Applicability Assessment of a Microbial Proteolytic Fermentation Broth to Leather Processing and Protein Stain Removal
Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Microorganism
2.2. Production of Proteolytic Fermentation Broth
2.3. Assessment of the Fermentation Broth Properties
2.3.1. Determination of Protein Content
2.3.2. Caseinolytic Activity
2.3.3. Collagenase Activity
2.3.4. Elastase Activity
2.3.5. Keratinase Activity
2.4. Applications of the Proteolytic Broth
2.4.1. Leather Tests
Proteolytic Broth Activity on Collagen and Pelt Trimmings
Proteolytic Broth Application in the Leather Bating
2.4.2. Proteolytic Broth Application in Stain Removal
2.5. Statistical Analysis
3. Results and Discussion
3.1. Fermentation Broth Characterisation
3.2. Fermentation Broth Proteolytic Activities Comparison with the Pancreatic Enzymatic Cocktail
3.3. Applications of the Produced Proteolytic Broth
3.3.1. Leather Tests
Proteolytic Broth Activity on Collagen and Pelt Trimmings
Proteolytic Broth Application in the Leather Bating
3.3.2. Stain Removal Tests
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Solanki, P. Microbial Proteases: Ubiquitous Enzymes with Innumerable Uses. 3 Biotech 2021, 11, 428. [Google Scholar] [CrossRef] [PubMed]
- Lageiro, M.M. Optimização Da Produção de Proteases Microbianas Para Aplicações Agro-Industriais. In Proceedings of the Encontro Ciência’20, Lisbon, Portugal, 3–4 November 2020. [Google Scholar] [CrossRef]
- Mrudula, S. A Review on Microbial Alkaline Proteases: Optimization of Submerged Fermentative Production, Properties, and Industrial Applications. Appl. Biochem. Microbiol. 2024, 60, 383–401. [Google Scholar] [CrossRef]
- Angulo, M.; Márquez, M.C. A Green Technology Approach Using Enzymatic Hydrolysis to Valorize Meat Waste as a Way to Achieve a Circular Economy. Appl. Sci. 2023, 13, 8763. [Google Scholar] [CrossRef]
- Lageiro, M.; Alvarenga, N.; Lourenço, V.; Simões, F.; Reis, A. Isolamento, optimização da produção e aplicação agroindustrial de proteases microbianas. In Livro de Resumos do 7 Simpósio Produção e Transformação de Alimentos em Ambiente Sustentável; Instituto Nacional de Investigação Agrária e Veterinária (INIAV): Oeiras, Portugal, 2024. [Google Scholar] [CrossRef]
- Contesini, F.J.; Melo, R.R.d.; Sato, H.H. An Overview of Bacillus Proteases: From Production to Application. Crit. Rev. Biotechnol. 2018, 38, 321–334. [Google Scholar] [CrossRef]
- Gurumallesh, P.; Alagu, K.; Ramakrishnan, B.; Muthusamy, S. A Systematic Reconsideration on Proteases. Int. J. Biol. Macromol. 2019, 128, 254–267. [Google Scholar] [CrossRef]
- Lageiro, M.; Alvarenga, N.; Lourenço, V.; Simões, F.; Ferreira-Dias, S.; Reis, A. Alkaline Proteases from Bacillus CCMI 1253 Production and Agroindustry Applications. In Proceedings of the Encontro Ciência’23, Aveiro, Portugal, 5–7 July 2023. [Google Scholar] [CrossRef]
- Kumar, D.; Savitri; Thakur, N.; Verma, R.; Bhalla, T.C. Microbial Proteases and Application as Laundry Detergent Additive. Res. J. Microbiol. 2008, 3, 661–672. [Google Scholar] [CrossRef]
- Lageiro, M.; Alvarenga, N.; Lourenço, V.; Reis, A. Produção de Proteases Microbianas Com Bacillus CCMI 1253 Para Aplicações Agro-Industriais. In Proceedings of the Encontro Ciência’21, Lisbon, Portugal, 28–30 June 2021. [Google Scholar] [CrossRef]
- Hamza, T.A. Bacterial Protease Enzyme: Safe and Good Alternative for Industrial and Commercial Use. Int. J. Chem. Biomol. Sci. 2017, 3, 1–10. [Google Scholar]
- Khan, Z.; Shafique, M.; Jabeen, N.; Naz, S.A.; Yasmeen, K.; Ejaz, U.; Sohail, M. Protease from Bacillus Subtilis ZMS-2: Evaluation of Production Dynamics through Response Surface Methodology and Application in Leather Tannery. J. King Saud Univ. Sci. 2023, 35, 102643. [Google Scholar] [CrossRef]
- Sharma, M.; Gat, Y.; Arya, S.; Kumar, V.; Panghal, A.; Kumar, A. A Review on Microbial Alkaline Protease: An Essential Tool for Various Industrial Approaches. Ind. Biotechnol. 2019, 15, 69–78. [Google Scholar] [CrossRef]
- Verma, J.; Modi, D.R.; Sharma, R.; Saxena, S. Vital Role of Alkaline Protease in Bio-Industries: A Review. Plant Arch. 2011, 11, 1083–1092. [Google Scholar]
- Kumari, A.; Kaur, B.; Srivastava, R.; Sangwan, R.S. Isolation and Immobilization of Alkaline Protease on Mesoporous Silica and Mesoporous ZSM-5 Zeolite Materials for Improved Catalytic Properties. Biochem. Biophys. Rep. 2015, 2, 108–114. [Google Scholar] [CrossRef] [PubMed]
- Mhamdi, S.; Ktari, N.; Hajji, S.; Nasri, M.; Sellami Kamoun, A. Alkaline Proteases from a Newly Isolated Micromonospora chaiyaphumensis S103: Characterization and Application as a Detergent Additive and for Chitin Extraction from Shrimp Shell Waste. Int. J. Biol. Macromol. 2017, 94, 415–422. [Google Scholar] [CrossRef]
- Ariram, N.; Madhan, B. Development of Bio-Acceptable Leather Using Bagasse. J. Clean. Prod. 2020, 250, 119441. [Google Scholar] [CrossRef]
- Hasan, M.J.; Haque, P.; Rahman, M.M. Protease Enzyme Based Cleaner Leather Processing: A Review. J. Clean. Prod. 2022, 365, 132826. [Google Scholar] [CrossRef]
- Jaffari, Z.H.; Hong, J.; Park, K.Y. A Systematic Review of Innovations in Tannery Solid Waste Treatment: A Viable Solution for the Circular Economy. Sci. Total Environ. 2024, 948, 174848. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.M.; Harris, J.; Busfield, J.J.C.; Bilotti, E. A Review of the Green Chemistry Approaches to Leather Tanning in Imparting Sustainable Leather Manufacturing. Green Chem. 2023, 25, 7441–7469. [Google Scholar] [CrossRef]
- Verma, S.K.; Sharma, P.C. Current Trends in Solid Tannery Waste Management. Crit. Rev. Biotechnol. 2023, 43, 805–822. [Google Scholar] [CrossRef]
- Sundar, V.J.; Gnanamani, A.; Muralidharan, C.; Chandrababu, N.K.; Mandal, A.B. Recovery and Utilization of Proteinous Wastes of Leather Making: A Review. Rev. Environ. Sci. Bio Technol. 2011, 10, 151–163. [Google Scholar] [CrossRef]
- Maina, P.; Ollengo, M.A.; Nthiga, E.W. Trends in Leather Processing: A Review. Int. J. Sci. Res. Publ. 2019, 9, p9626. [Google Scholar] [CrossRef]
- Wu, X.; Qiang, X.; Liu, D.; Yu, L.; Wang, X. An Eco-Friendly Tanning Process to Wet-White Leather Based on Amino Acids. J. Clean. Prod. 2020, 270, 122399. [Google Scholar] [CrossRef]
- Lasoń-Rydel, M.; Sieczyńska, K.; Gendaszewska, D.; Ławińska, K.; Olejnik, T.P. Use of Enzymatic Processes in the Tanning of Leather Materials. AUTEX Res. J. 2024, 24, 20230012. [Google Scholar] [CrossRef]
- Basu, S.; Roy, M.; Pal, P. Corporate Greening in a Large Developing Economy: Pollution Prevention Strategies. Environ. Dev. Sustain. 2019, 21, 1603–1633. [Google Scholar] [CrossRef]
- Khambhaty, Y. Applications of Enzymes in Leather Processing. Environ. Chem. Lett. 2020, 18, 747–769. [Google Scholar] [CrossRef]
- Zhang, G. Protease Assays 2012 updated-1 October 2012. In Assay Guidance Manual; Markossian, S., Grossman, A., Baskir, H., Arkin, M., Auld, D., Austin, C., Baell, J., Brimacombe, K., Chung, T.D.Y., Coussens, N.P., et al., Eds.; Eli Lilly & Company: Indianapolis, IN, USA; National Center for Advancing Translational Sciences: Bethesda, MD, USA, 2004. [Google Scholar] [PubMed]
- Greenfield, L.M.; Puissant, J.; Jones, D.L. Synthesis of Methods Used to Assess Soil Protease Activity. Soil Biol. Biochem. 2021, 158, 108277. [Google Scholar] [CrossRef]
- Lageiro, M.; Simões, F.; Alvarenga, N.; Reis, A. Proteolytic Bacillus Sp. Isolation and Identification from Tannery Alkaline Baths. Molecules 2025, 30, 3632. [Google Scholar] [CrossRef]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Anson, M.L. The Estimation of Pepsin, Trypsin, Papain, and Cathepsin with Hemoglobin. J. Gen. Physiol. 1938, 22, 79–89. [Google Scholar] [CrossRef]
- Folin, O.; Ciocalteu, V. On Tyrosine and Tryptophane Determinations in Proteins. J. Biol. Chem. 1927, 73, 627–650. [Google Scholar] [CrossRef]
- Moore, S.; Stein, W.H. Photometric Ninhydrin Method for Use in the Chromatography of Amino Acids. J. Biol. Chem. 1948, 176, 367–388. [Google Scholar] [CrossRef]
- Moore, S.; Stein, W.H. A Modified Ninhydrin Reagent for the Photometric Determination of Amino Acids and Related Compounds. J. Biol. Chem. 1954, 211, 907–913. [Google Scholar] [CrossRef]
- Mandl, I.; MacLennan, J.D.; Howes, E.L.; DeBellis, R.H.; Sohler, A. Isolation and Characterization of Proteinase and Collagenase from Cl. Histolyticum. J. Clin. Investig. 1953, 32, 1323–1329. [Google Scholar] [CrossRef]
- Cupp-Enyard, C. Sigma’s Non-Specific Protease Activity Assay—Casein as a Substrate. JoVE 2008, 19, 899. [Google Scholar] [CrossRef]
- Twining, S.S. Fluorescein Isothiocyanate-Labeled Casein Assay for Proteolytic Enzymes. Anal. Biochem. 1984, 143, 30–34. [Google Scholar] [CrossRef]
- Teixeira, G.; Santana, A.; Pais, M.; Clemente, A. Enzymes of Opuntia Ficus-Indica (L.) Miller with Potential Industrial Applications-I. Appl. Biochem. Biotechnol. Part A Enzym. Eng. Biotechnol. 2000, 88, 299–312. [Google Scholar] [CrossRef]
- Löhlein-Volhard 1975. Determination de La Actividad de Preparados Enzimáticos Proteoliticos Según Löhlein-Volhard (Tegewa Method). In Análisis de Materias Primas; Escuela Syndical Nacional de Tenería: Barcelona, Spain, 1985; p. 1B. [Google Scholar]
- Sachar, L.A.; Winter, K.K.; Sicher, N.; Frankel, S. Photometric Method for Estimation of Elastase Activity. Proc. Soc. Exp. Biol. Med. 1955, 90, 323–326. [Google Scholar] [CrossRef]
- Jany, K.-D. Studies on the Digestive Enzymes of the Stomachless Bonefish Carassius auratus gibelio (Bloch): Endopeptidases. Comp. Biochem. Physiol. Part B Comp. Biochem. 1976, 53, 31–38. [Google Scholar] [CrossRef]
- Hänel, H.; Kalisch, J.; Keil, M.; Marsch, W.C.; Buslau, M. Quantification of Keratinolytic Activity from Dermatophilus congolensis. Med. Microbiol. Immunol. 1991, 180, 45–51. [Google Scholar] [CrossRef]
- Hameed, A.; Natt, M.A.; Evans, C.S. Comparative Studies of a New Microbial Bate and the Commercial Bate ‘Oropon’ in Leather Treatment. J. Ind. Microbiol. 1996, 17, 77–79. [Google Scholar] [CrossRef]
- Crispim, A.; Mota, M. Unhairing with Enzymes. J. Soc. Leather Technol. Chem. 2003, 87, 198. [Google Scholar]
- ISO 2589:2016; Leather—Physical and Mechanical Tests—Determination of Thickness (ISO Standard No. 2589:2016(E)|IULTCS/IUP 4:2016(E)). International Organization for Standardization: Geneva, Switzerland, 2016.
- ISO 3376:2020; Leather—Physical and Mechanical Tests—Determination of Tensile Strength and Percentage Elongation (ISO Standard No. 3376:2020(E)|IULTCS/IUP 6:2020(E)). International Organization for Standardization: Geneva, Switzerland, 2020.
- ISO 3377-1:2011; Leather—Physical and Mechanical Tests—Determination of Thickness (ISO Standard No. ISO 3377-1:2011/IULTCS/IUP 40-1:2011). International Organization for Standardization: Geneva, Switzerland, 2011.
- ISO 3379:2024; Leather—Physical and Mechanical Tests—Determination of Thickness (ISO Standard No. ISO 3379:2024|IULTCS/IUP 9). International Organization for Standardization: Geneva, Switzerland, 2024.
- Ugbede, A.S.; Abioye, O.P.; Aransiola, S.A.; Oyewole, O.A.; Maddela, N.R.; Prasad, R. Production, Optimization and Partial Purification of Bacterial and Fungal Proteases for Animal Skin Dehairing: A Sustainable Development in Leather-Making Process. Bioresour. Technol. Rep. 2023, 24, 101632. [Google Scholar] [CrossRef]
- Ullah, N.; Rehman, M.U.; Sarwar, A.; Nadeem, M.; Nelofer, R.; Shakir, H.A.; Irfan, M.; Idrees, M.; Naz, S.; Nabi, G.; et al. Purification, Characterization, and Application of Alkaline Protease Enzyme from a Locally Isolated Bacillus Cereus Strain. Fermentation 2022, 8, 628. [Google Scholar] [CrossRef]
- Desalegn, T.; Bacha, K.; Masi, C. The Effectiveness of Proteolytic Bacteria in the Leather and Detergent Industry Isolated Waste from the Modjo Tannery. Kuwait J. Sci. 2021, 50, 1–15. [Google Scholar] [CrossRef]
- Fahmy, N.M.; El-Deeb, B. Optimization, Partial Purification, and Characterization of a Novel High Molecular Weight Alkaline Protease Produced by Halobacillus sp. HAL1 Using Fish Wastes as a Substrate. J. Genet. Eng. Biotechnol. 2023, 21, 48. [Google Scholar] [CrossRef]
- Barzkar, N. Marine Microbial Alkaline Protease: An Efficient and Essential Tool for Various Industrial Applications. Int. J. Biol. Macromol. 2020, 161, 1216–1229. [Google Scholar] [CrossRef]
- Loperena, L.; Soria, V.; Varela, H.; Lupo, S.; Bergalli, A.; Guigou, M.; Pellegrino, A.; Bernardo, A.; Calviño, A.; Rivas, F.; et al. Extracellular Enzymes Produced by Microorganisms Isolated from Maritime Antarctica. World J. Microbiol. Biotechnol. 2012, 28, 2249–2256. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Pérez, M.L.; Fernández-Calderón, M.C.; Vadillo-Rodríguez, V. Decomposition of Growth Curves into Growth Rate and Acceleration: A Novel Procedure to Monitor Bacterial Growth and the Time-Dependent Effect of Antimicrobials. Appl. Environ. Microbiol. 2022, 88, e01849-21. [Google Scholar] [CrossRef] [PubMed]
- Monod, J. The Growth of Bacterial Cultures. Annu. Rev. Microbiol. 1949, 3, 371–394. [Google Scholar] [CrossRef]
- Abe, S.; Yasumura, A.; Tanaka, T. Regulation of Bacillus Subtilis aprE Expression by glnA through Inhibition of scoC and σD-Dependent degR Expression. J. Bacteriol. 2009, 191, 3050–3058. [Google Scholar] [CrossRef]
- Alam, S.; Hasan, J.; Haque, P.; Rahman, M.M. Sustainable Leather Tanning: Enhanced Properties and Pollution Reduction through Crude Protease Enzyme Treatment. Int. J. Biol. Macromol. 2024, 268, 131858. [Google Scholar] [CrossRef] [PubMed]
- Biškauskaitė, R.; Valeikienė, V.; Valeika, V. Enzymes for Leather Processing: Effect on Pickling and Chroming. Materials 2021, 14, 1480. [Google Scholar] [CrossRef]
- Su, Y.; Liu, C.; Fang, H.; Zhang, D. Bacillus Subtilis: A Universal Cell Factory for Industry, Agriculture, Biomaterials and Medicine. Microb. Cell Factories 2020, 19, 173. [Google Scholar] [CrossRef] [PubMed]
- Niyonzima, F.N.; More, S. Detergent-Compatible Proteases: Microbial Production, Properties, and Stain Removal Analysis. Prep. Biochem. Biotechnol. 2015, 45, 233–258. [Google Scholar] [CrossRef] [PubMed]
- Khazi, M.I.; Kut, D.; Liaqat, F.; Demirkan, E. Synergistic Protease-Lipase Treatment for Enhanced Blood Stain Removal from Textiles: Process Optimization and Efficacy Evaluation. Process Biochem. 2025, 156, 20–32. [Google Scholar] [CrossRef]
- Alshehri, W.A.; Alhothifi, S.A.; Khalel, A.F.; Alqahtani, F.S.; Hadrich, B.; Sayari, A. Production Optimization of a Thermostable Alkaline and Detergent Biocompatible Protease by Bacillus paramycoides WSA for the Green Detergent Industry. Sci. Rep. 2025, 15, 13205. [Google Scholar] [CrossRef]
- Anand, S.S.; Nair, B.G.; SadasivanNair, S.; GopalakrishnaPai, J. Proteases from Marine Endophyte, Bacillus Subtilis ULB16: Unlocking the Industrial Potential of a Marine-Derived Enzyme Source. Biocatal. Agric. Biotechnol. 2025, 64, 103503. [Google Scholar] [CrossRef]
- Aruna, V.; Chandrakala, V.; Angajala, G.; Nagarajan, E.R. Proteases: An Overview on Its Recent Industrial Developments and Current Scenario in the Revolution of Biocatalysis. Mater. Today Proc. 2023, 92, 565–573. [Google Scholar] [CrossRef]
- Yang, H.; Ren, X.; Zhao, Y.; Xu, T.; Xiao, J.; Chen, H. Enhancing Alkaline Protease Stability through Enzyme-Catalyzed Crosslinking and Its Application in Detergents. Processes 2024, 12, 624. [Google Scholar] [CrossRef]









| Enzymatic Activity | Collagenolytic 1 | Elastolytic 2 | Keratinolytic 3 | Löhlein–Volhard Unit 4 |
|---|---|---|---|---|
| Proteolytic broth 5 | 10.0 U mg−1 | 3.70 U mg−1 | 0.70 U mg−1 | 5200 LVU |
| Oropon® 6 | 16.5 U mg−1 | 0.002 U mg−1 | 0.24 U mg−1 | 5000 LVU |
| Proteolytic Activity (U mg−l) | pH 5.0 | pH 8.0 |
|---|---|---|
| Proteolytic broth 1 | 3528 U mg−l | 17,530 U mg−l |
| Oropon® 2 | 25,000 U mg−l | 127,000 U mg−l |
| Leather Thickness | Proteolytic Bate | Bursting | |
|---|---|---|---|
| (mm) | (780 LVU) 1 | Load (Kg) | Elongation (mm) |
| 2.4 | Proteolytic broth | 54 | 10 |
| Oropon® 2 | 55 | ||
| 1.6 | Proteolytic broth | 19 | 6.8 |
| Oropon® 2 | 6.3 | ||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Lageiro, M.; Moura, M.J.; Simões, F.; Alvarenga, N.; Reis, A. Applicability Assessment of a Microbial Proteolytic Fermentation Broth to Leather Processing and Protein Stain Removal. Appl. Sci. 2026, 16, 1348. https://doi.org/10.3390/app16031348
Lageiro M, Moura MJ, Simões F, Alvarenga N, Reis A. Applicability Assessment of a Microbial Proteolytic Fermentation Broth to Leather Processing and Protein Stain Removal. Applied Sciences. 2026; 16(3):1348. https://doi.org/10.3390/app16031348
Chicago/Turabian StyleLageiro, Manuela, Maria João Moura, Fernanda Simões, Nuno Alvarenga, and Alberto Reis. 2026. "Applicability Assessment of a Microbial Proteolytic Fermentation Broth to Leather Processing and Protein Stain Removal" Applied Sciences 16, no. 3: 1348. https://doi.org/10.3390/app16031348
APA StyleLageiro, M., Moura, M. J., Simões, F., Alvarenga, N., & Reis, A. (2026). Applicability Assessment of a Microbial Proteolytic Fermentation Broth to Leather Processing and Protein Stain Removal. Applied Sciences, 16(3), 1348. https://doi.org/10.3390/app16031348

