Research Progress of Related Technologies of Electric-Pneumatic Pressure Proportional Valves
Abstract
:1. Introduction
2. Research Status of Electric-Pneumatic Pressure Proportional Valve
3. Related Technology Research Progresses
3.1. Numerical Simulation Researches
3.2. Modeling of Mechanical Structure
3.3. Modeling of Gas Flow Characteristics
4. Proportional Controller
4.1. Research on Proportional Controller
4.2. Research on Control Strategy
5. Conclusions
5.1. Oil-Free
5.2. Miniaturization and Light-Weight
5.3. Energy Saving
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Shearer, J.L. Study of Pneumatic Process in the Continuous Control of Motion with Compressed Air-I. Trans. ASME 1956, 2, 233–242. [Google Scholar]
- Burrows, C.R.; Webb, C.R. Simulation of an On-Off Pneumatic Servomechanism. Proc. Inst. Mech. Eng. 1967, 182, 631–642. [Google Scholar] [CrossRef]
- Burrows, C.R.; Webb, C.R. Further Study of a Low-Pressure on-off Pneumatic Servomechanism. Proc. Inst. Mech. Eng. 1969, 184, 849–858. [Google Scholar] [CrossRef]
- Xu, H. Theory Analysis and Study of Control Method of Pneumatic-Hydraulic Combination Control Position System. Ph.D. Thesis, Harbin Institute of Technology, Harbin, China, 1 April 2001. (In Chinese). [Google Scholar]
- Ioannidis, I.; Nguyen, T. Microcomputer-Controlled Servo-Pneumatic Drives. In Proceedings of the 7th International Fluid Power Symposium, Bath, UK, 16–18 September 1986; pp. 155–164. [Google Scholar]
- Liu, S.; Bobrow, J.E. An Analysis of a Pneumatic Servo System and Its Application to a Computer-Controlled Robot. J. Dyn. Syst. Meas. Control 1988, 110, 228–235. [Google Scholar] [CrossRef]
- Lai, J.Y.; Menq, C.H.; Singh, R. Accurate Position Control of a Pneumatic Actuator. ASME J. Dyn. Syst. Meas. Control 1990, 112, 734–739. [Google Scholar] [CrossRef]
- Numatics. Proportional Technology Precise Control of Pressure and Flow; Numatics: Norwich, MI, USA, 2012; Available online: www.numatics.com (accessed on 8 July 2017).
- Matrix. Panel Mounting Electronic Pressure Regulator. 2011. Available online: http://www.matrix.to.it/matrix2005/business3.aspid=14&id2=7&idbarea2=17 (accessed on 8 July 2017).
- Proportion Air. QPV&MPV Proportional Pressure Control Valves. 2011. Available online: http://www.proportionair.com (accessed on 8 July 2017).
- Festo. Proportional Pressure Regulators VPPE without Display; Festo: Shanghai, China, 2010; Available online: http://www.festo.com.cn (accessed on 8 July 2017).
- Belforte, G. Design of a new pressure regulator with electronic control: Friction force analysis. In Proceedings of the International Conference on Functional Programming (ICFP’2005), Hangzhou, China, 5–8 April 2005; Available online: http://porto.polito.it/1419478/ (accessed on 17 October 2017).
- Szente, V.; Vad, J.; Lorant, G.; Fries, A. Computational and experimental investigation on dynamics of electric braking systems. In Proceedings of the Scandinavian. International Conference on Fluid Power, Linkoping, Sweden, 30 May–1 June 2001. [Google Scholar]
- Sorli, M.; Figliolini, G.; Pastorelli, S. Dynamic model and experimental investigation of a pneumatic proportional pressure valve. IEEE ASME Trans. Mechatron. 2004, 9, 78–86. [Google Scholar] [CrossRef]
- Sorli, M.; Figliolini, G.; Almondo, A. Mechatronic Model and Experimental Validation of a Pneumatic Servo-Solenoid Valve. J. Dyn. Syst. Meas. Control. 2010, 132, 626–634. [Google Scholar] [CrossRef]
- Ahn, K.; Yokota, S. Intelligent switching control of pneumatic actuator using on/off solenoid valves. Mechatronics 2005, 15, 683–702. [Google Scholar] [CrossRef]
- Passarini, L.C.; Nakajima, R.P. Development of a high-speed solenoid valve: An investigation of the importance of the armature mass on the dynamic response. J. Braz. Soc. Mech. Sci. Eng. 2003, 25, 1143–1147. [Google Scholar] [CrossRef]
- Kajima, T.; Kawamura, Y. Development of a high-speed solenoid valve: Investigation of solenoids. IEEE Trans. Ind. Electron. 2002, 42, 1–8. [Google Scholar] [CrossRef]
- SMC. E-P Hyregvyl; SMC: Changzhou, China, 2010; Available online: http://www.smcworld.com/ (accessed on 8 July 2017).
- Vaughan, N.D.; Gamble, J.B. The Modeling and Simulation of a Proportional Solenoid Valve. J. Dyn. Syst. Meas. Control 1996, 118, 120–125. [Google Scholar] [CrossRef]
- Dasgupta, K.; Karmakar, R. Modelling and dynamics of single-stage pressure relief valve with directional damping. Simul. Model. Pract. Theory 2002, 10, 51–67. [Google Scholar] [CrossRef]
- Dasgupta, K.; Watton, J. Dynamic analysis of proportional solenoid controlled piloted relief valve by bondgraph. Simul. Model. Pract. Theory 2005, 13, 21–38. [Google Scholar] [CrossRef]
- Lequesne, B.P. Finite-element analysis of a constant-force solenoid for fluid flow control. IEEE Trans. Ind. Appl. 1988, 24, 574–581. [Google Scholar] [CrossRef]
- Kawase, Y.; Ohachi, Y. Dynamic analysis of automotive solenoid valve using finite element method. IEEE Trans. Magn. 1991, 27, 39–42. [Google Scholar] [CrossRef]
- Xu, Y.; Jones, B. A simple means of predicting the dynamic response of electromagnetic actuators. Mechatronics 1997, 7, 589–598. [Google Scholar] [CrossRef]
- Elmer, K.F.; Gentle, C.R. A parsimonious model for the proportional control valve. J. Mech. Eng. Sci. 2001, 215, 1357–1363. [Google Scholar] [CrossRef]
- Gaeta, A.D.; Glielmo, L.; Diglio, V. Modeling of an Electromechanical Engine Valve Actuator Based on a Hybrid Analytical-FEM Approach. IEEE ASME Trans. Mechatron. 2008, 13, 625–637. [Google Scholar] [CrossRef]
- Lescano, C.N.; Rodrigo, S.E.; Herrera, C.V. Dynamic Response of a Pneumatic Pressure Valve Applied to the Design of an Actuation System in Assistive Robotics. IFMBE Proc. 2015, 49, 952–955. [Google Scholar]
- Kukulka, D.J.; Benzoni, A.; Mollendorf, J.C. Digital Simulation of a Pneumatic Pressure Regulator. Soc. Model. Simul. Int. 1994, 63, 252–266. [Google Scholar] [CrossRef]
- Armstrong, H.B.; Dupont, E.; Canudas, W.C. A Survey of Models, analysis tools and Compensation Methods for the Control of Machines with Friction. Automatica 1994, 307, 1083–1138. [Google Scholar] [CrossRef]
- Canudas, D.W.C.; Olsson, H.; Astron, K.J. A New Model for Control of Systems with Friction. IEEE Trans. Autom. Control 1995, 40, 419–425. [Google Scholar] [CrossRef]
- Beater, P. Pneumatic Drives: System Design, Modelling and Control; Springer: Berlin, Germany, 2007. [Google Scholar] [CrossRef]
- Idelchik, I.E.; Fried, E. Handbook of Hydraulic Resistance; Hemisphere Publishing: New York, NY, USA, 1986. [Google Scholar]
- Andersen, B.W.; Binder, R.C. The Analysis and Design of Pneumatic Systems. J. Appl. Mech. 1967, 34, 1055. [Google Scholar] [CrossRef]
- Liu, M.W.; Zhang, L.F. Application of Pneumatic Capacity Pneumatic Inductance and Pneumatic Resistance on Pneumatic Peeling-off. Chin. Hydraul. Pneum. 2006, 2006, 14–15. (In Chinese) [Google Scholar]
- Xu, Z.P.; Wang, X.Y.; Pi, Y.J. Numerical Simulation of PPRV Based on Pneumatic Bridge and Control Networks. In Proceedings of the Fifth Fluid Power Transmission and control, Hangzhou, China, 3–5 April 2007; pp. 961–964. [Google Scholar]
- Perry, J.A. Critical Flow through Sharp-edged Orifices. Trans. ASME 1949, 71, 757–764. [Google Scholar]
- Reid, J.; Stewart, C.D. A review of critical flow nozzles for the mass flow measurement of gases. In Proceedings of the 2nd International Symposium on Fluid Control Measurement Mechanics and Flow Visualization, Sheffield, UK, 5–9 September 1988; pp. 454–457. [Google Scholar]
- Fleischer, H. Manual of Pneumatic System Operation; McGraw-Hill: New York, NY, USA, 1995. [Google Scholar]
- Szente, V.; Mózer, Z.; Ákos, T. Experimental investigation on pneumatic components. In Proceedings of the 12th International Conference on Modelling Fluid Flow, Budapest, Hungary, 3–6 September 2003. [Google Scholar]
- Nabi, A.; Wacholder, E.; Dayan, J. Dynamic Model for a Dome-Loaded Pressure Regulator. J. Dyn. Syst. Meas. Control 2000, 122, 290–297. [Google Scholar] [CrossRef]
- High, A.; Riche, E.; Hurmuzlu, Y. A High Performance Pneumatic Force Actuator System Part 1—Nonlinear Mathematical Model. J. Dyn. Syst. Meas. Control 2001, 122, 416–425. [Google Scholar]
- Liu, X.H. Optimization of Static Characteristics of Proportional Control Amplifier and Proportional electro Magnet. Hangzhou Zhejiang Univ. 1987, 17, 126–225. [Google Scholar]
- Nie, Y. Research on the Key Technology of A New Programmable Electro Hydraulic Proportional Controller. Ph.D. Thesis, Zhejiang University, Hangzhou, China, 2017. Available online: http://cdmd.cnki.com.cn/Article/CDMD-10335-1011068969.htm (accessed on 8 July 2017).
- Amirante, R.; Innone, A.; Catalano, L.A. Boosted PWM Open Loop Control of Hydraulic Proportional Valves. Energy Convers. Manag. 2008, 49, 2225–2236. [Google Scholar] [CrossRef]
- Liu, R.; Alleyne, A. Nonlinear Force/Pressure Tracking of an Electro-Hydraulic Actuator. J. Dyn. Syst. Meas. Control 2000, 122, 232–237. [Google Scholar] [CrossRef]
- Alleyne, A.; Liu, R. A simplified approach to force control for electro-hydraulic systems. Control Eng. Pract. 2000, 8, 1347–1356. [Google Scholar] [CrossRef]
- Lee, S.R.; Srinivasan, K. On-Line Identification of Process Models in Closed Loop Material Testing. In Proceedings of the American Control Conference, Atlanta, GA, USA, 15–17 June 1988; pp. 1909–1916. [Google Scholar]
- Lee, S.R.; Srinivasan, K. Self-Tuning Control Application to Closed-Loop Servohydraulic Material Testing. J. Dyn. Syst. Meas. Control 1990, 112, 680–689. [Google Scholar] [CrossRef]
- Canuto, E.; Acuria-Bravo, W.; Agostani, M.; Bonadei, M. Digital current regulator for proportional electro-hydraulic valves with unknown disturbance rejection. ISA Trans. 2014, 53, 909–919. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.; Hwang, J.; Yoon, P.; Kim, J. Robust Solenoid Current Control for EHB. Math. Oper. Res. 2005, 28, 11–14. [Google Scholar]
- Jung, H.G.; Hwang, J.Y.; Yoon, P.J.; Kim, J. Resistance estimation of a pwm-driven solenoid. Int. J. Automot. Technol. 2007, 8, 249–258. [Google Scholar]
- Iannone, C.A.; Turner, K.W. Apparatus and Method for Monitoring and Compensating for Variation in Solenoid Resistance during Use. U.S. Patent 7,054,772, 30 May 2006. [Google Scholar]
- Hamdan, M.; Gao, Z. A novel PID Controller for Pneumatic Proportional Valves with Hysteresis. In Proceedings of the 2000 Conference Record of the IEEE Industry Applications Conference, Rome, Italy, 8–12 October 2000; Volume 2, pp. 1198–1201. [Google Scholar]
- Wu, G.; Sepehri, N.; Ziaei, K. Design of hydraulic force control system using a generalized predictive control algorithm. IEE Proc. Control Theory Appl. 1998, 145, 428–436. [Google Scholar] [CrossRef]
- Li, B.; Wu, J.B.; Du, J.M. Research on Control Strategy of High-pressure Pneumatic Servo Position System. Hydraul. Pneum. Seals 2002, 2, 5–7. [Google Scholar]
- Zhou, H. The technology of pneumatic proportional control and its application. Chin. Hydraul. Pneum. 1999, 3, 1–3. [Google Scholar]
- Liu, X.; Jia, Q.; Liu, G.B. The Study on Controlling the Position of Air Cylinder by Electropneumatic Proportional Valve. Mech. Eng. 2002, 6, 19–25. [Google Scholar]
- Han, J.H.; Zhang, H.X. The pneumatic proportional servo control technology and its application. Mach. Tools Hydraul. 2001, 1, 3–7. [Google Scholar]
- Li, J.X.; Yuan, G.Q. Study of PWM controller based on AT 89C2051 single-chip micro-controller. J. Zhejiang Univ. Technol. 2000, 5, 419–425. [Google Scholar]
- Zhou, X.; Shan, X.H.; Chen, L. The study of the digital proportional valve control system. Mech. Electr. Eng. Technol. 1997, 2, 51–52. [Google Scholar]
- Yu, L. Methods to generate pulse-width modulation wave with single-chip microprocessor. J. Fujian Agric. Univ. 2001, 17, 332–347. [Google Scholar]
- Tian, J. Developing PWM Signal Genevator for High Speed On-off Valve. J. Civ. Aviat. Univ. China 2003, 6, 256–301. [Google Scholar]
- Topçu, E.E.; Yüksel, İ.; Kamış, Z. Development of electro-pneumatic fast switching valve and investigation of its characteristics. Mechatronics 2006, 16, 365–378. [Google Scholar] [CrossRef]
- Wang, X.S.; Cheng, Y.H.; Peng, G.Z. Modeling and self-tuning pressure regulator design for pneumatic-pressure–load systems. Control Eng. Pract. 2007, 15, 1161–1168. [Google Scholar] [CrossRef]
- Chaewieang, P.; Sirisantisamrit, K.; Thepmanee, T. Pressure control of pneumatic-pressure-load system using generalized predictive controller. In Proceedings of the IEEE International Conference on Mechatronics and Automation, Takamatsu, Japan, 5–8 August 2008; pp. 788–791. [Google Scholar]
- Lambeck, S.; Busch, C. Exact Linearization Control for a pneumatic proportional pressure control valve. In Proceedings of the IEEE International Conference on Control and Automation, Xiamen, China, 9–11 June 2010; pp. 22–27. [Google Scholar]
- Shen, T.; Tamura, K.; Kaminaga, H.; Henmi, N.; Nakazawa, T. Robust Nonlinear Control of Parametric Uncertain Systems with Unknown Friction and Its Application to a Pneumatic Control Valve. J. Dyn. Syst. Meas. Control 2000, 122, 257–262. [Google Scholar] [CrossRef]
- Kayihan, A.; Francis, J.D. Friction compensation for a process control valve. Control Eng. Pract. 2000, 8, 799–812. [Google Scholar] [CrossRef]
- Hägglund, T. A friction compensator for pneumatic control valves. J. Process Control 2002, 12, 897–904. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, Y.; Cai, M.; Zhang, B.; Zhu, J. Study on the Aviation Oxygen Supply System Based on a Mechanical Ventilation Model. Chin. J. Aeronaut. 2017. accepted. [Google Scholar]
- Ren, S.; Shi, Y.; Cai, M.; Xu, W. Influence of secretion on airflow dynamics of mechanical ventilated respiratory system. IEEE/ACM Trans. Comput. Biol. Bioinform. 2017, 99, 1. [Google Scholar] [CrossRef] [PubMed]
- Ren, S.; Cai, M.; Shi, Y.; Xu, W.; Zhang, X.D. Influence of Bronchial Diameter Change on the airflow dynamics Based on a Pressure-controlled Ventilation System. Int. J. Numer. Methods Biomed. Eng. 2017. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Zhang, B.; Cai, M.; Xu, W. Coupling Effect of Double Lungs on a VCV Ventilator with Automatic Secretion Clearance Function. IEEE/ACM Trans. Comput. Biol. Bioinform. 2017, 99, 1. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Zhang, B.; Cai, M.; Zhang, D. Numerical Simulation of volume-controlled mechanical ventilated respiratory system with two different lungs. Int. J. Numer. Methods Biomed. Eng. 2016, 33, 2852. [Google Scholar] [CrossRef] [PubMed]
- Niu, J.; Shi, Y.; Cai, M.; Cao, Z.; Wang, D.; Zhang, Z.; Zhang, D.X. Detection of Sputum by Interpreting the Time-frequency Distribution of Respiratory Sound Signal Using Image Processing Techniques. Bioinformatics 2017. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ning, F.; Shi, Y.; Cai, M.; Wang, Y.; Xu, W. Research Progress of Related Technologies of Electric-Pneumatic Pressure Proportional Valves. Appl. Sci. 2017, 7, 1074. https://doi.org/10.3390/app7101074
Ning F, Shi Y, Cai M, Wang Y, Xu W. Research Progress of Related Technologies of Electric-Pneumatic Pressure Proportional Valves. Applied Sciences. 2017; 7(10):1074. https://doi.org/10.3390/app7101074
Chicago/Turabian StyleNing, Fangwei, Yan Shi, Maolin Cai, Yixuan Wang, and Weiqing Xu. 2017. "Research Progress of Related Technologies of Electric-Pneumatic Pressure Proportional Valves" Applied Sciences 7, no. 10: 1074. https://doi.org/10.3390/app7101074
APA StyleNing, F., Shi, Y., Cai, M., Wang, Y., & Xu, W. (2017). Research Progress of Related Technologies of Electric-Pneumatic Pressure Proportional Valves. Applied Sciences, 7(10), 1074. https://doi.org/10.3390/app7101074