An Analysis of Spatial Variation in Human Impact on Forest Ecological Functions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Variables and Data
2.2.1. Forest Ecological Function
2.2.2. Influencing Factors of Forest Ecological Function
2.2.3. Data Sources
2.3. Econometric Methods
2.3.1. Spatial Correlation Analysis
2.3.2. Multiple Linear Regression Model
2.3.3. Geographically Weighted Regression Model
3. Results
3.1. FEF Evaluation and Its Spatial Variation
3.1.1. Assessment of Forest Ecological Functions
3.1.2. Spatial Agglomeration Characteristics of FEF
3.2. Impact of Human Activities on FEF
3.3. Spatial Heterogeneity of Human Impacts on FEF
3.4. Spatial Trends in the Human Impact on FEF
4. Discussion
4.1. Comparative Analysis of Core Human Activities Affecting FEF
4.2. Robust Test
4.3. Limitations
5. Conclusions and Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Keenan, R.J.; Reams, G.A.; Achard, F.; de Freitas, J.V.; Grainger, A.; Lindquist, E. Dynamics of global forest area: Results from the FAO global forest resources assessment. For. Ecol. Manag. 2015, 352, 9–20. [Google Scholar] [CrossRef]
- Yuan, Y.; Liu, Z.G.; Dong, L.B. Evaluation and analysis of forest ecological function level in Greater Khingan Mountains Pangu forest farm based on GIS. J. Cent. South Univ. For. Technol. 2016, 36, 108–114. [Google Scholar]
- Zhang, M.N.; Liu, S.R.; Luo, X.Z.; Keenan, T.F.; Fu, L.Y.; Xiao, C.W.; Zhang, Y.; Gong, P. Incorporating site suitability and carbon sequestration of tree species into China’s climate-adaptive forestation. Sci. Bull. 2025, in press. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Bi, H.X.; Peng, R.D.; Zhao, D.Y.; Liu, Z.H. Disparities in soil and water conservation functions among different forest types and implications for afforestation on the Loess Plateau. Ecol. Indic. 2023, 155, 110935. [Google Scholar] [CrossRef]
- Pandey, R.; Mehta, D.; Kumar, V.; Pradhan, R.P. Quantifying soil erosion and soil organic carbon conservation services in indian forests: A RUSLE-SDR and GIS-based assessment. Ecol. Indic. 2024, 163, 112086. [Google Scholar] [CrossRef]
- Zhao, J.Y.; Fu, X.; Sa, N.; Kou, X.Y.; He, X.J.; Zheng, S.N.; Lu, Z.H.; Wu, G.; Sang, W.G. Forest eco-function restoration and its positive effects on biodiversity improvement in China’s ecological conservation programs. Ecol. Eng. 2025, 212, 107530. [Google Scholar] [CrossRef]
- Lecina-Diaz, J.; Senf, C.; Grünig, M.; Rupert Seidl, R. Ecosystem services at risk from disturbance in Europe’s forests. Glob. Change Biol. 2024, 30, e17242. [Google Scholar] [CrossRef]
- Repo, A.; Albrich, K.; Jantunen, A.; Aalto, J.; Lehtonen, I.; Honkaniemi, J. Contrasting forest management strategies: Impacts on biodiversity and ecosystem services under changing climate and disturbance regimes. J. Environ. Manag. 2024, 371, 123124. [Google Scholar] [CrossRef]
- Zhang, S.Y.; Zhu, H.K.; Zeng, K.; Zhang, Y.W.; Jin, Z.W.; Wang, Y.; Zhang, R.; Jürgen, B.; Liu, M. From city to countryside: Unraveling the long-term complex effects of urbanization on vegetation growth in China. J. Environ. Manag. 2025, 380, 124975. [Google Scholar] [CrossRef]
- Shen, Z.; Zhang, Q.; Chen, D.; Singh, V.P. Varying effects of mining development on ecological conditions and groundwater storage in dry region in Inner Mongolia of China. J. Hydrol. 2021, 597, 125759. [Google Scholar] [CrossRef]
- Chen, C.; Park, T.; Wang, X.; Piao, S.; Xu, B.; Chaturvedi, R.K.; Fuchs, R.; Brovkin, V.; Ciais, P.; Fensholt, R.; et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2019, 2, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.R.; Lei, X.D.; Fu, L.Y.; Liu, X.Z.; Zhang, X.H.; Yang, L. The current situation and improvement strategies of forest resource quality in China. Terr. Ecosyst. Conserv. 2024, 4, 46–54. [Google Scholar]
- Jian, N.; Zhao, H.; Liu, M. Driving force and potential of forest resource change: Based on the results of the Ninth National Forest Resources Inventory. J. For. Grassl. Policy 2022, 2, 64–71. [Google Scholar]
- Wang, B. Construction and utilization of continuous inventory system for forest ecology. J. Beijing For. Univ. 2015, 37, 1–8. [Google Scholar]
- Qian, C.; Zhao, Y.; Li, M.; Li, T. Dynamic analyses of forest ecological functions based on fixed plot data of continuous forest resources inventories from 1979 to 2012 in Guangzhou. J. Nanjing For. Univ. (Nat. Sci. Ed.) 2022, 46, 205–212. [Google Scholar]
- Zou, W.T.; He, Y.J.; Ye, B.; Zhao, X.D.; Xu, D.Y.; Xiao, R.Q.; Duan, Y.X. Research advances in forest ecosystem services evaluations based on the InVEST model. World For. Res. 2020, 33, 19–24. [Google Scholar]
- Xu, P.Z.; Zhang, Y.D.; Li, Q.W.; Sun, C.W. Evaluation of forest eco-efficiency: A transformation of ecological value quantity perspective. Sci. Total Environ. 2025, 965, 178612. [Google Scholar] [CrossRef]
- Boulanger, Y.; Pascual, P.J. Boreal forests will be more severely affected by projected anthropogenic climate forcing than mixedwood and northern hardwood forests in eastern Canada. J. Landsc. Ecol. 2021, 36, 1725–1740. [Google Scholar] [CrossRef]
- Letelier, L.; Valderrama, A.; Stoll, A.; Garcia-Gonzales, R.; Gonzalez-Rodriguez, A. Patterns of composition, richness and phylogenetic diversity of woody plant communities of Quillaja saponaria Molina (Quillajaceae) in the Chilean sclerophyllous forest. Gayana Bot. 2017, 74, 57–72. [Google Scholar] [CrossRef]
- Vefago, M.B.; da Silva, A.C.; Cuchi, T.; dos Santos, G.N.; Nunes, A.D.; Rodrigues, L.C.; Lima, C.L.; Gross, A.; Kilca, R.D.; Higuchi, P. What explains the variation on the regenerative component dynamics of Araucaria forests in southern Brazil? Sci. Agric. 2019, 76, 405–414. [Google Scholar] [CrossRef]
- Danneyrolles, V.; Dupuis, S.; Fortin, G.; Leroyer, M.; de Romer, A.; Terrail, R.; Vellend, M.; Boucher, Y.; Laflamme, J.; Bergeron, Y.; et al. Stronger influence of anthropogenic disturbance than climate change on century-scale compositional changes in northern forests. Nat. Commun. 2019, 10, 1265. [Google Scholar] [CrossRef] [PubMed]
- Bryan, B.A.; Gao, L.; Ye, Y.; Sun, X.; Connor, J.D.; Crossman, N.D.; Stafford-Smith, M.; Wu, J.; He, C.; Yu, D.; et al. China’s response to a national land-system sustainability emergency. Nature 2018, 559, 193–204. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Wang, X. Differences in industrial environmental efficiency of the Yangtze River economic belt and their influencing factors: Based on the super efficiency DEA-Malmquist-Tobit model. J. Hohai Univ. 2017, 19, 49–54. [Google Scholar]
- Xie, H.; Chen, Q.; Lu, F.; Wang, W.; Yao, G.; Yu, J. Spatial-temporal disparities and influencing factors of total-factor green use efficiency of industrial land in China. J. Clean. Prod. 2019, 207, 1047–1058. [Google Scholar] [CrossRef]
- Ding, Y.; Zhang, L.; He, Y.; Cao, S.; Wei, X.; Guo, Y.; Ran, L.; Filonchyk, M. Spatiotemporal evolution of agricultural drought and its attribution under different climate zones and vegetation types in the Yellow River Basin of China. Sci. Total Environ. 2024, 914, 169687. [Google Scholar] [CrossRef]
- Wu, Q.; Zhu, J.; Zhao, X. Effects of human social-economic activities on vegetation suitability in the Yellow River Basin, China. Forests 2023, 14, 234. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, Y.; Li, J.; Hao, Z. Coupling coordination network analysis of ecological protection and high-quality economic development in the Yellow River basin. Ecol. Econ. 2022, 38, 179–189. [Google Scholar]
- Jin, F.; Ma, L.; Xu, D. Environmental stress and optimized path of industrial development in the Yellow River basin. Resour. Sci. 2020, 42, 127–136. [Google Scholar] [CrossRef]
- Guo, Z.; Tang, S.; Wang, D.; Zhang, J. Spatial distribution and factors influencing ecological efficiency of the Yellow River basin in China. Front. Environ. Sci. 2022, 10, 815898. [Google Scholar] [CrossRef]
- Fan, J.; Wang, Y.; Wang, Y. High quality regional development research based on geographical units: Discuss on the difference in development conditions and priorities of the Yellow River basin compared to the Yangtze River basin. Econ. Geogr. 2020, 40, 1–11. [Google Scholar]
- Li, T.; Zhang, Q.; Singh, V.P.; Zhao, J.; Song, J.; Sun, S.; Wang, G.; Shen, Z.; Wu, W. Identification of degradation areas of ecological environment and degradation intensity assessment in the Yellow River basin. Front. Earth Sci. 2022, 10, 922013. [Google Scholar] [CrossRef]
- GB/T 38590−2020; Technical Regulations for Continuous Forest Inventory. Standardization Administration of China, Standards Press of China: Beijing, China, 2020.
- Wang, L.; Li, N.; Wen, G.; Yang, Y. Vegetation coverage changes and driving forces in the Henan section of the Yellow River basin. Bull. Soil Water Conserv. 2022, 42, 393–399. [Google Scholar]
- Lu, Y.; Zhang, Q.; Li, X.; Yang, S.; Yang, Q. Temporal and spatial variations of vegetation coverage and its response to climate factors in Gansu section of Yellow River basin. Bull. Soil Water Conversat. 2020, 40, 232–238. [Google Scholar]
- Yang, Y.; Zhang, P.; Wu, F.; Zhou, Y.; Song, Y.; Wang, Y.; An, S. The significance and countermeasures of vegetation construction on the Loess Plateau to carbon neutrality. Acta Ecol. Sin. 2023, 43, 9071–9081. [Google Scholar]
- Shi, Y.; Jin, N.; Ma, X.; Wu, B.; He, Q.; Yue, C.; Yu, Q. Attribution of climate and human activities to vegetation change in China using machine learning techniques. Agric. For. Meteorol. 2020, 294, 108146. [Google Scholar] [CrossRef]
- Zheng, K.; Wei, J.; Pei, J.; Cheng, H.; Zhang, X.; Huang, F.; Li, F.; Ye, J. Impacts of climate change and human activities on grassland vegetation variation in the Chinese Loess Plateau. Sci. Total Environ. 2019, 660, 236–244. [Google Scholar] [CrossRef]
- Feng, Y.; Zhai, S.; Jiang, X.; Luo, J.; Yan, P.; Dong, C.; Han, J. Simulating spatio-temporal pattern of producing-living-ecological space and evaluating eco-environmental effects in Zhongyuan urban agglomeration based on FLUS model and shared socioeconomic pathways. Acta Ecol. Sin. 2023, 43, 8292–8308. [Google Scholar]
- Guo, S.; Wang, X.; Wang, N.; Dong, X.; Fu, Y. Evaluation and spatial-temporal variations of ecological comprehensive index along the Yellow River of Shanxi province, China. Chin. J. Applies Ecol. 2023, 34, 3385–3392. [Google Scholar]
- Anselin, L. Local indicators of spatial association—LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Brunsdon, C.; Fotheringham, A.S.; Charlton, M.E. Geographically weighted regression: A method for exploring spatial nonstationarity. Geogr. Anal. 1996, 28, 281–298. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhao, X.; Li, X.; Chen, H.; Li, C.; Zhang, C. Mapping soil organic carbon density via geographically weighted regression with smooth terms: A case study in Shanxi Province. Ecol. Indic. 2024, 166, 112588. [Google Scholar] [CrossRef]
- Gao, X.; Sun, M.; Luan, Q.; Zhao, X.; Wang, J.; He, G.; Zhao, Y. The spatial and temporal evolution of the actual evapotranspiration based on the remote sensing method in the Loess Plateau. Sci. Total Environ. 2020, 708, 135111. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Wang, Y.; Li, Y.; Zhou, S. Vegetation changes and influencing factors in different regions of Yellow River Basin from 1982 to 2015. J. Yangtze River Sci. Res. Inst. 2020, 39, 56–62+81. [Google Scholar]
- Thakur, S.; Negi, V.S.; Pathak, R.; Dhyani, R.; Durgapal, K.; Rawal, R.S. Indicator based integrated vulnerability assessment of community forests in Indian west Himalaya. For. Ecol. Manag. 2020, 457, 117674. [Google Scholar] [CrossRef]
- Chakraborty, A.; Ghosh, A.; Sachdeva, K.; Joshi, P.K. Characterizing fragmentation trends of the Himalayan forests in the Kumaon region of Uttarakhand, India. Ecol. Inform. 2017, 38, 95–109. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, J.; Song, X.; Lu, Y. Revealing the main factors affecting global forest change at distinct altitude gradients. Ecol. Indic. 2023, 148, 110131. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, J.; Ye, H.; Lai, W.; Zhang, X. Vulnerability of alpine ecosystems and its response to climate change and human activities. Acta Ecol. Sinica. 2024, 44, 154–170. [Google Scholar]
- Tang, D.; Yang, K.; Zeng, L.; Liu, X.; Xin, C.; Xu, Y. Spatio-temporal differences of enhanced aeolian sand activity in the northeastern Tibetan Plateau over the past 1500 years. Acta Geogr. Sin. 2023, 78, 2284–2298. [Google Scholar]
- Jin, B.; Zeng, Z.; Peng, P.; Wang, S.; Zhang, C.; Yang, R. Tree biomass of evergreen broad-leaf forest in mid-subtropical region of China at three succession stages. Hunan For. Sci. Technol. 2017, 44, 42–45. [Google Scholar]
- Yang, Y.; She, Z.; Song, J.; Zhu, D. Study on vegetation variation characteristics and influencing factors in different geomorphic zones in the Chanbahe River basin since 2000. Ecol. Environ. Sci. 2022, 31, 224–230. [Google Scholar]
- Wang, Y.; Gao, L.; Hu, S.; Bao, L. Countermeasures and recommendations for implementing ecological compensation in Sichuan province of the Yellow River basin. Water Resour. Dev. Res. 2022, 22, 60–62. [Google Scholar]
- Wang, Y.; Chun, W.; Ding, W.; Zhang, Y. Study on the high-quality development of Yellow River basin in Sichuan based on the social-ecological system framework. J. Chengdu Univ. Technol. (Soc. Sci.) 2022, 30, 32–39. [Google Scholar]
- Hou, G.; Xu, C.; Li, X.; Qi, B. Spatial pattern of water conservation function in Hehuang Valley. Ecol. Sci. 2021, 40, 169–176. [Google Scholar]
- Zhang, H.; Zhan, C.; Xia, J.; Hu, S.; Ning, L.; Deng, X. Spatial-temporal variations and strip patterns of vegetation in the Inner Mongolia of Yellow River basin. Acta Ecol. Sin. 2022, 42, 8818–8829. [Google Scholar]
- Zeng, X.; Liu, Z.; He, C. Quantifying surface coal-mining patterns to promote regional sustainability in Ordos, Inner Mongolia. Sustainability 2018, 10, 1135. [Google Scholar] [CrossRef]
- Ding, M.; Sun, Z.; Liu, Z.; He, C. Impacts of urban expansion on net primary productivity in the agro-pastoral ecotone in northern China: A case of Hohhot-Baotou-Ordos region. Arid Land Geogr. 2017, 40, 614–621. [Google Scholar]
- Niu, L.; Shao, Q.; Ning, J.; Yang, X.; Liu, S.; Liu, G.; Zhang, X.; Huang, H. Evaluation on the degree and potential of ecological restoration in Loess Plateau. J. Nat. Resour. 2023, 38, 779–794. [Google Scholar] [CrossRef]
- Zuo, Q.; Wu, X.; Shi, J.; Wang, Q.; Liu, Z.; Zhu, A.; Yin, D.; Feng, Q.; Ji, W.; Kang, S. Constraints and coordinated allocation strategies of water and land resources for sustainable use of coastal saline-alkali land in the Yellow River delta. Eng. Sci. 2023, 25, 169–179. [Google Scholar] [CrossRef]
- Ren, L.; Li, Y.; Yu, M.; Yang, J.; Zhan, C.; Zhou, D. Evolution of artificial wetlands in the Yellow River Delta and related driving factors during 1984–2015. J. Agric. Resour. Environ. 2020, 37, 493–502. [Google Scholar]
- Song, Y.; Zhang, Z.; Niu, B.; Li, X. Temporal and spatial variations of landscape pattern vulnerability in Yellow River Delta during 2005–2018. Bull. Soil Water Conversat. 2021, 41, 258–266. [Google Scholar]
Factor | Classification Standard | Weight | ||
---|---|---|---|---|
I | II | III | ||
Forest volume | ||||
Forest naturalness | ||||
Forest community structure | ||||
Tree species structure | ||||
Total vegetation coverage | ||||
Canopy density | ||||
Mean tree height | ||||
Litter thickness grade |
Variable | Symbol | Description | Unit |
---|---|---|---|
The level of economic development | EDS | GDP per capita | ten thousand yuan/km2 |
Development of the primary sector | AGRI | the share of primary sector in the GDP | % |
Development of the secondary sector | INDS | the share of secondary sector in the GDP | % |
Population density | PDS | the ratio of resident population to county area | thousand people/km2 |
Rate of urbanization | URB | the urbanization ratio of resident population | % |
Production space | PDUC | the ratio of the area of productive land to county area | % |
Living space | LIVE | the proportion of the area for living land to county area | % |
Forest protection | PROT | level of forest land protection | - |
Temperature | TEMP | annual average temperature | °C |
Precipitation | PREC | annual average precipitation | mm |
Elevation | ELEV | average elevation of the county | km |
Slope | SLOP | average slope of the county | ° |
Soil | SOIL | average soil condition of the county | - |
Variable | MLR | GWR | VIF | |||||
---|---|---|---|---|---|---|---|---|
Min | Max | Lwr Quartile | Medium | Upr Quartile | Mean | |||
ECO | −0.103 * | −0.737 | 0.171 | −0.117 | −0.073 | −0.026 | −0.071 | 3.047 |
AGRI | −0.174 *** | −0.354 | 0.119 | −0.166 | −0.118 | −0.073 | −0.123 | 2.903 |
INDS | 0.021 | −0.139 | 0.233 | −0.014 | 0.028 | 0.055 | 0.015 | 2.251 |
PDS | −0.035 | −0.754 | 1.491 | −0.117 | −0.079 | 0.003 | −0.063 | 2.265 |
URB | −0.012 | −0.201 | 0.314 | −0.047 | −0.001 | 0.030 | −0.003 | 4.657 |
PDUC | 0.011 * | −0.862 | 0.317 | −0.038 | −0.005 | 0.073 | 0.006 | 2.423 |
LIVE | 0.018 | −0.595 | 0.263 | 0.043 | 0.094 | 0.126 | 0.075 | 4.142 |
PROT | 0.031 | −0.087 | 0.355 | −0.038 | −0.005 | 0.123 | 0.047 | 1.117 |
TEMP | 0.504 *** | −0.801 | 0.892 | 0.224 | 0.368 | 0.571 | 0.378 | 2.029 |
PREC | 0.299 *** | −0.089 | 0.618 | 0.161 | 0.296 | 0.374 | 0.270 | 1.343 |
ELEV | 0.386 * | −1.257 | 1.777 | 0.249 | 0.403 | 0.932 | 0.587 | 1.139 |
SLOP | 0.438 ** | −0.037 | 0.313 | 0.096 | 0.194 | 0.258 | 0.175 | 2.313 |
SOIL | 0.000 | −0.425 | 0.145 | −0.048 | 0.021 | 0.083 | 0.007 | 1.328 |
AIC | −749.032 | −797.521 | - | |||||
0.467 | 0.692 | - |
Variable | Coefficient | |||||||
---|---|---|---|---|---|---|---|---|
I | II | III | IV | V | VI | VII | VIII | |
ECO | 0.047 | −0.175 | −0.631 *** | −0.021 | −0.079 | −0.068 | −0.073 | −0.059 |
AGRI | 0.051 | −0.133 | −0.327 *** | −0.170 ** | −0.179 * | −0.108 * | −0.097 | −0.021 |
INDS | 0.116 | 0.008 | 0.162 | −0.094 | −0.037 | 0.044 | 0.030 | 0.105 |
PDS | 1.138 | 0.136 | −0.212 | −0.282 | −0.082 | −0.085 | 0.075 | 0.579 |
URB | 0.067 | 0.100 | 0.246 | 0.010 | −0.083 | −0.021 | 0.056 | 0.273 ** |
PDUC | −0.198 | −0.086 | −0.730 *** | 0.050 | 0.101 | −0.033 | 0.065 | 0.166 ** |
LIVE | 0.281 | −0.186 | −0.343 | 0.026 | 0.157 | 0.098 * | 0.072 | −0.108 |
PROT | 0.122 | 0.090 | 0.024 | 0.211 * | 0.058 | 0.022 * | −0.014 | −0.016 |
TEMP | 0.043 | −0.016 | −0.652 *** | 0.246 | 0.511 ** | 0.516 *** | 0.092 | −0.159 |
PREC | 0.315 | 0.308 ** | 0.508 *** | 0.328 ** | 0.174 | 0.347 *** | 0.030 | −0.015 |
ELEV | 0.020 | −0.097 | −0.943 *** | 0.304 ** | 0.694 ** | 0.825 *** | 0.204 | 0.001 |
SLOP | 0.005 | 0.124 | 0.231 ** | 0.165 ** | 0.107 | 0.180 * | 0.236 ** | 0.193 |
SOIL | −0.041 | −0.202 | −0.397 *** | −0.125 | −0.012 | 0.055 | 0.034 | −0.007 |
Variable | MLR | GWR | |||||
---|---|---|---|---|---|---|---|
Min | Max | Lwr Quartile | Medium | Upr Quartile | Mean | ||
EDS | −0.102 ** | −0.330 | 0.517 | −0.218 | −0.138 | −0.021 | −0.109 |
AGRI | −0.135 ** | −0.484 | 0.213 | −0.147 | −0.100 | −0.075 | −0.114 |
INDS | 0.034 | −0.143 | 0.318 | −0.025 | 0.030 | 0.062 | 0.017 |
PDS | 0.046 | −2.720 | 4.899 | −0.109 | 0.071 | 0.169 | −0.072 |
URB | 0.039 | −0.481 | 0.321 | −0.045 | −0.018 | 0.019 | −0.015 |
PDUC | 0.030 | −1.004 | 0.351 | −0.052 | −0.012 | 0.069 | 0.002 |
LIVE | −0.028 | −0.736 | 0.301 | 0.000 | 0.088 | 0.145 | 0.071 |
PROT | 0.006 | −0.094 | 0.336 | −0.046 | 0.027 | 0.115 | 0.046 |
TEMP | 0.607 *** | −0.682 | 0.944 | 0.296 | 0.457 | 0.628 | 0.440 |
PREC | 0.376 *** | −0.095 | 0.624 | 0.192 | 0.398 | 0.506 | 0.345 |
ELEV | 0.612 *** | −1.604 | 1.799 | 0.343 | 0.504 | 0.951 | 0.658 |
SLOP | 0.356 *** | −0.107 | 0.315 | 0.050 | 0.158 | 0.236 | 0.136 |
SOIL | 0.032 | −0.270 | 0.153 | −0.027 | 0.048 | 0.104 | 0.027 |
AIC | −766.555 | −811.911 | |||||
0.488 | 0.698 |
Variable | Coefficient | |||||||
---|---|---|---|---|---|---|---|---|
I | II | III | IV | V | VI | VII | VIII | |
ECO | 0.029 | 0.208 | 0.382 | −0.001 | −0.030 | −0.196 * | −0.077 | 0.093 |
AGRI | 0.062 | −0.143 | −0.445 *** | −0.184 ** | −0.127 | −0.107 ** | −0.065 | 0.001 |
INDS | 0.102 | −0.091 | −0.063 | −0.087 | −0.035 | 0.056 * | 0.031 | 0.088 |
PDS | 1.686 | −1.382 | −1.727 | −0.787 | 0.120 | 0.073 | 0.122 | 0.636 |
URB | 0.105 | −0.083 | −0.386 ** | −0.008 | −0.070 | −0.015 | 0.039 | 0.233 ** |
PDUC | 0.193 | −0.099 | −0.790 *** | 0.020 | 0.129 | −0.036 | 0.055 | 0.206 ** |
LIVE | −0.420 | −0.017 | −0.024 | 0.035 | 0.131 | 0.075 | 0.092 | −0.010 |
PROT | 0.124 | 0.142 | 0.258 * | 0.130 | 0.034 | 0.030 * | 0.008 | 0.032 |
TEMP | 0.006 | 0.091 | −0.557 ** | 0.285 | 0.479 ** | 0.602 *** | 0.160 | −0.116 |
PREC | 0.363 | 0.319 ** | 0.487 *** | 0.332 ** | 0.239 * | 0.463 *** | 0.059 | −0.005 |
ELEV | −0.233 | −0.141 | −1.218 *** | 0.406 ** | 0.791 ** | 0.889 *** | 0.302 | 0.179 |
SLOP | −0.006 | 0.090 | 0.155 | 0.115 * | 0.081 | 0.138 * | 0.202 ** | 0.199 |
SOIL | −0.039 | −0.126 | −0.248 * | −0.113 | −0.006 | 0.074 * | 0.058 | 0.052 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Q.; Fu, L.; Sharma, R.P.; Dou, Y.; Zhao, X. An Analysis of Spatial Variation in Human Impact on Forest Ecological Functions. Appl. Sci. 2025, 15, 4854. https://doi.org/10.3390/app15094854
Wu Q, Fu L, Sharma RP, Dou Y, Zhao X. An Analysis of Spatial Variation in Human Impact on Forest Ecological Functions. Applied Sciences. 2025; 15(9):4854. https://doi.org/10.3390/app15094854
Chicago/Turabian StyleWu, Qingjun, Liyong Fu, Ram P. Sharma, Yaquan Dou, and Xiaodi Zhao. 2025. "An Analysis of Spatial Variation in Human Impact on Forest Ecological Functions" Applied Sciences 15, no. 9: 4854. https://doi.org/10.3390/app15094854
APA StyleWu, Q., Fu, L., Sharma, R. P., Dou, Y., & Zhao, X. (2025). An Analysis of Spatial Variation in Human Impact on Forest Ecological Functions. Applied Sciences, 15(9), 4854. https://doi.org/10.3390/app15094854