Insights into INS Gene Variation from Seven Years of Monogenic Diabetes Testing—Novel Genetic Variants and Their Clinical Implications
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Group
2.2. NGS Analysis
2.3. In Silico Predictions
3. Results
3.1. Genetic Results
3.2. Clinical Characteristics of Patients
3.3. In Silico Analysis of the Mutations of the L35 Amino Acid Residue of Insulin
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| MD | Monogenic diabetes |
| PNDM | Permanent neonatal diabetes mellitus |
| TNDM | Transient neonatal diabetes mellitus |
| MODY | Maturity-onset diabetes of the young |
| IUGR | Intrauterine growth restriction |
| NDM | Neonatal diabetes mellitus |
| ACMG | American College of Medical Genetics and Genomics |
| NGS | Next-generation sequencing |
| SGLT-2 | Sodium-glucose cotransporter 2 |
Appendix A
Appendix A.1

Appendix A.2

References
- World Health Organization. Classification of Diabetes Mellitus; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- Zhou, Q.; Samadli, S.; Zhang, H.; Zheng, X.; Zheng, B.; Zhang, A.; Gu, W. Molecular and clinical profiles of pediatric monogenic diabetes subtypes: Comprehensive genetic analysis of 138 patients. J. Clin. Endocrinol. Metab. 2024, 110, 2314–2325. [Google Scholar] [CrossRef] [PubMed]
- Colclough, K.; Ellard, S.; Hattersley, A.; Patel, K. Syndromic Monogenic Diabetes Genes Should Be Tested in Patients with a Clinical Suspicion of Maturity-Onset Diabetes of the Young. Diabetes 2022, 71, 530–537. [Google Scholar] [CrossRef] [PubMed]
- Saint-Martin, C.; Bouvet, D.; Bastide, M.; Bellanné-Chantelot, C. Gene Panel Sequencing of Patients with Monogenic Diabetes Brings to Light Genes Typically Associated with Syndromic Presentations. Diabetes 2022, 71, 578–584. [Google Scholar] [CrossRef]
- Bell, G.I.; Pictet, R.L.; Rutter, W.J.; Cordell, B.; Tischer, E.; Goodman, H.M. Sequence of the human insulin gene. Nature 1980, 284, 26–32. [Google Scholar] [CrossRef]
- Colombo, C.; Porzio, O.; Liu, M.; Massa, O.; Vasta, M.; Salardi, S.; Beccaria, L.; Monciotti, C.; Toni, S.; Pedersen, O.; et al. Seven mutations in the human insulin gene linked to permanent neonatal/infancy-onset diabetes mellitus. J. Clin. Investig. 2008, 118, 2148–2156. [Google Scholar] [CrossRef]
- Edghill, E.L.; Flanagan, S.E.; Patch, A.-M.; Boustred, C.; Parrish, A.; Shields, B.; Shepherd, M.H.; Hussain, K.; Kapoor, R.R.; Malecki, M.; et al. Insulin Mutation Screening in 1044 Patients with Diabetes. Diabetes 2008, 57, 1034–1042. [Google Scholar] [CrossRef]
- Støy, J.; De Franco, E.; Ye, H.; Park, S.-Y.; Bell, G.I.; Hattersley, A.T. In celebration of a century with insulin—Update of insulin gene mutations in diabetes. Mol. Metab. 2021, 52, 101280. [Google Scholar] [CrossRef]
- Garin, I.; Edghill, E.L.; Akerman, I.; Rubio-Cabezas, O.; Rica, I.; Locke, J.M.; Maestro, M.A.; Alshaikh, A.; Bundak, R.; Del Castillo, G.; et al. Recessive mutations in the INS gene result in neonatal diabetes through reduced insulin biosynthesis. Proc. Natl. Acad. Sci. USA 2010, 107, 3105–3110. [Google Scholar] [CrossRef]
- Carmody, D.; Park, S.-Y.; Ye, H.; Perrone, M.E.; Alkorta-Aranburu, G.; Highland, H.M.; Hanis, C.L.; Philipson, L.H.; Bell, G.I.; Greeley, S.A.W. Continued lessons from the INS gene: An intronic mutation causing diabetes through a novel mechanism. J. Med. Genet. 2015, 52, 612–616. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Fei, S.-J.; Deng, M.-Q.; Chen, X.-D.; Wang, W.-H.; Guo, L.-X.; Pan, Q. Maturity-onset diabetes of the young type 10 caused by an Ala2Thr mutation of INS: A case report. World J. Diabetes 2023, 14, 1877–1884. [Google Scholar] [CrossRef]
- Zmysłowska, A.; Jakiel, P.; Gadzalska, K.; Majos, A.; Płoszaj, T.; Ben-Skowronek, I.; Deja, G.; Glowinska-Olszewska, B.; Jarosz-Chobot, P.; Klonowska, B.; et al. Next- generation sequencing is an effective method for diagnosing patients with different forms of monogenic diabetes. Diabetes Res. Clin. Pract. 2022, 183, 109154. [Google Scholar] [CrossRef]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef] [PubMed]
- Hornbeck, P.V.; Zhang, B.; Murray, B.; Kornhauser, J.M.; Latham, V.; Skrzypek, E. PhosphoSitePlus, 2014: Mutations, PTMs and recalibrations. Nucleic Acids Res. 2015, 43, D512–D520. [Google Scholar] [CrossRef] [PubMed]
- Lisgarten, D.R.; Palmer, R.A.; Lobley, C.M.C.; Naylor, C.E.; Chowdhry, B.Z.; Al-Kurdi, Z.I.; Badwan, A.A.; Howlin, B.J.; Gibbons, N.C.J.; Saldanha, J.W.; et al. Ultra-high resolution X-ray structures of two forms of human recombinant insulin at 100 K. Chem. Cent. J. 2017, 11, 73. [Google Scholar] [CrossRef]
- Smith, G.D.; Pangborn, W.A.; Blessing, R.H. The structure of T6 human insulin at 1.0 Å resolution. Acta Crystallogr. D Biol. Crystallogr. 2003, 59, 474–482. [Google Scholar] [CrossRef]
- Garnier, J.; Gibrat, J.-F.; Robson, B. GOR method for predicting protein secondary structure from amino acid sequence. In Methods Enzymol; Elsevier: Amsterdam, The Netherlands; pp. 540–553.
- Pandurangan, A.P.; Ochoa-Montaño, B.; Ascher, D.B.; Blundell, T.L. SDM: A server for predicting effects of mutations on protein stability. Nucleic Acids Res. 2017, 45, W229–W235. [Google Scholar] [CrossRef]
- Rodrigues, C.H.; Pires, D.E.; Ascher, D.B. DynaMut: Predicting the impact of mutations on protein conformation, flexibility and stability. Nucleic Acids Res. 2018, 46, W350–W355. [Google Scholar] [CrossRef]
- Conlon, J.M. Evolution of the insulin molecule: Insights into structure-activity and phylogenetic relationships. Peptides 2001, 22, 1183–1193. [Google Scholar] [CrossRef]
- Nakagawa, S.H.; Hua, Q.-X.; Hu, S.-Q.; Jia, W.; Wang, S.; Katsoyannis, P.G.; Weiss, M.A. Chiral Mutagenesis of Insulin. J. Biol. Chem. 2006, 281, 22386–22396. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, M.C. Understanding insulin and its receptor from their three-dimensional structures. Mol. Metab. 2021, 52, 101255. [Google Scholar] [CrossRef]
- Wang, T.; Ding, S.; Li, S.; Guo, H.; Chen, X.; Huang, Y.; Huang, J.; Wu, J.; Hu, C.; Fang, C.; et al. A novel mutation in INS gene linked to permanent neonatal diabetes mellitus. Endocrine 2019, 64, 719–723. [Google Scholar] [CrossRef]
- Gopi, S.; Gowri, P.; Panda, J.K.; Sathyanarayana, S.O.; Gupta, S.; Chandru, S.; Chandni, R.; Raghupathy, P.; Dayal, D.; Mohan, V.; et al. Insulin gene mutations linked to permanent neonatal diabetes mellitus in Indian population. J. Diabetes Its Complicat. 2021, 35, 108022. [Google Scholar] [CrossRef]
- Dhayalan, B.; Chatterjee, D.; Chen, Y.-S.; Weiss, M.A. Structural Lessons from the Mutant Proinsulin Syndrome. Front. Endocrinol. 2021, 12, 754693. [Google Scholar] [CrossRef]
- Ahmed, E.M.; Elangeeb, M.E.; Adam, K.M.; Abuagla, H.A.; MohamedAhmed, A.A.E.; Ali, E.W.; Eltieb, E.I.; Edris, A.M.; Osman, H.M.A.; Idris, E.S.; et al. Computational Analysis of Deleterious nsSNPs in INS Gene Associated with Permanent Neonatal Diabetes Mellitus. J. Pers. Med. 2024, 14, 425. [Google Scholar] [CrossRef] [PubMed]
- Park, S.-Y.; Ye, H.; Steiner, D.F.; Bell, G.I. Mutant proinsulin proteins associated with neonatal diabetes are retained in the endoplasmic reticulum and not efficiently secreted. Biochem. Biophys. Res. Commun. 2010, 391, 1449–1454. [Google Scholar] [CrossRef]
- Tian, M.; Feng, Y.; Liu, Y.; Wang, H. Case report: A 10-year prognosis of neonatal diabetes caused by a novel INS gene mutation. Front. Endocrinol. 2023, 13, 1086785. [Google Scholar] [CrossRef] [PubMed]
- Arneth, B. Insulin gene mutations and posttranslational and translocation defects: Associations with diabetes. Endocrine 2020, 70, 488–497. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.-S.; Kim, J. Application of Animal Models in Diabetic Cardiomyopathy. Diabetes Metab. J. 2021, 45, 129–145. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, G.; Li, J. High glucose affects the cardiac function of diabetic Akita mice by inhibiting cardiac ATP synthase beta subunit. Int. J. Cardiol. Cardiovasc. Risk Prev. 2025, 24, 200369. [Google Scholar] [CrossRef]

| Family No. | Genetic Variant in the INS Gene | AA Change | ACMG Items | ACMG Classification | gnomAD v4.1.0 |
|---|---|---|---|---|---|
| #1 | NM_001185098.1:exon1:c.T104C | p.L35P | PM1; PM2; PM5; PP2; PP3 | Pathogenic | NA |
| #2 | NM_001185098.1:exon1:c.C103G | p.L35V | PM1; PM2; PM5; PP2; PP3 | Pathogenic | NA |
| #3 | NM_001185098.1:exon1:c.G3C | p.Met1* | PS1; PVS1; PM2 | Likely pathogenic | NA |
| Family No. | Patient No. | Type of Diabetes | Age at Diabetes Onset | Actual Age | BMI (kg/m2) | Actual HbcA1c | Additional Symptoms | Treatment |
|---|---|---|---|---|---|---|---|---|
| #1. | 1A | PNDM | first days of life | 4 years | 11 | 7.2% | IUGR, heart defect, hypotonia | insulin |
| 1B | PNDM | 6 weeks | 26 years | 29.4 | N/A | short stature, cleft lip and palate, retinopathy, nephropathy, intellectual disability, and overweight | insulin | |
| #2. | 2 | PNDM | 4 months | 10 years | 15.5 | 6.6% | none | insulin |
| #3. | 3A | INS-MODY | 16 years | 34 years | 26 | 7.1% | overweight, hyperlipidemia | Insulin, SGLT-2 inhibitor |
| 3B | INS-MODY | 54 years | 61 years | 29.4 | 6.9% | overweight, hyperlipidemia, heart defect, hypertension, hearing impairment | Insulin, metformin, SGLT-2 inhibitor |
| Online Tool | Analysis Based on | Identifier | Value | L35V | L35P | L35Q | L35M |
|---|---|---|---|---|---|---|---|
| I-Mutant 2.0 | Sequence | P01308 | DDG (kcal/mol) | −1.10 | −0.47 | −1.89 | −0.14 |
| Structure | 5E7W | DDG (kcal/mol) | −0.92 | −1.52 | −2.25 | −1.06 | |
| 1MSO | DDG (kcal/mol) | −0.93 | −1.53 | −2.26 | −1.07 | ||
| 3W7Y | DDG (kcal/mol) | −0.93 | −1.53 | −2.26 | −1.07 | ||
| SDM | Structure | 5E7W | DDG (kcal/mol) | −0.67 | −2.23 | −0.29 | −0.32 |
| 1MSO | DDG (kcal/mol) | −0.67 | −2.23 | −0.29 | −0.53 | ||
| 3W7Y | DDG (kcal/mol) | −0.67 | −2.23 | −0.29 | −0.53 | ||
| DynaMut | Structure | 5E7W | DDG (kcal/mol) | −0.40 | −0.55 | −0.44 | −0.20 |
| DDSVib (kcal/mol/K) | 0.32 | 0.30 | 0.10 | 0.08 | |||
| 1MSO | DDG (kcal/mol) | −0.28 | −0.91 | −0.37 | −0.03 | ||
| DDSVib (kcal/mol/K) | 0.34 | 0.31 | 0.04 | 0.19 | |||
| 3W7Y | DDG (kcal/mol) | −0.55 | −0.83 | 0.05 | −0.16 | ||
| DDSVib (kcal/mol/K) | 0.35 | 0.31 | 0.02 | 0.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Płoszaj, T.; Mojsak, P.; Skoczylas, S.; Piekarska, K.; Borowiec, M.; Salmonowicz, B.; Czupryniak, L.; Mysliwiec, M.; Mótyán, J.A.; Tar, K.; et al. Insights into INS Gene Variation from Seven Years of Monogenic Diabetes Testing—Novel Genetic Variants and Their Clinical Implications. Appl. Sci. 2026, 16, 795. https://doi.org/10.3390/app16020795
Płoszaj T, Mojsak P, Skoczylas S, Piekarska K, Borowiec M, Salmonowicz B, Czupryniak L, Mysliwiec M, Mótyán JA, Tar K, et al. Insights into INS Gene Variation from Seven Years of Monogenic Diabetes Testing—Novel Genetic Variants and Their Clinical Implications. Applied Sciences. 2026; 16(2):795. https://doi.org/10.3390/app16020795
Chicago/Turabian StylePłoszaj, Tomasz, Patrycja Mojsak, Sebastian Skoczylas, Katarzyna Piekarska, Maciej Borowiec, Barbara Salmonowicz, Leszek Czupryniak, Małgorzata Mysliwiec, János András Mótyán, Krisztina Tar, and et al. 2026. "Insights into INS Gene Variation from Seven Years of Monogenic Diabetes Testing—Novel Genetic Variants and Their Clinical Implications" Applied Sciences 16, no. 2: 795. https://doi.org/10.3390/app16020795
APA StylePłoszaj, T., Mojsak, P., Skoczylas, S., Piekarska, K., Borowiec, M., Salmonowicz, B., Czupryniak, L., Mysliwiec, M., Mótyán, J. A., Tar, K., & Zmysłowska, A. (2026). Insights into INS Gene Variation from Seven Years of Monogenic Diabetes Testing—Novel Genetic Variants and Their Clinical Implications. Applied Sciences, 16(2), 795. https://doi.org/10.3390/app16020795

