Far-Infrared-Emitting Fabric Improves Neuromuscular Parameters in Humans: Unexpected Result from Eccentric Exercise-Induced Muscle Damage Countermeasure Strategy
Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Experimental Design
2.3. Garment Made with Far-Infrared Emitting Fabric (FIR)
2.4. Exercise Protocol on Isokinetic Dynamometer
2.5. Maximal Voluntary Isometric Contraction (MVIC)
2.6. Creatine Kinase (CK) Analysis
2.7. Surface Electromyographic (EMG) Signal
2.8. Statistical Analysis
3. Results
3.1. Study Phase 1: FIR Effects on Muscle Damage
3.2. Study Phase 2: FIR Effects on Eccentric Exercise
4. Discussion
4.1. Study Phase 1: FIR Effects on Muscle Damage
4.2. Study Phase 2: FIR Effects on Eccentric Exercise
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ATP | Adenosine Triphosphate |
| CK | Creatine Kinase |
| COX | Cytochrome C Oxidase |
| EIMD | Exercise-induced Muscle Damage |
| EPT | Eccentric Peak Torque |
| EMG | Electromyographic |
| FIR | Far-infrared emitting fabric |
| IR | Infrared |
| LDH | Lactate Dehydrogenase |
| LED | Light-emitting Devices |
| MVIC | Maximal Voluntary Isometric Contractions |
| PBM | Photobiomodulation |
| RMS | Root Mean Square |
| TW | Total work |
| VL | Vastus Lateralis |
| VM | Vastus Medialis |
References
- Hody, S.; Croisier, J.-L.; Bury, T.; Rogister, B.; Leprince, P. Eccentric Muscle Contractions: Risks and Benefits. Front. Physiol. 2019, 10, 536. [Google Scholar] [CrossRef]
- Harper, D.J.; McBurnie, A.J.; Santos, T.D.; Eriksrud, O.; Evans, M.; Cohen, D.D.; Rhodes, D.; Carling, C.; Kiely, J. Biomechanical and Neuromuscular Performance Requirements of Horizontal Deceleration: A Review with Implications for Random Intermittent Multi-Directional Sports. Sports Med. 2022, 52, 2321–2354. [Google Scholar] [CrossRef]
- Douglas, J.; Pearson, S.; Ross, A.; McGuigan, M. Eccentric Exercise: Physiological Characteristics and Acute Responses. Sports Med. 2017, 47, 663–675. [Google Scholar] [CrossRef]
- Harris-Love, M.O.; Gollie, J.M.; Keogh, J.W.L.; Harris-Love, M.O.; Gollie, J.M.; Keogh, J.W.L. Eccentric Exercise: Adaptations and Applications for Health and Performance. J. Funct. Morphol. Kinesiol. 2021, 6, 96. [Google Scholar] [CrossRef]
- Markus, I.; Constantini, K.; Hoffman, J.R.; Bartolomei, S.; Gepner, Y. Exercise-Induced Muscle Damage: Mechanism, Assessment and Nutritional Factors to Accelerate Recovery. Eur. J. Appl. Physiol. 2021, 121, 969–992. [Google Scholar] [CrossRef]
- Borsa, P.A.; Larkin, K.A.; True, J.M. Does Phototherapy Enhance Skeletal Muscle Contractile Function and Postexercise Recovery? A Systematic Review. J. Athl. Train. 2013, 48, 57–67. [Google Scholar] [CrossRef]
- Ferraresi, C.; Huang, Y.-Y.; Hamblin, M.R. Photobiomodulation in Human Muscle Tissue: An Advantage in Sports Performance? J. Biophotonics 2016, 9, 1273–1299. [Google Scholar] [CrossRef]
- Vanin, A.A.; Verhagen, E.; Barboza, S.D.; Costa, L.O.P.; Leal-Junior, E.C.P. Photobiomodulation Therapy for the Improvement of Muscular Performance and Reduction of Muscular Fatigue Associated with Exercise in Healthy People: A Systematic Review and Meta-Analysis. Lasers Med. Sci. 2018, 33, 181–214. [Google Scholar] [CrossRef] [PubMed]
- Leal Junior, E.C.P.; Lopes-Martins, R.A.B.; Baroni, B.M.; De Marchi, T.; Taufer, D.; Manfro, D.S.; Rech, M.; Danna, V.; Grosselli, D.; Generosi, R.A.; et al. Effect of 830 Nm Low-Level Laser Therapy Applied Before High-Intensity Exercises on Skeletal Muscle Recovery in Athletes. Lasers Med. Sci. 2009, 24, 857–863. [Google Scholar] [CrossRef] [PubMed]
- Baroni, B.M.; Leal Junior, E.C.P.; De Marchi, T.; Lopes, A.L.; Salvador, M.; Vaz, M.A. Low Level Laser Therapy before Eccentric Exercise Reduces Muscle Damage Markers in Humans. Eur. J. Appl. Physiol. 2010, 110, 789–796. [Google Scholar] [CrossRef] [PubMed]
- De Marchi, T.; Leal Junior, E.C.P.; Bortoli, C.; Tomazoni, S.S.; Lopes-Martins, R.A.B.; Salvador, M. Low-Level Laser Therapy (LLLT) in Human Progressive-Intensity Running: Effects on Exercise Performance, Skeletal Muscle Status, and Oxidative Stress. Lasers Med. Sci. 2012, 27, 231–236. [Google Scholar] [CrossRef]
- Felismino, A.S.; Costa, E.C.; Aoki, M.S.; Ferraresi, C.; de Araújo Moura Lemos, T.M.; de Brito Vieira, W.H. Effect of Low-Level Laser Therapy (808 Nm) on Markers of Muscle Damage: A Randomized Double-Blind Placebo-Controlled Trial. Lasers Med. Sci. 2014, 29, 933–938. [Google Scholar] [CrossRef]
- Ferraresi, C.; Dos Santos, R.V.; Marques, G.; Zangrande, M.; Leonaldo, R.; Hamblin, M.R.; Bagnato, V.S.; Parizotto, N.A. Light-Emitting Diode Therapy (LEDT) before Matches Prevents Increase in Creatine Kinase with a Light Dose Response in Volleyball Players. Lasers Med. Sci. 2015, 30, 1281–1287. [Google Scholar] [CrossRef]
- Hausswirth, C.; Louis, J.; Bieuzen, F.; Pournot, H.; Fournier, J.; Filliard, J.-R.; Brisswalter, J. Effects of Whole-Body Cryotherapy vs. Far-Infrared vs. Passive Modalities on Recovery from Exercise-Induced Muscle Damage in Highly-Trained Runners. PLoS ONE 2011, 6, e27749. [Google Scholar] [CrossRef]
- Mero, A.; Tornberg, J.; Mäntykoski, M.; Puurtinen, R. Effects of Far-Infrared Sauna Bathing on Recovery from Strength and Endurance Training Sessions in Men. SpringerPlus 2015, 4, 321. [Google Scholar] [CrossRef] [PubMed]
- Leung, T.-K.; Lee, C.-M.; Tsai, S.-Y.; Chen, Y.-C.; Chao, J.-S. A Pilot Study of Ceramic Powder Far-Infrared Ray Irradiation (cFIR) on Physiology: Observation of Cell Cultures and Amphibian Skeletal Muscle. Chin. J. Physiol. 2011, 54, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.; Gáspari, A.; Barbieri, J.; Barroso, R.; Figueiredo, G.; Motta, L.; Moraes, A. Far-Infrared-Emitting Fabric Improves Neuromuscular Performance of Knee Extensor. Lasers Med. Sci. 2022, 37, 2527–2536. [Google Scholar] [CrossRef]
- Loturco, I.; Abad, C.; Nakamura, F.Y.; Ramos, S.P.; Kobal, R.; Gil, S.; Pereira, L.A.; Burini, F.; Roschel, H.; Ugrinowitsch, C.; et al. Effects of Far Infrared Rays Emitting Clothing on Recovery After an Intense Plyometric Exercise Bout Applied to Elite Soccer Players: A Randomized Double-Blind Placebo-Controlled Trial. Biol. Sport 2016, 33, 277–283. [Google Scholar] [CrossRef]
- Nunes, R.F.H.; Dittrich, N.; Duffield, R.; Serpa, M.C.; Coelho, T.M.; Martins, D.F.; Guglielmo, L.G.A. Effects of Far-Infrared Emitting Ceramic Material Clothing on Recovery after Maximal Eccentric Exercise. J. Hum. Kinet. 2019, 70, 135–144. [Google Scholar] [CrossRef]
- Lever, J.R.; Ocobock, C.; Smith-Hale, V.; Metoyer, C.J.; Huebner, A.; Wagle, J.P.; Hauenstein, J.D. A Preliminary Investigation of the Efficacy of Far-Infrared-Emitting Garments in Enhancing Objective and Subjective Recovery Following Resistance Exercise. J. Funct. Morphol. Kinesiol. 2025, 10, 280. [Google Scholar] [CrossRef] [PubMed]
- Vatansever, F.; Hamblin, M.R. Far Infrared Radiation (FIR): Its Biological Effects and Medical Applications. Photonics Lasers Med. 2012, 4, 255–266. [Google Scholar] [CrossRef]
- Kyselovic, J.; Masarik, J.; Kechemir, H.; Koscova, E.; Turudic, I.I.; Hamblin, M.R. Physical Properties and Biological Effects of Ceramic Materials Emitting Infrared Radiation for Pain, Muscular Activity, and Musculoskeletal Conditions. Photodermatol. Photoimmunol. Photomed. 2023, 39, 3–15. [Google Scholar] [CrossRef] [PubMed]
- Hermens, H.J.; Freriks, B.; Disselhorst-Klug, C.; Rau, G. Development of Recommendations for SEMG Sensors and Sensor Placement Procedures. J. Electromyogr. Kinesiol. 2000, 10, 361–374. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G*Power 3: A Flexible Statistical Power Analysis Program for the Social, Behavioral, and Biomedical Sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Douris, P.; Southard, V.; Ferrigi, R.; Grauer, J.; Katz, D.; Nascimento, C.; Podbielski, P. Effect of Phototherapy on Delayed Onset Muscle Soreness. Photomed. Laser Surg. 2006, 24, 377–382. [Google Scholar] [CrossRef]
- Borges, L.S.; Cerqueira, M.S.; dos Santos Rocha, J.A.; Conrado, L.A.L.; Machado, M.; Pereira, R.; Pinto Neto, O. Light-Emitting Diode Phototherapy Improves Muscle Recovery After a Damaging Exercise. Lasers Med. Sci. 2014, 29, 1139–1144. [Google Scholar] [CrossRef]
- de Oliveira, H.A.; Antonio, E.L.; Silva, F.A.; de Carvalho, P.d.T.C.; Feliciano, R.; Yoshizaki, A.; de Vieira, S.S.; de Melo, B.L.; Leal-Junior, E.C.P.; Labat, R.; et al. Protective Effects of Photobiomodulation Against Resistance Exercise-Induced Muscle Damage and Inflammation in Rats. J. Sports Sci. 2018, 36, 2349–2357. [Google Scholar] [CrossRef]
- Leal-Junior, E.C.P.; Lopes-Martins, R.Á.B.; Bjordal, J.M. Clinical and Scientific Recommendations for the Use of Photobiomodulation Therapy in Exercise Performance Enhancement and Post-Exercise Recovery: Current Evidence and Future Directions. Braz. J. Phys. Ther. 2019, 23, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Ferraresi, C.; Parizotto, N.A.; Pires de Sousa, M.V.; Kaippert, B.; Huang, Y.-Y.; Koiso, T.; Bagnato, V.S.; Hamblin, M.R. Light-Emitting Diode Therapy in Exercise-Trained Mice Increases Muscle Performance, Cytochrome c Oxidase Activity, ATP and Cell Proliferation. J. Biophotonics 2015, 8, 740–754. [Google Scholar] [CrossRef]
- Ferraresi, C.; Kaippert, B.; Avci, P.; Huang, Y.-Y.; de Sousa, M.V.P.; Bagnato, V.S.; Parizotto, N.A.; Hamblin, M.R. Low-Level Laser (Light) Therapy Increases Mitochondrial Membrane Potential and ATP Synthesis in C2C12 Myotubes with a Peak Response at 3–6 h. Photochem. Photobiol. 2015, 91, 411–416. [Google Scholar] [CrossRef]
- Chen, T.C.; Nosaka, K.; Sacco, P. Intensity of Eccentric Exercise, Shift of Optimum Angle, and the Magnitude of Repeated-Bout Effect. J. Appl. Physiol. 2007, 102, 992–999. [Google Scholar] [CrossRef]
- Chapman, D.W.; Newton, M.; McGuigan, M.; Nosaka, K. Effect of Lengthening Contraction Velocity on Muscle Damage of the Elbow Flexors. Med. Sci. Sports Exerc. 2008, 40, 926–933. [Google Scholar] [CrossRef]
- Damas, F.; Phillips, S.M.; Libardi, C.A.; Vechin, F.C.; Lixandrão, M.E.; Jannig, P.R.; Costa, L.A.R.; Bacurau, A.V.; Snijders, T.; Parise, G.; et al. Resistance Training-Induced Changes in Integrated Myofibrillar Protein Synthesis Are Related to Hypertrophy Only after Attenuation of Muscle Damage. J. Physiol. 2016, 594, 5209–5222. [Google Scholar] [CrossRef]
- Chalchat, E.; Gaston, A.-F.; Charlot, K.; Peñailillo, L.; Valdés, O.; Tardo-Dino, P.-E.; Nosaka, K.; Martin, V.; Garcia-Vicencio, S.; Siracusa, J. Appropriateness of Indirect Markers of Muscle Damage Following Lower Limbs Eccentric-Biased Exercises: A Systematic Review with Meta-Analysis. PLoS ONE 2022, 17, e0271233. [Google Scholar] [CrossRef]
- Clarkson, P.M.; Hubal, M.J. Exercise-Induced Muscle Damage in Humans. Am. J. Phys. Med. Rehabil. 2002, 81, S52–S69. [Google Scholar] [CrossRef]
- Tsai, S.-R.; Hamblin, M.R. Biological Effects and Medical Applications of Infrared Radiation. J. Photochem. Photobiol. B 2017, 170, 197–207. [Google Scholar] [CrossRef] [PubMed]
- Dittami, G.M.; Rajguru, S.M.; Lasher, R.A.; Hitchcock, R.W.; Rabbitt, R.D. Intracellular Calcium Transients Evoked by Pulsed Infrared Radiation in Neonatal Cardiomyocytes. J. Physiol. 2011, 589, 1295–1306. [Google Scholar] [CrossRef]
- Antonialli, F.C.; De Marchi, T.; Tomazoni, S.S.; Vanin, A.A.; dos Santos Grandinetti, V.; de Paiva, P.R.V.; Pinto, H.D.; Miranda, E.F.; de Tarso Camillo de Carvalho, P.; Leal-Junior, E.C.P. Phototherapy in Skeletal Muscle Performance and Recovery after Exercise: Effect of Combination of Super-Pulsed Laser and Light-Emitting Diodes. Lasers Med. Sci. 2014, 29, 1967–1976. [Google Scholar] [CrossRef] [PubMed]
- Ferraresi, C.; de Sousa, M.V.P.; Huang, Y.-Y.; Bagnato, V.S.; Parizotto, N.A.; Hamblin, M.R. Time Response of Increases in ATP and Muscle Resistance to Fatigue after Low-Level Laser (Light) Therapy (LLLT) in Mice. Lasers Med. Sci. 2015, 30, 1259–1267. [Google Scholar] [CrossRef]
- Toma, R.L.; Oliveira, M.X.; Renno, A.C.M.; Laakso, E.-L. Photobiomodulation (PBM) Therapy at 904 Nm Mitigates Effects of Exercise-Induced Skeletal Muscle Fatigue in Young Women. Lasers Med. Sci. 2018, 33, 1197–1205. [Google Scholar] [CrossRef]
- Silva, M.; Gáspari, A.; Barbieri, J.; Caruso, D.; Nogueira, J.; Andrade, A.; Moraes, A. A Pilot Study on the Effects of Far-Infrared-Emitting Fabric on Neuromuscular Performance of Knee Extensor and Male Fertility. Lasers Med. Sci. 2022, 37, 3713–3722. [Google Scholar] [CrossRef] [PubMed]
- Linnamo, V.; Moritani, T.; Nicol, C.; Komi, P.V. Motor Unit Activation Patterns during Isometric, Concentric and Eccentric Actions at Different Force Levels. J. Electromyogr. Kinesiol. 2003, 13, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Nardone, A.; Romanò, C.; Schieppati, M. Selective Recruitment of High-Threshold Human Motor Units During Voluntary Isotonic Lengthening of Active Muscles. J. Physiol. 1989, 409, 451–471. [Google Scholar] [CrossRef]
- Dellagrana, R.A.; Rossato, M.; Sakugawa, R.L.; Lazzari, C.D.; Baroni, B.M.; Diefenthaeler, F. Dose-Response Effect of Photobiomodulation Therapy on Neuromuscular Economy During Submaximal Running. Lasers Med. Sci. 2018, 33, 329–336. [Google Scholar] [CrossRef]
- Lanferdini, F.J.; Bini, R.R.; Baroni, B.M.; Klein, K.D.; Carpes, F.P.; Vaz, M.A. Improvement of Performance and Reduction of Fatigue with Low-Level Laser Therapy in Competitive Cyclists. Int. J. Sports Physiol. Perform. 2018, 13, 14–22. [Google Scholar] [CrossRef]
- Rossato, M.; Dellagrana, R.A.; Sakugawa, R.L.; Lazzari, C.D.; Baroni, B.M.; Diefenthaeler, F. Time Response of Photobiomodulation Therapy on Muscular Fatigue in Humans. J. Strength Cond. Res. 2018, 32, 3285–3293. [Google Scholar] [CrossRef]
- Huang, Y.-Y.; Sharma, S.K.; Carroll, J.; Hamblin, M.R. Biphasic Dose Response in Low Level Light Therapy—An Update. Dose Response Publ. Int. Hormesis Soc. 2011, 9, 602–618. [Google Scholar] [CrossRef] [PubMed]


| MVIC (N·m) | CK (IU·L−1) | |||
|---|---|---|---|---|
| Placebo | FIR | Placebo | FIR | |
| Pre | 184.2 ± 14.7 | 183.6 ± 11.6 | 63.2 ± 10.7 | 67.1 ± 13.1 |
| 24 h | 192.6 ± 13.4 | 194.4 ± 14.4 | 124.3 ± 22.0 | 140.9 ± 30.7 |
| 48 h | 198.7 ± 14.4 | 184.5 ± 11.5 | 84.8 ± 12.7 | 88.5 ± 16.5 |
| 96 h | 204.7 ± 12.8 | 194.6 ± 13.3 | 87 ± 23.9 | 103.9 ± 23.9 |
| VL-RMS | VM-RMS | |||
|---|---|---|---|---|
| Placebo | FIR | Placebo | FIR | |
| Set 1 | 0.74 ± 0.08 | 0.85 ± 0.04 | 0.78 ± 0.05 | 0.81 ± 0.04 |
| Set 2 | 0.93 ± 0.01 | 0.84 ± 0.03 | 0.83 ± 0.03 | 0.85 ± 0.03 |
| Set 3 | 0.86 ± 0.05 | 0.81 ± 0.04 | 0.80 ± 0.03 | 0.89 ± 0.04 |
| Set 4 | 0.72 ± 0.08 | 0.83 ± 0.04 | 0.68 ± 0.03 | 0.74 ± 0.08 |
| Set 5 | 0.81 ± 0.08 | 0.88 ± 0.03 | 0.81 ± 0.04 | 0.85 ± 0.04 |
| Set 6 | 0.78 ± 0.06 | 0.85 ± 0.04 | 0.78 ± 0.05 | 0.81 ± 0.04 |
| Set 7 | 0.86 ± 0.04 | 0.80 ± 0.05 | 0.83 ± 0.04 | 0.87 ± 0.03 |
| Set 8 | 0.78 ± 0.07 | 0.81 ± 0.05 | 0.84 ± 0.05 | 0.86 ± 0.04 |
| Set 9 | 0.72 ± 0.08 | 0.81 ± 0.07 | 0.84 ± 0.03 | 0.86 ± 0.05 |
| Set 10 | 0.73 ± 0.05 | 0.92 ± 0.02 | 0.73 ± 0.05 | 0.88 ± 0.03 |
| Mean | 0.82 ± 0.01 | 0.88 ± 0.01 * | 0.80 ± 0.01 | 0.86 ± 0.01 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Gáspari, A.F.; Souza, T.M.F.d.; Guimarães, P.d.S.; Silva, M.P.d.; Bernardes, C.F.; Barroso, R.; Chacon-Mikahil, M.P.T.; Moraes, A.C.d. Far-Infrared-Emitting Fabric Improves Neuromuscular Parameters in Humans: Unexpected Result from Eccentric Exercise-Induced Muscle Damage Countermeasure Strategy. Appl. Sci. 2026, 16, 143. https://doi.org/10.3390/app16010143
Gáspari AF, Souza TMFd, Guimarães PdS, Silva MPd, Bernardes CF, Barroso R, Chacon-Mikahil MPT, Moraes ACd. Far-Infrared-Emitting Fabric Improves Neuromuscular Parameters in Humans: Unexpected Result from Eccentric Exercise-Induced Muscle Damage Countermeasure Strategy. Applied Sciences. 2026; 16(1):143. https://doi.org/10.3390/app16010143
Chicago/Turabian StyleGáspari, Arthur Fernandes, Thiago Mattos Frota de Souza, Patricia dos Santos Guimarães, Manoel Pereira da Silva, Celene Fernandes Bernardes, Renato Barroso, Mara Patrícia Traina Chacon-Mikahil, and Antonio Carlos de Moraes. 2026. "Far-Infrared-Emitting Fabric Improves Neuromuscular Parameters in Humans: Unexpected Result from Eccentric Exercise-Induced Muscle Damage Countermeasure Strategy" Applied Sciences 16, no. 1: 143. https://doi.org/10.3390/app16010143
APA StyleGáspari, A. F., Souza, T. M. F. d., Guimarães, P. d. S., Silva, M. P. d., Bernardes, C. F., Barroso, R., Chacon-Mikahil, M. P. T., & Moraes, A. C. d. (2026). Far-Infrared-Emitting Fabric Improves Neuromuscular Parameters in Humans: Unexpected Result from Eccentric Exercise-Induced Muscle Damage Countermeasure Strategy. Applied Sciences, 16(1), 143. https://doi.org/10.3390/app16010143

