasternak, G.W.; Pan, Y.X. Differential expressions of the alternatively spliced variant mRNAs of the µ opioid receptor gene, OPRM1, in brain regions of four inbred mouse strains. PLoS ONE 2014, 9, e111267. [Google Scholar] [CrossRef]
- Verzillo, V.; Madia, P.A.; Liu, N.J.; Chakrabarti, S.; Gintzler, A.R. Mu-opioid receptor splice variants: Sex-dependent regulation by chronic morphine. J. Neurochem. 2014, 130, 790–796. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.; Zhang, H.; Qin, F.; Wang, Q.; Sun, Q.; Xie, S.; Wang, Q.; Tang, Z.; Lu, Z. Sex Associated Differential Expressions of the Alternatively Spliced Variants mRNA of OPRM1 in Brain Regions of C57BL/6 Mouse. Cell. Physiol. Biochem. 2018, 50, 1441–1459. [Google Scholar] [CrossRef] [PubMed]
- Burns, S.M.; Cunningham, C.W.; Mercer, S.L. DARK Classics in Chemical Neuroscience: Fentanyl. ACS Chem. Neurosci. 2018, 9, 2428–2437. [Google Scholar] [CrossRef]
- Maguire, P.; Tsai, N.; Kamal, J.; Cometta-Morini, C.; Upton, C.; Loew, G. Pharmacological profiles of fentanyl analogs at mu, delta and kappa opiate receptors. Eur. J. Pharmacol. 1992, 213, 219–225. [Google Scholar] [CrossRef]
- Selley, D.E.; Liu, Q.; Childers, S.R. Signal transduction correlates of mu opioid agonist intrinsic efficacy: Receptor-stimulated [35S]GTP gamma S binding in mMOR-CHO cells and rat thalamus. J. Pharmacol. Exp. Ther. 1998, 285, 496–505. [Google Scholar]
- Cox, B.M. Pharmacology of opioid drugs. In The Opiate Receptors; Pasternak, G.W., Ed.; Springer: New York, NY, USA, 2011; pp. 23–57. [Google Scholar]
- Pasternak, G.W.; Pan, Y.X. Mu opioids and their receptors: Evolution of a concept. Pharmacol. Rev. 2013, 65, 1257–1317. [Google Scholar] [CrossRef]
- Dahan, A.; Kest, B. Recent advances in opioid pharmacology. Curr. Opin. Anaesthesiol. 2001, 14, 405–410. [Google Scholar] [CrossRef]
- Kieffer, B.L. Opioids: First lessons from knockout mice. Trends Pharmacol. Sci. 1999, 20, 19–26. [Google Scholar] [CrossRef]
- Pattinson, K.T.S. Opioids and the control of respiration. Br. J. Anaesth. 2008, 100, 747–758. [Google Scholar] [CrossRef]
- Romberg, R.; Sarton, E.; Teppema, L.; Matthes, H.W.; Kieffer, B.L.; Dahan, A. Comparison of morphine-6-glucuronide and morphine on respiratory depressant and antinociceptive responses in wild type and mu-opioid receptor deficient mice. Br. J. Anaesth. 2003, 91, 862–870. [Google Scholar] [CrossRef]
- Serdarevic, M.; Striley, C.W.; Cottler, L.B. Sex differences in prescription opioid use. Curr. Opin. Psychiatry 2017, 30, 238–246. [Google Scholar] [CrossRef] [PubMed]
- Barbosa-Leiker, C.; McPherson, S.; Layton, M.E.; Burduli, E.; Roll, J.M.; Ling, W. Sex differences in opioid use and medical issues during buprenorphine/naloxone treatment. Am. J. Drug Alcohol Abus. 2018, 44, 488–496. [Google Scholar] [CrossRef] [PubMed]
- Pieretti, S.; Di Giannuario, A.; Di Giovannandrea, R.; Marzoli, F.; Piccaro, G.; Minosi, P.; Aloisi, A.M. Gender differences in pain and its relief. Annali dell’Istituto Superiore di Sanita 2016, 52, 184–189. [Google Scholar] [PubMed]
- Pisanu, C.; Franconi, F.; Gessa, G.L.; Mameli, S.; Pisanu, G.M.; Campesi, I.; Leggio, L.; Agabio, R. Sex differences in the response to opioids for pain relief: A systematic review and meta-analysis. Pharmacol. Res. 2019, 148, 104447. [Google Scholar] [CrossRef] [PubMed]
- Hurley, R.W.; Adams, M.C.B. Sex, Gender, and Pain: An Overview of a Complex Field. Anesth. Analg. 2008, 107, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Paulozzi, L.J.; Strickler, G.K.; Kreiner, P.W.; Koris, C.M.; Centers for Disease Control and Prevention (CDC). Controlled Substance Prescribing Patterns—Prescription Behavior Surveillance System, Eight States, 2013. MMWR Surveill. Summ. 2015, 64, 1–14. [Google Scholar] [CrossRef]
- Hirschtritt, M.E.; Delucchi, K.L.; Olfson, M. Outpatient, combined use of opioid and benzodiazepine medications in the United States, 1993–2014. Prev. Med. Rep. 2017, 21, 49–54. [Google Scholar] [CrossRef]
- Cicero, T.J.; Wong, G.; Tian, Y.; Lynskey, M.; Todorov, A.; Isenberg, K. Comorbidity and utilization of medical services by pain patients receiving opioid medications: Data from an insurance claims database. Pain 2009, 144, 20–27. [Google Scholar] [CrossRef]
- McHugh, R.K.; Devito, E.E.; Dodd, D.; Carroll, K.M.; Sharpe Potter, J.; Greenfield, S.F.; Smith Connery, H.; Weiss, R.D. Gender differences in a clinical trial for prescription opioid dependence. J. Subst. Abus. Treat. 2013, 45, 38–43. [Google Scholar] [CrossRef]
- Jamison, R.N.; Clark, J.D. Opioid medication management: Clinician beware! Anesthesiology 2010, 112, 777–778. [Google Scholar] [CrossRef]
- Becker, J.B.; McClellan, M.L.; Reed, B.G. Sex differences, gender and addiction. J. Neurosci. Res. 2017, 95, 136–147. [Google Scholar] [CrossRef] [PubMed]
- Siciliano, C.A. Capturing the complexity of sex differences requires multidimensional behavioral models. Neuropsychopharmacology 2019, 44, 1997–1998. [Google Scholar] [CrossRef] [PubMed]
- Lynch, W.J.; Carroll, M.E. Sex differences in the acquisition of intravenously self-administered cocaine and heroin in rats. Psychopharmacology 1999, 144, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Carroll, M.E.; Morgan, A.D.; Lynch, W.J.; Campbell, U.C.; Dess, N.K. Intravenous cocaine and heroin self-administration in rats selectively bred for differential saccharin intake: Phenotype and sex differences. Psychopharmacology 2002, 161, 304–313. [Google Scholar] [CrossRef] [PubMed]
- Carroll, M.E.; Campbell, U.C.; Heideman, P. Ketoconazole suppresses food restriction-induced increases in heroin self-administration in rats: Sex differences. Exp. Clin. Psychopharmacol. 2001, 9, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Cicero, T.J.; Aylward, S.C.; Meyer, E.R. Gender differences in the intravenous self-administration of mu opiate agonists. Pharmacol. Biochem. Behav. 2003, 74, 541–549. [Google Scholar] [CrossRef]
- Lacy, R.T.; Strickland, J.C.; Feinstein, M.A.; Robinson, A.M.; Smith, M.A. The effects of sex, estrous cycle, and social contact on cocaine and heroin self-administration in rats. Psychopharmacology 2016, 233, 3201–3210. [Google Scholar] [CrossRef]
- Cicero, T.J.; Ennis, T.; Ogden, J.; Meyer, E.R. Gender differences in the reinforcing properties of morphine. Pharmacol. Biochem. Behav. 2000, 65, 91–96. [Google Scholar] [CrossRef]
- Karami, M.; Zarrindast, M.R. Morphine sex-dependently induced place conditioning in adult wistar rats. Eur. J. Pharmacol. 2008, 582, 78–87. [Google Scholar] [CrossRef]
- Lee, C.W.; Ho, I.K. Sex differences in opioid analgesia and addiction: Interactions among opioid receptors and estrogen receptors. Mol. Pain 2013, 9, 45. [Google Scholar] [CrossRef]
- Cicero, T.J.; Nock, B.; Meyer, E.R. Gender-linked differences in the expression of physical dependence in the rat. Pharmacol. Biochem. Behav. 2002, 72, 691–697. [Google Scholar] [CrossRef]
- Luster, B.R.; Cogan, E.S.; Schmidt, K.T. Inhibitory transmission in the bed nucleus of the stria terminalis in male and female mice following morphine withdrawal. Addict. Biol. 2020, 25, e12748. [Google Scholar] [CrossRef] [PubMed]
- Bobzean, S.A.M.; Kokane, S.S.; Butler, B.D.; Perrotti, L.I. Sex differences in the expression of morphine withdrawal symptoms and associated activity in the tail of the ventral tegmental area. Neurosci. Lett. 2019, 705, 124–130. [Google Scholar] [CrossRef] [PubMed]
- Townsend, E.A.; Negus, S.S.; Caine, S.B.; Thomsen, M.; Banks, M.L. Sex differences in opioid reinforcement under a fentanyl vs. food choice procedure in rats. Neuropsychopharmacology 2019, 44, 2022–2029. [Google Scholar] [CrossRef] [PubMed]
- Baumann, M.H.; Majumdar, S.; Le Rouzic, V.; Hunkele, A.; Uprety, R.; Huang, X.P.; Xu, J.; Roth, B.L.; Pan, Y.X.; Pasternak, G.W. Pharmacological characterization of novel synthetic opioids (NSO) found in the recreational drug marketplace. Neuropharmacology 2018, 134, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Bilel, S.; Azevedo, N.J.; Arfè, R.; Tirri, M.; Gregori, A.; Serpelloni, G.; De-Giorgio, F.; Frisoni, P.; Neri, M.; Calò, G.; et al. In vitro and in vivo pharmacological characterization of the synthetic opioid MT-45. Neuropharmacology 2020, 171, 108110. [Google Scholar] [CrossRef]
- McKenzie, C.; Sutcliffe, O.B.; Read, K.D.; Scullion, P.; Epemolu, O.; Fletcher, D.; Helander, A.; Beck, O.; Rylski, A.; Antonides, L.H.; et al. Chemical synthesis, characterisation and in vitro and in vivo metabolism of the synthetic opioid MT-45 and its newly identified fluorinated analogue 2F-MT-45 with metabolite confirmation in urine samples from known drug users. Forensic Toxicol. 2018, 36, 359–374. [Google Scholar] [CrossRef]
- Blanckaert, P.; Cannaert, A.; Van Uytfanghe, K.; Hulpia, F.; Deconinck, E.; Van Calenbergh, S.; Stove, C. Report on a novel emerging class of highly potent benzimidazole NPS opioids: Chemical and in vitro functional characterization of isotonitazene. Drug Test. Anal. 2020, 12, 422–430. [Google Scholar] [CrossRef]
- Katselou, M.; Papoutsis, I.; Nikolaou, P.; Spiliopoulou, C.; Athanaselis, S. AH-7921: The list of new psychoactive opioids is expanded. Forensic Toxicol. 2015, 33, 195–201. [Google Scholar] [CrossRef]
- Schneir, A.; Metushi, I.G.; Sloane, C.; Benaron, D.J.; Fitzgerald, R.L. Near death from a novel synthetic opioid labeled U-47700: Emergence of a new opioid class. Clin. Toxicol. (Phila) 2017, 55, 51–54. [Google Scholar] [CrossRef]
- Fels, H.; Lottner-Nau, S.; Sax, T.; Roider, G.; Graw, M.; Auwärter, V.; Musshoff, F. Postmortem concentrations of the synthetic opioid U-47700 in 26 fatalities associated with the drug. Forensic Sci. Int. 2019, 301, e20–e28. [Google Scholar] [CrossRef] [PubMed]
- Mohr, A.L.; Friscia, M.; Papsun, D.; Kacinko, S.L.; Buzby, D.; Logan, B.K. Analysis of novel synthetic opioids U-47700, U-50488 and furanyl fentanyl by LC-MS/MS in postmortem casework. J. Anal. Toxicol. 2016, 40, 709–717. [Google Scholar] [CrossRef] [PubMed]
- Nordmeier, F.; Richter, L.H.J.; Schmidt, P.H.; Schaefer, N.; Meyer, M.R. Studies on the in vitro and in vivo metabolism of the synthetic opioids U-51754, U-47931E, and methoxyacetylfentanyl using hyphenated high-resolution mass spectrometry. Sci. Rep. 2019, 9, 13774. [Google Scholar] [CrossRef] [PubMed]
- Chiamulera, C.; Armani, F.; Mutti, A.; Fattore, L. The ketamine analogue methoxetamine generalizes to ketamine discriminative stimulus in rats. Behav. Pharmacol. 2016, 27, 204–210. [Google Scholar] [CrossRef]
- Mutti, A.; Aroni, S.; Fadda, P.; Padovani, L.; Mancini, L.; Collu, R.; Muntoni, A.L.; Fattore, L.; Chiamulera, C. The ketamine-like compound methoxetamine substitutes for ketamine in the self-administration paradigm and enhances mesolimbic dopaminergic transmission. Psychopharmacology 2016, 233, 2241–2251. [Google Scholar] [CrossRef] [PubMed]
- Ossato, A.; Bilel, S.; Gregori, A.; Talarico, A.; Trapella, C.; Gaudio, R.M.; De-Giorgio, F.; Tagliaro, F.; Neri, M.; Fattore, L.; et al. Neurological, sensorimotor and cardiorespiratory alterations induced by methoxetamine, ketamine and phencyclidine in mice. Neuropharmacology 2018, 141, 167–180. [Google Scholar] [CrossRef]
- Chen, W.Y.; Huang, M.C.; Lin, S.K. Gender differences in subjective discontinuation symptoms associated with ketamine use. Subst. Abus. Treat. Prev. Policy 2014, 9, 39. [Google Scholar] [CrossRef]
- Daniulaityte, R.; Carlson, R.; Falck, R.; Cameron, D.; Perera, S.; Chen, L.; Sheth, A. “I just wanted to tell you that loperamide WILL WORK”: A web-based study of extra-medical use of loperamide. Drug Alcohol Depend. 2013, 130, 241–244. [Google Scholar] [CrossRef]
- Schifano, F.; Chiappini, S. Is there such a thing as a ‘lope’ dope? Analysis of loperamide-related European Medicines Agency (EMA) pharmacovigilance database reports. PLoS ONE 2018, 13, e0204443. [Google Scholar] [CrossRef]
- Schifano, F.; Chiappini, S.; Corkery, J.M.; Guirguis, A. An insight into Z-Drug abuse and Dependence: An examination of reports to the european medicines agency database of suspected adverse drug reactions. Int. J. Neuropsychopharmacol. 2019, 22, 270–277. [Google Scholar] [CrossRef]
- Jouanjus, E.; Micallef, J.; Mallaret, M.; Lapeyre-Mestre, M. Comment on: An insight into z-drug abuse and dependence: An examination of reports to the european medicines agency database of suspected adverse drug reactions. Int. J. Neuropsychopharmacol. 2019, 22, 528–530. [Google Scholar] [CrossRef] [PubMed]
Scras | Synthetic Cathinones | Phenethylamines | Opioids | |
---|---|---|---|---|
Prevalence of use (%) | M > F [74] | M > F [115,116,117] M = F [118] (mephedrone) | M > F [141,142,143,144,145,148,149] | M > F [160,161] F > M [173,180,181] (prescribed drugs) |
Intoxications (%) | M > F [75] | M > F [75] | ? | M > F [160,161] |
Polydrug use | M > F [76,77,78,79,80] (nicotine, alcohol, marijuana) | M > F [115,116] (alcohol, opioids) | ? | ? |
Age of 1st use | M > F [81] | ? | ? | ? |
Sensitivity to adverse effects | M > F [83] (general side effects) F > M [84] (agitation, psychosis) | F > M [121] (anxiety, rats) M > F [124] (cardiovascular effects, rats) F > M [130] (tolerance to drug-induced hyperthermia, rats) | F > M [139] (2C-B, emotional verbal fluency) M > F [139] (2C-B, reduction in tiredness) F > M [146] (25I-NBOMe, hyperthermia) M > F [146] (25I-NBOMe, analgesia) M = F [146] (25I-NBOMe, PPI and visual sensorimotor responses) | ? |
Sensitivity to rewarding effects (animals) | F > M [85,86,91,92] (IVSA and DD) | M = F [125,126] (MDPV CPP and α-PVP IVSA) M > F [127] (α-PVP CPP) | ? | F > M [184] (IVSA) M > F [184] (food choice procedure) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fattore, L.; Marti, M.; Mostallino, R.; Castelli, M.P. Sex and Gender Differences in the Effects of Novel Psychoactive Substances. Brain Sci. 2020, 10, 606. https://doi.org/10.3390/brainsci10090606
Fattore L, Marti M, Mostallino R, Castelli MP. Sex and Gender Differences in the Effects of Novel Psychoactive Substances. Brain Sciences. 2020; 10(9):606. https://doi.org/10.3390/brainsci10090606
Chicago/Turabian StyleFattore, Liana, Matteo Marti, Rafaela Mostallino, and Maria Paola Castelli. 2020. "Sex and Gender Differences in the Effects of Novel Psychoactive Substances" Brain Sciences 10, no. 9: 606. https://doi.org/10.3390/brainsci10090606
APA StyleFattore, L., Marti, M., Mostallino, R., & Castelli, M. P. (2020). Sex and Gender Differences in the Effects of Novel Psychoactive Substances. Brain Sciences, 10(9), 606. https://doi.org/10.3390/brainsci10090606