A Multi-Feature Automatic Evaluation of the Aesthetics of 3D Printed Surfaces
Abstract
:1. Introduction
2. Materials and Methods
2.1. Texture-Based Approach
2.2. Application of Image Entropy
2.3. Feature-Based Approaches
2.4. Mutual Image Similarity Based on Full-Reference IQA Metrics
3. Proposed Approach
4. Discussion
4.1. Analysis of Experimental Results
4.2. Ablation Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ABS | acrylonitrile butadiene styrene |
ADD | Analysis of Distortion Distribution |
BRIEF | Binary Robust Independent Elementary Features |
CLAHE | Contrast Limited Adaptive Histogram Equalization |
CNN | Convolutional Neural Network |
CSF | contrast sensitivity function |
CVSSI | Contrast and Visual Saliency Similarity-Induced Index |
CW-SSIM | Complex Wavelet Structural Similarity |
DSS | Discrete Cosine Transform Subbands Similarity |
FAST | Features from Accelerated Segment Test |
FDM | fused deposition modeling |
FR IQA | full-reference image quality assessment |
FSIM | Feature Similarity |
GLCM | Gray-Level Co-occurrence Matrix |
GSIM | Gradient Similarity |
KROCC | Kendall Rank Order Correlation Coefficient |
LBP | Local Binary Patterns |
LSTM | long short term memory |
MCSD | Multiscale Contrast Similarity Deviation |
MOS | Mean Opinion Score |
MSE | mean squared error |
mSLA | masked Stereolithography |
ORB | Oriented FAST and rotated BRIEF |
PLA | polyactic acid |
PLC | programmable logic controller |
PLCC | Pearson’s Linear Correlation Coefficient |
QILV | Quality Index based on Local Variance |
RVSIM | Riesz transform and Visual contrast sensitivity-based feature Similarity index |
SIFT | Scale-Invariant Feature Transform |
SLA | Stereolithography |
SROCC | Spearman Rank Order Correlation Coefficient |
SR-SIM | Spectral Residual based Similarity |
SRVS | spectral residual visual saliency |
SSIM | Structural Similarity |
SURF | Speeded Up Robust Features |
SVM | support vector machine |
SVR | support vector regression |
References
- Shahrubudin, N.; Lee, T.; Ramlan, R. An Overview on 3D Printing Technology: Technological, Materials, and Applications. Procedia Manuf. 2019, 35, 1286–1296. [Google Scholar] [CrossRef]
- Chua, C.; Wong, C.; Yeong, W. Standards, Quality Control, and Measurement Sciences in 3D Printing and Additive Manufacturing; Academic Press: Cambridge, MA, USA, 2017. [Google Scholar]
- Dave, H.; Davim, J. Fused Deposition Modeling Based 3D Printing; Materials Forming, Machining and Tribology; Springer International Publishing: Cham, Switzerland, 2021. [Google Scholar]
- Seifert, D.; Grzona, P.; Raval, K.; Thürer, M. Quality control techniques in additive manufacturing: Current trends and their prototypical implementation. Procedia Comput. Sci. 2025, 253, 1206–1215. [Google Scholar] [CrossRef]
- Ganitano, G.S.; Maruyama, B.; Peterson, G.L. Accelerated Multiobjective Calibration of Fused Deposition Modeling 3D Printers Using Multitask Bayesian Optimization and Computer Vision. Adv. Intell. Syst. 2025, 7, 2400523. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, J.; Wang, Y.; Feng, S.; Peng, T.; Yang, H.; Zou, J. A CNN-Based Adaptive Surface Monitoring System for Fused Deposition Modeling. IEEE/ASME Trans. Mechatron. 2020, 25, 2287–2296. [Google Scholar] [CrossRef]
- Paraskevoudis, K.; Karayannis, P.; Koumoulos, E.P. Real-Time 3D Printing Remote Defect Detection (Stringing) with Computer Vision and Artificial Intelligence. Processes 2020, 8, 1464. [Google Scholar] [CrossRef]
- Jin, Z.; Zhang, Z.; Gu, G.X. Autonomous in-situ correction of fused deposition modeling printers using computer vision and deep learning. Manuf. Lett. 2019, 22, 11–15. [Google Scholar] [CrossRef]
- Saluja, A.; Xie, J.; Fayazbakhsh, K. A closed-loop in-process warping detection system for fused filament fabrication using convolutional neural networks. J. Manuf. Process. 2020, 58, 407–415. [Google Scholar] [CrossRef]
- Brion, D.A.; Shen, M.; Pattinson, S.W. Automated recognition and correction of warp deformation in extrusion additive manufacturing. Addit. Manuf. 2022, 56, 102838. [Google Scholar] [CrossRef]
- Brion, D.A.J.; Pattinson, S.W. Generalisable 3D printing error detection and correction via multi-head neural networks. Nat. Commun. 2022, 13, 4654. [Google Scholar] [CrossRef]
- Pollák, M.; Sabol, D.; Goryl, K. Measuring the Dimension Accuracy of Products Created by 3D Printing Technology with the Designed Measuring System. Machines 2024, 12, 884. [Google Scholar] [CrossRef]
- Lishchenko, N.; Piteľ, J.; Larshin, V. Online Monitoring of Surface Quality for Diagnostic Features in 3D Printing. Machines 2022, 10, 541. [Google Scholar] [CrossRef]
- Senthilnathan, S.; Raphael, B. Using Computer Vision for Monitoring the Quality of 3D-Printed Concrete Structures. Sustainability 2022, 14, 15682. [Google Scholar] [CrossRef]
- Okarma, K.; Fastowicz, J. Improved quality assessment of colour surfaces for additive manufacturing based on image entropy. Pattern Anal. Appl. 2020, 23, 1035–1047. [Google Scholar] [CrossRef]
- Nascimento, R.; Martins, I.; Dutra, T.A.; Moreira, L. Computer Vision Based Quality Control for Additive Manufacturing Parts. Int. J. Adv. Manuf. Technol. 2022, 124, 3241–3256. [Google Scholar] [CrossRef]
- Mayer, J.; Thi Thanh, T.B.; Caglar, T.; Schulz, H.; Lallahom, O.B.; Li, D.; Niemella, M.; Toptas, B.; Jochem, R. Surface quality prediction for FDM-printed parts using in-process material flow data. Procedia CIRP 2024, 126, 645–650. [Google Scholar] [CrossRef]
- Yean, F.P.; Chew, W.J. Detection of Spaghetti and Stringing Failure in 3D Printing. In Proceedings of the 2024 International Conference on Green Energy, Computing and Sustainable Technology (GECOST), Miri Sarawak, Malaysia, 17–19 January 2024; pp. 293–298. [Google Scholar] [CrossRef]
- Tartici, I.; Kilic, Z.M.; Bartolo, P. A Systematic Literature Review: Industry 4.0 Based Monitoring and Control Systems in Additive Manufacturing. Machines 2023, 11, 712. [Google Scholar] [CrossRef]
- He, H.; Zhu, Z.; Zhang, Y.; Zhang, Z.; Famakinwa, T.; Yang, R. Machine condition monitoring for defect detection in fused deposition modelling process: A review. Int. J. Adv. Manuf. Technol. 2024, 132, 3149–3178. [Google Scholar] [CrossRef]
- Okarma, K.; Fastowicz, J.; Lech, P.; Lukin, V. Quality Assessment of 3D Printed Surfaces Using Combined Metrics Based on Mutual Structural Similarity Approach Correlated with Subjective Aesthetic Evaluation. Appl. Sci. 2020, 10, 6248. [Google Scholar] [CrossRef]
- Bull, D.R.; Zhang, F. Measuring and managing picture quality. In Intelligent Image and Video Compression; Elsevier: Amsterdam, The Netherlands, 2021; pp. 335–384. [Google Scholar] [CrossRef]
- Rouf, S.; Raina, A.; Irfan Ul Haq, M.; Naveed, N.; Jeganmohan, S.; Farzana Kichloo, A. 3D printed parts and mechanical properties: Influencing parameters, sustainability aspects, global market scenario, challenges and applications. Adv. Ind. Eng. Polym. Res. 2022, 5, 143–158. [Google Scholar] [CrossRef]
- Okarma, K.; Fastowicz, J. No-reference quality assessment of 3D prints based on the GLCM analysis. In Proceedings of the 2016 21st International Conference on Methods and Models in Automation and Robotics (MMAR), Miedzyzdroje, Poland, 29 August–1 September 2016; pp. 788–793. [Google Scholar] [CrossRef]
- Löfstedt, T.; Brynolfsson, P.; Asklund, T.; Nyholm, T.; Garpebring, A. Gray-level invariant Haralick texture features. PLoS ONE 2019, 14, e0212110. [Google Scholar] [CrossRef]
- Fastowicz, J.; Lech, P.; Okarma, K. Combined Metrics for Quality Assessment of 3D Printed Surfaces for Aesthetic Purposes: Towards Higher Accordance with Subjective Evaluations. In Computational Science, Proceedings of the ICCS 2020, Amsterdam, The Netherlands, 3–5 June 2020; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2020; Volume 12143, pp. 326–339. [Google Scholar] [CrossRef]
- Lowe, D.G. Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Rublee, E.; Rabaud, V.; Konolige, K.; Bradski, G. ORB: An efficient alternative to SIFT or SURF. In Proceedings of the 2011 International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 2564–2571. [Google Scholar] [CrossRef]
- Dalal, N.; Triggs, B. Histograms of Oriented Gradients for Human Detection. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–25 June 2005; Volume 1, pp. 886–893. [Google Scholar] [CrossRef]
- Ojala, T.; Pietikäinen, M.; Harwood, D. A comparative study of texture measures with classification based on featured distributions. Pattern Recognit. 1996, 29, 51–59. [Google Scholar] [CrossRef]
- Fastowicz, J.; Okarma, K. Quality Assessment of Photographed 3D Printed Flat Surfaces Using Hough Transform and Histogram Equalization. J. Univers. Comput. Sci. 2019, 25, 701–717. [Google Scholar] [CrossRef]
- Lech, P.; Fastowicz, J.; Okarma, K. Quality Evaluation of 3D Printed Surfaces Based on HOG Features. In Computer Vision and Graphics, Proceedings of the ICCVG 2018, Warsaw, Poland, 17–19 September 2018; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2018; Volume 11114, pp. 199–208. [Google Scholar] [CrossRef]
- Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man, Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.; Sheikh, H.; Simoncelli, E. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef]
- Chen, G.H.; Yang, C.L.; Po, L.M.; Xie, S.L. Edge-Based Structural Similarity for Image Quality Assessment. In Proceedings of the 2006 IEEE International Conference on Acoustics Speed and Signal Processing Proceedings, Toulouse, France, 14–19 May 2006; Volume 2, pp. II-933–II-936. [Google Scholar] [CrossRef]
- Aja-Fernandez, S.; Estepar, R.S.J.; Alberola-Lopez, C.; Westin, C.F. Image Quality Assessment based on Local Variance. In Proceedings of the 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, New York, NY, USA, 30 August–3 September 2006. [Google Scholar] [CrossRef]
- Sampat, M.; Wang, Z.; Gupta, S.; Bovik, A.; Markey, M. Complex Wavelet Structural Similarity: A New Image Similarity Index. IEEE Trans. Image Process. 2009, 18, 2385–2401. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhang, L.; Mou, X.; Zhang, D. FSIM: A Feature Similarity Index for Image Quality Assessment. IEEE Trans. Image Process. 2011, 20, 2378–2386. [Google Scholar] [CrossRef]
- Zhang, L.; Li, H. SR-SIM: A fast and high performance IQA index based on spectral residual. In Proceedings of the 2012 19th IEEE International Conference on Image Processing, Orlando, FL, USA, 30 September–3 October 2012; pp. 1473–1476. [Google Scholar] [CrossRef]
- Liu, A.; Lin, W.; Narwaria, M. Image Quality Assessment Based on Gradient Similarity. IEEE Trans. Image Process. 2012, 21, 1500–1512. [Google Scholar] [CrossRef]
- Balanov, A.; Schwartz, A.; Moshe, Y.; Peleg, N. Image quality assessment based on DCT subband similarity. In Proceedings of the 2015 IEEE International Conference on Image Processing (ICIP), Quebec City, QC, Canada, 27–30 September 2015; pp. 2105–2109. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, L.; Jia, H.; Li, B.; Shu, H. Multiscale contrast similarity deviation: An effective and efficient index for perceptual image quality assessment. Signal Process. Image Commun. 2016, 45, 1–9. [Google Scholar] [CrossRef]
- Gu, K.; Wang, S.; Zhai, G.; Lin, W.; Yang, X.; Zhang, W. Analysis of Distortion Distribution for Pooling in Image Quality Prediction. IEEE Trans. Broadcast. 2016, 62, 446–456. [Google Scholar] [CrossRef]
- Yang, G.; Li, D.; Lu, F.; Liao, Y.; Yang, W. RVSIM: A feature similarity method for full-reference image quality assessment. EURASIP J. Image Video Process. 2018, 2018, 6. [Google Scholar] [CrossRef]
- Jia, H.; Zhang, L.; Wang, T. Contrast and Visual Saliency Similarity-Induced Index for Assessing Image Quality. IEEE Access 2018, 6, 65885–65893. [Google Scholar] [CrossRef]
- Ponomarenko, M.; Egiazarian, K.; Lukin, V.; Abramova, V. Structural Similarity Index with Predictability of Image Blocks. In Proceedings of the 2018 IEEE 17th International Conference on Mathematical Methods in Electromagnetic Theory (MMET), Kyiv, Ukraine, 2–5 July 2018; pp. 115–118. [Google Scholar] [CrossRef]
Metric | PLCC | SROCC | KROCC |
---|---|---|---|
EV (16 blocks) 1 | 0.6936 | 0.6673 | 0.4811 |
FSIM (9 blocks) | 0.6820 | 0.6845 | 0.5185 |
FSIM (4 blocks) | 0.6780 | 0.6826 | 0.5114 |
FSIM (16 blocks) | 0.6756 | 0.6865 | 0.5195 |
CW-SSIM (9 blocks) | 0.6323 | 0.6098 | 0.4232 |
CW-SSIM (16 blocks) | 0.5929 | 0.5823 | 0.4027 |
CW-SSIM (4 blocks) | 0.5807 | 0.5633 | 0.3981 |
kurtosis of HOG | 0.5075 | 0.5177 | 0.3874 |
MV (RGB+hue 256 blocks) 2 | 0.4816 | 0.4920 | 0.3480 |
EVAR (16 blocks) 3 | 0.4462 | 0.5300 | 0.3660 |
Metrics | PLCC | SROCC | KROCC |
---|---|---|---|
FSIM (16 blocks) & SR-SIM (16 blocks) | 0.8705 | 0.8653 | 0.6879 |
standard deviation of HOG & MCSD (9 blocks) | 0.8676 | 0.8731 | 0.6978 |
standard deviation of HOG & DSS (16 blocks) | 0.8647 | 0.8816 | 0.7063 |
standard deviation of HOG & MS-SSIM (9 blocks) | 0.8568 | 0.8727 | 0.6960 |
FSIM (4 blocks) & SR-SIM (16 blocks) | 0.8554 | 0.8650 | 0.6879 |
Additional Metrics | PLCC | SROCC | KROCC |
---|---|---|---|
MCSD (4 blocks) | 0.9012 | 0.9034 | 0.7327 |
CVSSI (9 blocks) | 0.8978 | 0.9027 | 0.7352 |
QILV (9 blocks) | 0.8941 | 0.9005 | 0.7377 |
CVSSI (4 blocks) | 0.8863 | 0.8952 | 0.7253 |
SR-SIM (9 blocks) | 0.8859 | 0.8869 | 0.7161 |
MCSD (4 blocks) & CSSIM4 (9 blocks) | 0.9101 | 0.9092 | 0.7472 |
MCSD (4 blocks) & MV (mean 256 blocks) 1 | 0.9089 | 0.9062 | 0.7366 |
MCSD (4 blocks) & MV (green 256 blocks) 2 | 0.9088 | 0.9057 | 0.7377 |
MCSD (4 blocks) & Yavg (with CLAHE) 3 | 0.9058 | 0.9090 | 0.7419 |
MCSD (4 blocks) & EV (16 blocks) | 0.9046 | 0.8980 | 0.7377 |
Number of Metrics | PLCC | SROCC | KROCC |
---|---|---|---|
2 (weighted product) | 0.7862 | 0.7857 | 0.6078 |
3 (weighted product) | 0.8238 | 0.8277 | 0.6515 |
4 (weighted product) | 0.8266 | 0.8300 | 0.6501 |
5 (weighted product) | 0.8265 | 0.8302 | 0.6505 |
2 (weighted sum) | 0.8545 | 0.8678 | 0.6925 |
3 (weighted sum) | 0.8637 | 0.8742 | 0.7041 |
4 (weighted sum) | 0.8841 | 0.8972 | 0.7285 |
5 (weighted sum) | 0.8877 | 0.9010 | 0.7411 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fastowicz, J.; Tecław, M.; Okarma, K. A Multi-Feature Automatic Evaluation of the Aesthetics of 3D Printed Surfaces. Appl. Sci. 2025, 15, 4852. https://doi.org/10.3390/app15094852
Fastowicz J, Tecław M, Okarma K. A Multi-Feature Automatic Evaluation of the Aesthetics of 3D Printed Surfaces. Applied Sciences. 2025; 15(9):4852. https://doi.org/10.3390/app15094852
Chicago/Turabian StyleFastowicz, Jarosław, Mateusz Tecław, and Krzysztof Okarma. 2025. "A Multi-Feature Automatic Evaluation of the Aesthetics of 3D Printed Surfaces" Applied Sciences 15, no. 9: 4852. https://doi.org/10.3390/app15094852
APA StyleFastowicz, J., Tecław, M., & Okarma, K. (2025). A Multi-Feature Automatic Evaluation of the Aesthetics of 3D Printed Surfaces. Applied Sciences, 15(9), 4852. https://doi.org/10.3390/app15094852