Prosthesis Embodiment in Lower Extremity Limb Loss: A Narrative Review
Abstract
:1. Introduction
- What interventions are available to improve embodiment and reduce abandonment?
- What dimensions of embodiment should be included in the standard of care for lower-limb amputation surgery?
2. Development of the Dimensions of Embodiment
- Co-location, experienced as the volume in space where one feels their body is located.
- Ownership, the experience of something being a part of the body.
- Agency, the experience of authoring the actions of one’s body, and the resulting outcomes.
- Lack of control of function.
- Lack of sensation.
- Comfort and fit issues when wearing, including the perceived weight of the device.
- Restoring proprioception, or replacing it with osseoperception.
- Restoring cutaneous sensation.
2.1. Proprioception and Osseoperception
2.2. Cutaneous Sensation
3. Methods
- Prosthesis embodiment AND appearance, targeting ownership.
- Proprioception AND lower extremity prosthesis, targeting proprioception.
- Osseointegration AND lower extremity prosthesis AND embodiment, targeting osseoperception.
- Motor control AND lower extremity prosthesis, targeting agency.
- Sensory feedback AND lower extremity prosthesis, targeting cutaneous sensation.
4. Results
4.1. Appearance and Ownership
4.2. Bidirectional Devices and Modular Design
4.3. Proprioceptive Clues Through Haptic Feedback
- The area of skin present to attach a stretch apparatus cannot be too small.
- Different areas of the skin have different properties, such as the presence of hair or elasticity of the skin.
- Different skin characteristics between individuals, such as wrinkles, create variations in sensory perception.
- Shear forces can cause an undesirable tissue breakdown.
4.4. Agonist–Antagonist Myoneural Interface
- The peroneus longus and the tibialis posterior, for subtalar eversion and inversion.
- The lateral gastrocnemius and the anterior tibialis, for subtalar flexion and dorsiflexion.
- The central nervous system contracts the agonist muscle using the usual motor nerve efferent control.
- The efferent signal, measured limb positions and forces, and other prosthetic inputs are sent to a biomechanical controller that computes an appropriate proprioceptive afferent signal.
- The nerve innervating the antagonist muscle is stimulated via electrodes to produce an appropriate afferent signal.
4.5. TIME and C-FINE Devices
- Ascending and descending stairs, testing posture on a complex surface.
- Walking on a straight path with obstacles, testing balance on an uneven surface.
- Walking with both feet in a straight line, testing agility.
4.6. Osseointegration
5. Discussion
5.1. Future Work
5.2. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SF-36 | 36-Item Short Form Survey |
AKA | Above-knee amputation |
AMI | Agonist–antagonist myoneural interface |
BKA | Below-knee amputation |
BA3a | Brodmann area 3a |
CNS | Central nervous system |
C-FINE | Composite Flat Interface Nerve Electrodes |
EMG | Electromyogram |
FINE | Flat Interface Nerve Electrode |
fMRI | Functional MRI |
ILP | Integral Leg Prosthesis |
ITAP | Intraosseous Transcutaneous Amputation Prosthesis |
MI | Mechanoneural Interface |
OPRA | Osseointegrated Prostheses for the Rehabilitation of Amputees |
OPL | Osseointegrated Prosthetic Limb |
OI | Osseointegration |
OP | Osseoperception |
PROMs | Patient reported outcomes measures |
POP | Percutaneous Osseointegrated Prosthesis |
PLP | Phantom limb pain |
PEmbS-LLA | Prosthesis Embodiment Scale for Lower Limb Amputees |
PEQ | Prosthetic Evaluation Questionnaire |
SAT-PRO | Satisfaction with Prosthesis Score |
TIME | Transverse Intrafascicular Multichannel Electrode |
TAPES-R | Trinity Amputation and Prosthesis Experience Scales-Revised |
VA | Veterans Affairs |
References
- Biddiss, E.A.; Chau, T.T. Upper limb prosthesis use and abandonment: A survey of the last 25 years. Prosthetics Orthot. Int. 2007, 31, 236–257. [Google Scholar] [CrossRef] [PubMed]
- Zbinden, J.; Lendaro, E.; Ortiz-Catalan, M. Prosthetic embodiment: Systematic review on definitions, measures, and experimental paradigms. J. Neuroeng. Rehabil. 2022, 19, 37. [Google Scholar] [CrossRef] [PubMed]
- Segil, J.L.; Roldan, L.M.; Graczyk, E.L. Measuring embodiment: A review of methods for prosthetic devices. Front. Neurorobot. 2022, 16, 902162. [Google Scholar] [CrossRef]
- Engdahl, S.M.; Meehan, S.K.; Gates, D.H. Differential experiences of embodiment between body-powered and myoelectric prosthesis users. Sci. Rep. 2020, 10, 15471. [Google Scholar] [CrossRef]
- Gailey, R.; McFarland, L.V.; Cooper, R.A.; Czerniecki, J.; Gambel, J.M.; Hubbard, S.; Maynard, C.; Smith, D.G.; Raya, M.; Reiber, G.E. Unilateral lower-limb loss: Prosthetic device use and functional outcomes in servicemembers from Vietnam war and OIF/OEF conflicts. J. Rehabil. Res. Dev. 2010, 47, 317–332. [Google Scholar] [CrossRef]
- Requejo, P.S.; Furumasu, J.; Mulroy, S.J. Evidence-based strategies for preserving mobility for elderly and aging manual wheelchair users. Top. Geriatr. Rehabil. 2015, 31, 26–41. [Google Scholar] [CrossRef]
- Sansoni, S.; Wodehouse, A.; McFadyen, A.K.; Buis, A. The aesthetic appeal of prosthetic limbs and the uncanny valley: The role of personal characteristics in attraction. Int. J. Des. 2015, 9, 67–81. [Google Scholar]
- Hoyt, B.W.; Walsh, S.A.; Forsberg, J.A. Osseointegrated prostheses for the rehabilitation of amputees (OPRA): Results and clinical perspective. Expert Rev. Med. Devices 2020, 17, 17–25. [Google Scholar] [CrossRef]
- Hernigou, P. Ambroise Paré II: Paré’s contributions to amputation and ligature. Int. Orthop. 2013, 37, 769–772. [Google Scholar] [CrossRef]
- van der Merwe, L.; Birkholtz, F.; Tetsworth, K.; Hohmann, E. Functional and psychological outcomes of delayed lower limb amputation following failed lower limb reconstruction. Injury 2016, 47, 1756–1760. [Google Scholar] [CrossRef]
- Atiç, R.; Aydın, A. Comparison of the demographic and clinical characteristics, functional status and quality of life of lower extremity amputees to identify the reason for undergoing amputation. J. Back Musculoskelet. Rehabil. 2018, 31, 973–979. [Google Scholar] [CrossRef] [PubMed]
- Botvinick, M.; Cohen, J. Rubber hands ‘feel’touch that eyes see. Nature 1998, 391, 756. [Google Scholar] [CrossRef] [PubMed]
- Resnik, L.J.; Borgia, M.L.; Clark, M.A. Prevalence and Predictors of Unmet Need for Upper-Limb Prostheses: An Observational Cohort Study. JPO J. Prosthetics Orthot. 2024, 36, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Bekrater-Bodmann, R. Factors associated with prosthesis embodiment and its importance for prosthetic satisfaction in lower limb amputees. Front. Neurorobot. 2021, 14, 604376. [Google Scholar] [CrossRef]
- Crea, S.; D’Alonzo, M.; Vitiello, N.; Cipriani, C. The rubber foot illusion. J. Neuroeng. Rehabil. 2015, 12, 1–6. [Google Scholar] [CrossRef]
- Bekrater-Bodmann, R. Perceptual correlates of successful body–prosthesis interaction in lower limb amputees: Psychometric characterisation and development of the Prosthesis Embodiment Scale. Sci. Rep. 2020, 10, 14203. [Google Scholar] [CrossRef]
- Longo, M.R.; Schüür, F.; Kammers, M.P.; Tsakiris, M.; Haggard, P. What is embodiment? A psychometric approach. Cognition 2008, 107, 978–998. [Google Scholar] [CrossRef]
- Baars, E.C.; Schrier, E.; Dijkstra, P.U.; Geertzen, J.H. Prosthesis satisfaction in lower limb amputees: A systematic review of associated factors and questionnaires. J. Med. 2018, 97, e12296. [Google Scholar] [CrossRef]
- Proske, U.; Gandevia, S.C. The proprioceptive senses: Their roles in signaling body shape, body position and movement, and muscle force. Physiol. Rev. 2012, 92, 1651–1697. [Google Scholar] [CrossRef]
- Srinivasan, S.S.; Tuckute, G.; Zou, J.; Gutierrez-Arango, S.; Song, H.; Barry, R.L.; Herr, H.M. Agonist-antagonist myoneural interface amputation preserves proprioceptive sensorimotor neurophysiology in lower limbs. Sci. Transl. Med. 2020, 12, eabc5926. [Google Scholar] [CrossRef]
- Clites, T.R.; Herr, H.M.; Srinivasan, S.S.; Zorzos, A.N.; Carty, M.J. The Ewing amputation: The first human implementation of the agonist-antagonist myoneural interface. Plast. Reconst. Surg. 2018, 6, e1997. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.K.; Chowdhary, R.; Chrcanovic, B.R.; Brånemark, P.I. Osseoperception in dental implants: A systematic review. J. Prosthodont. 2016, 25, 185–195. [Google Scholar] [CrossRef]
- Lundberg, M.; Hagberg, K.; Bullington, J. My prosthesis as a part of me: A qualitative analysis of living with an osseointegrated prosthetic limb. Prosthetics Orthot. Int. 2011, 35, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Gaffney, B.M.; Davis-Wilson, H.C.; Christiansen, C.L.; Awad, M.E.; Lev, G.; Tracy, J.; Stoneback, J.W. Osseointegrated prostheses improve balance and balance confidence in individuals with unilateral transfemoral limb loss. Gait Posture 2023, 100, 132–138. [Google Scholar] [CrossRef]
- Hägström, E.; Hagberg, K.; Rydevik, B.; Brånemark, R. Vibrotactile evaluation: Osseointegrated versus socket-suspended transfemoral prostheses. JRRD 2013, 50, 1423–1434. [Google Scholar] [CrossRef]
- Shell, C.E.; Christie, B.P.; Marasco, P.D.; Charkhkar, H.; Triolo, R.J. Lower-limb amputees adjust quiet stance in response to manipulations of plantar sensation. Front. Neurosci. 2021, 15, 611926. [Google Scholar] [CrossRef]
- Petrini, F.M.; Valle, G.; Bumbasirevic, M.; Barberi, F.; Bortolotti, D.; Cvancara, P.; Hiairrassary, A.; Mijovic, P.; Sverrisson, A.Ö.; Pedrocchi, A.; et al. Enhancing functional abilities and cognitive integration of the lower limb prosthesis. Sci. Transl. Med. 2019, 11, eaav8939. [Google Scholar] [CrossRef]
- Barnett, C.T.; Vanicek, N.; Polman, R. Postural responses during volitional and perturbed dynamic balance tasks in new lower limb amputees: A longitudinal study. Gait Posture 2013, 37, 319–325. [Google Scholar] [CrossRef]
- Crea, S.; Cipriani, C.; Donati, M.; Carrozza, M.C.; Vitiello, N. Providing time-discrete gait information by wearable feedback apparatus for lower-limb amputees: Usability and functional validation. IEEE Trans. Neural Syst. Rehabil. Eng. 2014, 23, 250–257. [Google Scholar] [CrossRef]
- Charkhkar, H.; Christie, B.P.; Triolo, R.J. Sensory neuroprosthesis improves postural stability during Sensory Organization Test in lower-limb amputees. Sci. Rep. 2020, 10, 6984. [Google Scholar] [CrossRef]
- Preatoni, G.; Valle, G.; Petrini, F.M.; Raspopovic, S. Lightening the perceived prosthesis weight with neural embodiment promoted by sensory feedback. Curr. Biol. 2021, 31, 1065–1071. [Google Scholar] [CrossRef] [PubMed]
- Di Pino, G.; Romano, D.; Spaccasassi, C.; Mioli, A.; D’Alonzo, M.; Sacchetti, R.; Guglielmelli, E.; Zollo, L.; Di Lazzaro, V.; Denaro, V.; et al. Sensory-and action-oriented embodiment of neurally-interfaced robotic hand prostheses. Front. Neurosci. 2020, 14, 389. [Google Scholar] [CrossRef] [PubMed]
- Tieri, G.; Tidoni, E.; Pavone, E.F.; Aglioti, S.M. Body visual discontinuity affects feeling of ownership and skin conductance responses. Sci. Rep. 2015, 5, 17139. [Google Scholar] [CrossRef]
- Durmus, D.; Safaz, I.; Adıgüzel, E.; Uran, A.; Sarısoy, G.; Goktepe, A.S.; Tan, A.K. The relationship between prosthesis use, phantom pain and psychiatric symptoms in male traumatic limb amputees. Compr. Psychiatry 2015, 59, 45–53. [Google Scholar] [CrossRef]
- Murray, C.D. Embodiment and prosthetics. In Psychoprosthetics; Springer: Berlin/Heidelberg, Germany, 2008; pp. 119–129. [Google Scholar]
- Manz, S.; Valette, R.; Damonte, F.; Avanci Gaudio, L.; Gonzalez-Vargas, J.; Sartori, M.; Dosen, S.; Rietman, J. A review of user needs to drive the development of lower limb prostheses. J. Neuroeng. Rehabil. 2022, 19, 119. [Google Scholar] [CrossRef]
- Kilteni, K.; Maselli, A.; Kording, K.P.; Slater, M. Over my fake body: Body ownership illusions for studying the multisensory basis of own-body perception. Front. Hum. Neurosci. 2015, 9, 119452. [Google Scholar] [CrossRef]
- Braun, N.; Debener, S.; Spychala, N.; Bongartz, E.; Sörös, P.; Müller, H.H.; Philipsen, A. The senses of agency and ownership: A review. Front. Psychol. 2018, 9, 535. [Google Scholar] [CrossRef]
- Schettler, A.; Raja, V.; Anderson, M.L. The embodiment of objects: Review, analysis, and future directions. Front. Neurosci. 2019, 13, 1332. [Google Scholar] [CrossRef]
- Herr, H.; Carty, M.J. The agonist-antagonist myoneural interface. Tech. Orthop. 2021, 36, 337–344. [Google Scholar] [CrossRef]
- Carty, M.J.; Herr, H.M. The agonist-antagonist myoneural interface. Hand Clin. 2021, 37, 435–445. [Google Scholar] [CrossRef]
- Basla, C.; Chee, L.; Valle, G.; Raspopovic, S. A non-invasive wearable sensory leg neuroprosthesis: Mechanical, electrical and functional validation. J. Neural Eng. 2022, 19, 016008. [Google Scholar] [CrossRef] [PubMed]
- Charkhkar, H.; Shell, C.E.; Marasco, P.D.; Pinault, G.J.; Tyler, D.J.; Triolo, R.J. High-density peripheral nerve cuffs restore natural sensation to individuals with lower-limb amputations. J. Neural Eng. 2018, 15, 056002. [Google Scholar] [CrossRef] [PubMed]
- Roll, J.P.; Albert, F.; Thyrion, C.; Ribot-Ciscar, E.; Bergenheim, M.; Mattei, B. Inducing any virtual two-dimensional movement in humans by applying muscle tendon vibration. J. Neurophysiol. 2009, 101, 816–823. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Feng, Y.; Wang, Q. Combining vibrotactile feedback with volitional myoelectric control for robotic transtibial prostheses. Front. Neurorobotics 2016, 10, 8. [Google Scholar] [CrossRef]
- Papaleo, E.D.; D’Alonzo, M.; Fiori, F.; Piombino, V.; Falato, E.; Pilato, F.; De Liso, A.; Di Lazzaro, V.; Di Pino, G. Integration of proprioception in upper limb prostheses through non-invasive strategies: A review. J. Neuroeng. Rehabil. 2023, 20, 118. [Google Scholar] [CrossRef]
- Shehata, A.W.; Keri, M.I.; Gomez, M.; Marasco, P.D.; Vette, A.H.; Hebert, J.S. Skin stretch enhances illusory movement in persons with lower-limb amputation. In Proceedings of the 2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR), Toronto, ON, Canada, 24–28 June 2019; IEEE: Piscataway Township, NJ, USA, 2019; pp. 1233–1238. [Google Scholar]
- Bark, K.; Wheeler, J.W.; Premakumar, S.; Cutkosky, M.R. Comparison of skin stretch and vibrotactile stimulation for feedback of proprioceptive information. In Proceedings of the 2008 Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, Reno, NV, USA, 13–14 March 2008; IEEE: Piscataway Township, NJ, USA, 2008; pp. 71–78. [Google Scholar]
- Rokhmanova, N.; Rombokas, E. Vibrotactile feedback improves foot placement perception on stairs for lower-limb prosthesis users. In Proceedings of the 2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR), Toronto, ON, Canada, 24–28 June 2019; IEEE: Piscataway Township, NJ, USA, 2019; pp. 1215–1220. [Google Scholar]
- Srinivasan, S.S.; Gutierrez-Arango, S.; Teng, A.C.E.; Israel, E.; Song, H.; Bailey, Z.K.; Carty, M.J.; Freed, L.E.; Herr, H.M. Neural interfacing architecture enables enhanced motor control and residual limb functionality postamputation. Proc. Natl. Acad. Sci. USA 2021, 118, e2019555118. [Google Scholar] [CrossRef]
- Song, H.; Israel, E.A.; Gutierrez-Arango, S.; Teng, A.C.; Srinivasan, S.S.; Freed, L.E.; Herr, H.M. Agonist-antagonist muscle strain in the residual limb preserves motor control and perception after amputation. Commun. Med. 2022, 2, 97. [Google Scholar] [CrossRef]
- Clites, T.R.; Carty, M.J.; Ullauri, J.B.; Carney, M.E.; Mooney, L.M.; Duval, J.F.; Srinivasan, S.S.; Herr, H.M. Proprioception from a neurally controlled lower-extremity prosthesis. Sci. Transl. Med. 2018, 10, eaap8373. [Google Scholar] [CrossRef]
- Pasquina, P.F.; Bryant, P.R.; Huang, M.E.; Roberts, T.L.; Nelson, V.S.; Flood, K.M. Advances in amputee care. Arch. Phys. Med. Rehabil. 2006, 87, 34–43. [Google Scholar] [CrossRef]
- Pop, I.V.; Espinosa, F.; Blevins, C.J.; Okafor, P.C.; Ogujiofor, O.W.; Goyal, M.; Mona, B.; Landy, M.A.; Dean, K.M.; Gurumurthy, C.B.; et al. Structure of long-range direct and indirect spinocerebellar pathways as well as local spinal circuits mediating proprioception. J. Neurosci. 2022, 42, 581–600. [Google Scholar] [CrossRef]
- Tsakiris, M.; Hesse, M.D.; Boy, C.; Haggard, P.; Fink, G.R. Neural signatures of body ownership: A sensory network for bodily self-consciousness. Cereb. Cortex 2007, 17, 2235–2244. [Google Scholar] [CrossRef] [PubMed]
- Shu, T.; Huang, S.S.; Shallal, C.; Herr, H.M. Restoration of bilateral motor coordination from preserved agonist-antagonist coupling in amputation musculature. J. Neuroeng. Rehabil. 2021, 18, 1–17. [Google Scholar]
- Srinivasan, S.S.; Diaz, M.; Carty, M.; Herr, H.M. Towards functional restoration for persons with limb amputation: A dual-stage implementation of regenerative agonist-antagonist myoneural interfaces. Sci. Rep. 2019, 9, 1981. [Google Scholar] [CrossRef]
- Badia, J.; Boretius, T.; Andreu, D.; Azevedo-Coste, C.; Stieglitz, T.; Navarro, X. Comparative analysis of transverse intrafascicular multichannel, longitudinal intrafascicular and multipolar cuff electrodes for the selective stimulation of nerve fascicles. J. Neuroeng. Rehabil. 2011, 8, 036023. [Google Scholar] [CrossRef] [PubMed]
- Petrini, F.M.; Bumbasirevic, M.; Valle, G.; Ilic, V.; Mijović, P.; Čvančara, P.; Barberi, F.; Katic, N.; Bortolotti, D.; Andreu, D.; et al. Sensory feedback restoration in leg amputees improves walking speed, metabolic cost and phantom pain. Nat. Med. 2019, 25, 1356–1363. [Google Scholar] [CrossRef]
- Yildiz, K.A.; Shin, A.Y.; Kaufman, K.R. Interfaces with the peripheral nervous system for the control of a neuroprosthetic limb: A review. J. Neuroeng. Rehabil. 2020, 17, 1–19. [Google Scholar] [CrossRef]
- Zelechowski, M.; Valle, G.; Raspopovic, S. A computational model to design neural interfaces for lower-limb sensory neuroprostheses. J. Neuroeng. Rehabil. 2020, 17, 24. [Google Scholar] [CrossRef]
- Hoellwarth, J.S.; Tetsworth, K.; Rozbruch, S.R.; Handal, M.B.; Coughlan, A.; Al Muderis, M. Osseointegration for amputees: Current implants, techniques, and future directions. JBJS Rev. 2020, 8, e0043. [Google Scholar] [CrossRef]
- Van de Meent, H.; Hopman, M.T.; Frölke, J.P. Walking ability and quality of life in subjects with transfemoral amputation: A comparison of osseointegration with socket prostheses. Arch. Phys. Med. Rehabil. 2013, 94, 2174–2178. [Google Scholar] [CrossRef]
- Muderis, M.A.; Lu, W.; Glatt, V.; Tetsworth, K. Two-stage osseointegrated reconstruction of post-traumatic unilateral transfemoral amputees. Mil. Med. 2018, 183, 496–502. [Google Scholar] [CrossRef]
- Van Eck, C.F.; McGough, R.L. Clinical outcome of osseointegrated prostheses for lower extremity amputations: A systematic review of the literature. Curr. Orthop. Pract. 2015, 26, 349–357. [Google Scholar] [CrossRef]
- National Library of Medicine. A Study to Evaluate the Safety and Effectiveness Transdermal Compress Device in Participants with Transfemoral Amputations. Available online: https://clinicaltrials.gov/study/NCT06134167 (accessed on 4 August 2024).
- McGough, R.; Goodman, M.; Randall, R.; Forsberg, J.; Potter, B.; Lindsey, B. The Compress® transcutaneous implant for rehabilitation following limb amputation. Der Unfallchirurg 2017, 120, 300–305. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Catalan, M.; Håkansson, B.; Brånemark, R. An osseointegrated human-machine gateway for long-term sensory feedback and motor control of artificial limbs. Sci. Transl. Med. 2014, 6, 257re6. [Google Scholar] [CrossRef]
- Li, Y.; Lindeque, B. Percutaneous osseointegrated prostheses for transfemoral amputations. Orthopedics 2018, 41, 75–80. [Google Scholar] [CrossRef]
- Kunutsor, S.; Gillatt, D.; Blom, A. Systematic review of the safety and efficacy of osseointegration prosthesis after limb amputation. J. Br. Surg. 2018, 105, 1731–1741. [Google Scholar] [CrossRef]
- Al Muderis, M.; Khemka, A.; Lord, S.J.; Van de Meent, H.; Frölke, J.P.M. Safety of osseointegrated implants for transfemoral amputees: A two-center prospective cohort study. J. Bone Jt. Surg. 2016, 98, 900–909. [Google Scholar] [CrossRef]
- Tillander, J.; Hagberg, K.; Berlin, Ö.; Hagberg, L.; Brånemark, R. Osteomyelitis risk in patients with transfemoral amputations treated with osseointegration prostheses. Clin. Orthop. Relat. Res. 2017, 475, 3100–3108. [Google Scholar] [CrossRef]
- Juhnke, D.L.; Beck, J.P.; Aschoff, H.H. Fifteen years of experience with Integral-Leg-Prosthesis: Cohort study of artificial limb attachment system. J. Rehabil. Res. Dev. 2015, 52, 407. [Google Scholar] [CrossRef]
- Mohamed, J.; Reetz, D.; van de Meent, H.; Schreuder, H.; Frölke, J.P.; Leijendekkers, R. What are the risk factors for mechanical failure and loosening of a transfemoral osseointegrated implant system in patients with a lower-limb amputation? Clin. Orthop. Relat. Res. 2022, 480, 722–731. [Google Scholar] [CrossRef]
- Balk, E.M.; Gazula, A.; Markozannes, G.; Kimmel, H.J.; Saldanha, I.J.; Resnik, L.J.; Trikalinos, T.A. Lower limb prostheses: Measurement instruments, comparison of component effects by subgroups, and long-term outcomes. Comp. Eff. Rev. 2018, 213, 18-EHC017-EF. [Google Scholar]
Item # | Question | Embodiment “Dimension” |
---|---|---|
1 | The prosthesis is my leg. | Ownership |
2 | The prosthesis belongs to me. | |
3 | The prosthesis is a part of my body. | |
4 | I feel as if I was looking directly at my own leg, rather than at a prosthesis. | |
5 | It feels as if I had two legs. | |
6 | My body feels complete. | |
7 | The prosthesis is in the location where I would expect my leg to be, if it was not amputated. | Co-location (Location in [17], Anatomical Plausibility in [14]) |
8 | The posture of the prosthesis corresponds to that of a real leg. | |
Walk with prosthetic for 30 s. | ||
9 | The prosthesis is moving the way I want it to move. | Agency |
10 | I am in control of the prosthesis. |
Elicited Sensations | Modality |
---|---|
“My toes are pushing down against a surface” | Proprioceptive |
“My big toe wanted to move, but there was not enough [room] to do it” | Tactile |
“Very light touch, on top of the big toe” | Tactile |
“Like a piece of hair, or piece of grass rubbed against my calf” | Tactile |
“It was in the ankle, made my foot go down” | Proprioceptive |
“Felt like a pressure in the heel” | Tactile |
“It was like pressure on one side of my ankle” | Tactile |
“Bottom of my foot was waking up” | Tactile |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, T.T.; Wang, B.; Alas, H.; Jones, Q.; Clark, C.; Lazar, S.; Malik, S.; Graham, J.; Talaat, Y.; Shin, C.; et al. Prosthesis Embodiment in Lower Extremity Limb Loss: A Narrative Review. Appl. Sci. 2025, 15, 4952. https://doi.org/10.3390/app15094952
Nguyen TT, Wang B, Alas H, Jones Q, Clark C, Lazar S, Malik S, Graham J, Talaat Y, Shin C, et al. Prosthesis Embodiment in Lower Extremity Limb Loss: A Narrative Review. Applied Sciences. 2025; 15(9):4952. https://doi.org/10.3390/app15094952
Chicago/Turabian StyleNguyen, Tuyet Thao, Bingjie Wang, Haddy Alas, Quincy Jones, Chase Clark, Sabrina Lazar, Shaddy Malik, Joshua Graham, Yasmeen Talaat, Chris Shin, and et al. 2025. "Prosthesis Embodiment in Lower Extremity Limb Loss: A Narrative Review" Applied Sciences 15, no. 9: 4952. https://doi.org/10.3390/app15094952
APA StyleNguyen, T. T., Wang, B., Alas, H., Jones, Q., Clark, C., Lazar, S., Malik, S., Graham, J., Talaat, Y., Shin, C., Schofield, J., Macleod, T., Smedley, L., Pereira, C., Joiner, W., Randall, R. L., Farmer, D., Wang, A., Hao, D., ... Li, A. (2025). Prosthesis Embodiment in Lower Extremity Limb Loss: A Narrative Review. Applied Sciences, 15(9), 4952. https://doi.org/10.3390/app15094952