Orange Peel Feed Ingredient in Lactating Ewes: Effect on Yoghurt Chemical Composition, Fatty Acid Profile, Antioxidant Activity, Physicochemical Properties, and Sensory Quality
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Diets and Animals
2.2. Milk Collection and Yoghurt Production
2.3. Microbiological Analyses
2.4. Determination of Physicochemical Characteristics (Milk) and Proximate Composition (Milk and Yoghurt)
2.5. Determination of Fatty Acid Composition and Nutritional Indices
2.6. Determination of Total Phenolic Content and Antioxidant Profile
2.7. Determination of Yoghurt Active (pH) and Titratable Acidity
2.8. Instrumental Colour Measurement
2.9. Texture Analysis
2.10. Determination of Yoghurt Syneresis by Gravity and by Centrifugation
2.11. Sensory Analysis
2.12. Statistical Analysis
3. Results and Discussion
3.1. Milk Preparation for Yoghurt Production
3.2. Yoghurt Microbiological Evaluation
3.3. Milk and Yoghurt Proximate Composition
3.4. Yoghurt Fatty Acid Composition and Nutritional Indices
3.5. Yoghurt Total Phenolic Content and Antioxidant Profile
3.6. Yoghurt Active (pH) and Titratable Acidity
3.7. Yoghurt Colour
3.8. Yoghurt Texture and Viscosity
3.9. Yoghurt Syneresis
3.10. Yoghurt Sensory Evaluation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bampidis, V.A.; Robinson, P.H. Citrus By-Products as Ruminant Feeds: A Review. Anim. Feed Sci. Technol. 2006, 128, 175–217. [Google Scholar] [CrossRef]
- Grasser, L.A.; Fadel, J.G.; Garnett, I.; Depeters, E.J. Quantity and Economic Importance of Nine Selected By-Products Used in California Dairy Rations. J. Dairy Sci. 1995, 78, 962–971. [Google Scholar] [CrossRef]
- Andrianou, C.; Passadis, K.; Malamis, D.; Moustakas, K.; Mai, S.; Barampouti, E.M. Upcycled Animal Feed: Sustainable Solution to Orange Peels Waste. Sustainability 2023, 15, 2033. [Google Scholar] [CrossRef]
- Gómez-García, R.; Campos, D.A.; Aguilar, C.N.; Madureira, A.R.; Pintado, M. Valorisation of Food Agro-Industrial by-Products: From the Past to the Present and Perspectives. J. Environ. Manag. 2021, 299, 113571. [Google Scholar] [CrossRef]
- Senthilkumar, K.; Naveen Kumar, M.; Chitra Devi, V.; Saravanan, K.; Easwaramoorthi, S. Agro-Industrial Waste Valorization to Energy and Value Added Products for Environmental Sustainability. In Biomass Valorization to Bioenergy; Praveen Kumar, R., Bharathiraja, B., Kataki, R., Moholkar, V.S., Eds.; Springer: Singapore, 2020; pp. 1–9. ISBN 978-981-15-0410-5. [Google Scholar]
- Boudalia, S.; Smeti, S.; Dawit, M.; Senbeta, E.K.; Gueroui, Y.; Dotas, V.; Bousbia, A.; Symeon, G.K. Alternative Approaches to Feeding Small Ruminants and Their Potential Benefits. Animals 2024, 14, 904. [Google Scholar] [CrossRef] [PubMed]
- Correddu, F.; Lunesu, M.F.; Buffa, G.; Atzori, A.S.; Nudda, A.; Battacone, G.; Pulina, G. Can Agro-Industrial By-Products Rich in Polyphenols Be Advantageously Used in the Feeding and Nutrition of Dairy Small Ruminants? Animals 2020, 10, 131. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Sagar, A.; Singh Yadav, S.; Rai, S. Chapter 16-Production of Value Added Products from Fruit Juice Residues Using Enzyme Technology. In Value-Addition in Agri-Food Industry Waste Through Enzyme Technology; Kuddus, M., Ramteke, P., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 221–236. ISBN 978-0-323-89928-4. [Google Scholar]
- Mamma, D.; Christakopoulos, P. Biotransformation of Citrus By-Products into Value Added Products. Waste Biomass Valor. 2014, 5, 529–549. [Google Scholar] [CrossRef]
- Chedea, V.S.; Kefalas, P.; Socaciu, C. PATTERNS OF CAROTENOID PIGMENTS EXTRACTED FROM TWO ORANGE PEEL WASTES (VALENCIA AND NAVEL VAR.). J. Food Biochem. 2010, 34, 101–110. [Google Scholar] [CrossRef]
- Schwendel, B.H.; Wester, T.J.; Morel, P.C.H.; Tavendale, M.H.; Deadman, C.; Shadbolt, N.M.; Otter, D.E. Invited Review: Organic and Conventionally Produced Milk—An Evaluation of Factors Influencing Milk Composition. J. Dairy Sci. 2015, 98, 721–746. [Google Scholar] [CrossRef]
- Nayik, G.A.; Jagdale, Y.D.; Gaikwad, S.A.; Devkatte, A.N.; Dar, A.H.; Ansari, M.J. Nutritional Profile, Processing and Potential Products: A Comparative Review of Goat Milk. Dairy 2022, 3, 622–647. [Google Scholar] [CrossRef]
- Nudda, A.; Atzori, A.S.; Correddu, F.; Battacone, G.; Lunesu, M.F.; Cannas, A.; Pulina, G. Effects of Nutrition on Main Components of Sheep Milk. Small Rumin. Res. 2020, 184, 106015. [Google Scholar] [CrossRef]
- Vasta, V.; Nudda, A.; Cannas, A.; Lanza, M.; Priolo, A. Alternative Feed Resources and Their Effects on the Quality of Meat and Milk from Small Ruminants. Anim. Feed Sci. Technol. 2008, 147, 223–246. [Google Scholar] [CrossRef]
- Hilali, M.; Iñiguez, L.; Knaus, W.; Schreiner, M.; Wurzinger, M.; Mayer, H.K. Dietary Supplementation with Nonconventional Feeds from the Middle East: Assessing the Effects on Physicochemical and Organoleptic Properties of Awassi Sheep Milk and Yogurt. J. Dairy Sci. 2011, 94, 5737–5749. [Google Scholar] [CrossRef] [PubMed]
- Abbeddou, S.; Rischkowsky, B.; Hilali, M.E.-D.; Hess, H.D.; Kreuzer, M. Influence of Feeding Mediterranean Food Industry By-Products and Forages to Awassi Sheep on Physicochemical Properties of Milk, Yoghurt and Cheese. J. Dairy Res. 2011, 78, 426–435. [Google Scholar] [CrossRef]
- Fegeros, K.; Zervas, G.; Stamouli, S.; Apostolaki, E. Nutritive Value of Dried Citrus Pulp and Its Effect on Milk Yield and Milk Composition of Lactating Ewes. J. Dairy Sci. 1995, 78, 1116–1121. [Google Scholar] [CrossRef]
- Volanis, M.; Zoiopoulos, P.; Tzerakis, K. Effects of Feeding Ensiled Sliced Oranges to Lactating Dairy Sheep. Small Rumin. Res. 2004, 53, 15–21. [Google Scholar] [CrossRef]
- Wendorff, W.L.; Kalit, S. Processing of Sheep Milk. In Handbook of Milk of Non-Bovine Mammals; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2017; pp. 222–260. ISBN 978-1-119-11031-6. [Google Scholar]
- Fisberg, M.; Machado, R. History of Yogurt and Current Patterns of Consumption. Nutr. Rev. 2015, 73, 4–7. [Google Scholar] [CrossRef]
- National Research Council. Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids; National Academy Press: Washington, WA, USA, 2007. [Google Scholar]
- Glimmpse 3.1.3. Available online: https://glimmpse.samplesizeshop.org/ (accessed on 20 December 2022).
- Damin, M.R.; Minowa, E.; Alcântara, M.R.; Oliveira, M.N. Effect of Cold Storage on Culture Viability and Some Rheological Properties of Fermented Milk Prepared with Yogurt and Probiotic Bacteria. J. Texture Stud. 2008, 39, 40–55. [Google Scholar] [CrossRef]
- Gerokomou, V.; Rozos, G.; Demertzis, P.; Akrida-Demertzi, K. Assessment of Seasonal and Diurnal Variations of Alkaline Phosphatase Activity in Pasteurized Milk. Appl. Sci. 2022, 12, 4833. [Google Scholar] [CrossRef]
- Serafeimidou, A.; Zlatanos, S.; Kritikos, G.; Tourianis, A. Change of Fatty Acid Profile, Including Conjugated Linoleic Acid (CLA) Content, during Refrigerated Storage of Yogurt Made of Cow and Sheep Milk. J. Food Compos. Anal. 2013, 31, 24–30. [Google Scholar] [CrossRef]
- Nelios, G.; Nikolaou, A.; Papazilakis, P.; Kourkoutas, Y. Developing New High-Protein-Content Traditional-Type Greek Yoghurts Based on Jersey Cow Milk. Dairy 2023, 4, 235–248. [Google Scholar] [CrossRef]
- Gkitsaki, I.; Potsaki, P.; Dimou, I.; Laskari, Z.; Koutelidakis, A.; Giaouris, E. Development of a Functional Greek Sheep Yogurt Incorporating a Probiotic Lacticaseibacillus Rhamnosus Wild-Type Strain as Adjunct Starter Culture. Heliyon 2024, 10, e24446. [Google Scholar] [CrossRef] [PubMed]
- Greek Government. Code of Foodstuffs, Beverages and Objects of Common Use—Part A, Foodstuffs and Beverages, Article 82 (Yoghurt); Greek Government Official Publication: Athens, Greece, 2016. [Google Scholar]
- ISO 4832:2006; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Coliforms—Colony-Count Technique. ISO: Geneva, Switzerland, 2006.
- ISO 6888-1:2021; Microbiology of the Food Chain—Horizontal Method for the Enumeration of Coagulase-Positive Staphylococci (Staphylococcus Aureus and Other Species)—Part 1: Method Using Baird-Parker Agar Medium. ISO: Geneva, Switzerland, 2021.
- ISO 6611:2004(En); Milk and Milk Products—Enumeration of Colony-Forming Units of Yeasts and/or Moulds—Colony-Count Technique at 25 Degrees C. ISO: Geneva, Switzerland, 2004. Available online: https://www.iso.org/obp/ui/en/#iso:std:iso:6611:ed-2:v1:en (accessed on 15 December 2024).
- ISO 6579-1:2017; Microbiology of the Food Chain—Horizontal Method for the Detection, Enumeration and Serotyping of Salmonella—Part 1: Detection of Salmonella spp. ISO: Geneva, Switzerland, 2017.
- Kasapidou, E.; Iliadis, I.-V.; Mitlianga, P.; Papatzimos, G.; Karatzia, M.-A.; Papadopoulos, V.; Amanatidis, M.; Tortoka, V.; Tsiftsi, E.; Aggou, A.; et al. Variations in Composition, Antioxidant Profile, and Physical Traits of Goat Milk within the Semi-Intensive Production System in Mountainous Areas during the Post-Weaning to End-of-Lactation Period. Animals 2023, 13, 3505. [Google Scholar] [CrossRef]
- AOAC Association of Analytical Communities International. Official Methods of Analysis of AOAC, 17th ed.; 2nd Rev.; AOAC International: Gaithersburg, MD, USA, 2003. [Google Scholar]
- Ardö, Y.; Polychroniadou, A. Laboratory Manual for Chemical Analysis of Cheese; Office for Official Publications of the European Communities (EUR.; No. 18890): Luxemburg, 1999; ISBN 92-828-6599-1. [Google Scholar]
- O’Fallon, J.V.; Busboom, J.R.; Nelson, M.L.; Gaskins, C.T. A Direct Method for Fatty Acid Methyl Ester Synthesis: Application to Wet Meat Tissues, Oils, and Feedstuffs. J. Anim. Sci. 2007, 85, 1511–1521. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Liu, H. Nutritional Indices for Assessing Fatty Acids: A Mini-Review. Int. J. Mol. Sci. 2020, 21, 5695. [Google Scholar] [CrossRef]
- Rhee, K.S. Fatty Acids in Meats and Meat Products; Marcel Dekker, Inc.: New York, NY, USA, 1992. [Google Scholar]
- Perna, A.; Intaglietta, I.; Simonetti, A.; Gambacorta, E. Antioxidant Activity of Yogurt Made from Milk Characterized by Different Casein Haplotypes and Fortified with Chestnut and Sulla Honeys. J. Dairy Sci. 2014, 97, 6662–6670. [Google Scholar] [CrossRef]
- Diep, T.; Pook, C.; Yoo, M. Phenolic and Anthocyanin Compounds and Antioxidant Activity of Tamarillo (Solanum Betaceum Cav.). Antioxidants 2020, 9, 169. [Google Scholar] [CrossRef] [PubMed]
- Dhawi, F.; El-Beltagi, H.S.; Aly, E.; Hamed, A.M. Antioxidant, Antibacterial Activities and Mineral Content of Buffalo Yoghurt Fortified with Fenugreek and Moringa Oleifera Seed Flours. Foods 2020, 9, 1157. [Google Scholar] [CrossRef]
- Slinkard, K.; Singleton, V.L. Total Phenol Analysis: Automation and Comparison with Manual Methods. Am. J. Enol. Vitic. 1977, 28, 49–55. [Google Scholar] [CrossRef]
- Sánchez-Moreno, C.; Larrauri, J.A.; Saura-Calixto, F. A Procedure to Measure the Antiradical Efficiency of Polyphenols. J. Sci. Food Agric. 1998, 76, 270–276. [Google Scholar] [CrossRef]
- Pulido, R.; Bravo, L.; Saura-Calixto, F. Antioxidant Activity of Dietary Polyphenols As Determined by a Modified Ferric Reducing/Antioxidant Power Assay. J. Agric. Food Chem. 2000, 48, 3396–3402. [Google Scholar] [CrossRef] [PubMed]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Milovanovic, B.; Djekic, I.; Miocinovic, J.; Djordjevic, V.; Lorenzo, J.M.; Barba, F.J.; Mörlein, D.; Tomasevic, I. What Is the Color of Milk and Dairy Products and How Is It Measured? Foods 2020, 9, 1629. [Google Scholar] [CrossRef] [PubMed]
- McLellan, M.R.; Lind, L.R.; Kime, R.W. HUE ANGLE DETERMINATIONS AND STATISTICAL ANALYSIS FOR MULTIQUADRANT HUNTER L,a,b DATA. J. Food Qual. 1995, 18, 235–240. [Google Scholar] [CrossRef]
- Harwalkar, V.R.; Kalab, M. Comparison of Centrifugation and Drainage Methods. Milchwissenschaft 1983, 38, 518–522. [Google Scholar]
- Beltrán, M.C.; Morari-Pirlog, A.; Quintanilla, P.; Escriche, I.; Molina, M.P. Influence of Enrofloxacin on the Coagulation Time and the Quality Parameters of Goat’s Milk Yoghurt. Int. J. Dairy Technol. 2018, 71, 105–111. [Google Scholar] [CrossRef]
- Tamime, A.Y.; Robinson, R.K. Microbiology of Yoghurt and Related Starter Cultures. In Tamime and Robinson’s Yoghurt; Woodhead Publishing Limited: Cambridge, UK, 2007; pp. 468–534. ISBN 978-1-84569-213-1. [Google Scholar]
- Kilara, A. Basic Dairy Processing Principles. In Manufacturing Yogurt and Fermented Milks; Chandan, R.C., Ed.; Blackwell Publishing Professional: Ames, IA, USA, 2006; pp. 73–88. ISBN 978-0-8138-2304-1. [Google Scholar]
- Weerathilake, W.A.D.V.; Rasika, D.M.D.; Ruwanmali, J.K.U.; Munasinghe, M.A.D.D. The Evolution, Processing, Varieties and Health Benefits of Yogurt. Int. J. Sci. Res. Publ. 2014, 4, 1–10. [Google Scholar]
- Lucey, J.A.; Singh, H. Formation and Physical Properties of Acid Milk Gels: A Review. Food Res. Int. 1997, 30, 529–542. [Google Scholar] [CrossRef]
- Soukoulis, C.; Panagiotidis, P.; Koureli, R.; Tzia, C. Industrial Yogurt Manufacture: Monitoring of Fermentation Process and Improvement of Final Product Quality. J. Dairy Sci. 2007, 90, 2641–2654. [Google Scholar] [CrossRef]
- Garofalo, G.; Ponte, M.; Busetta, G.; Tolone, M.; Bonanno, A.; Portolano, B.; Gaglio, R.; Erten, H.; Sardina, M.T.; Settanni, L. A Thorough Investigation of the Microbiological, Physicochemical, and Sensory Properties of Ewe’s Yoghurt Fermented by a Selected Multi-Strain Starter Culture. Foods 2023, 12, 3454. [Google Scholar] [CrossRef]
- Voutsinas, L.P.; Katsiari, M.C.; Pappas, C.P.; Mallatou, H. Production of Yoghurt from Sheep’s Milk Which Had Been Concentrated by Reverse Osmosis and Stored Frozen. 2. Compositional, Microbiological, Sensory and Physical Characteristics of Yoghurt. Food Res. Int. 1996, 29, 411–416. [Google Scholar] [CrossRef]
- Tamime, A.Y.; Robinson, R.K. Quality Control in Yoghurt Manufacture. In Tamime and Robinson’s Yoghurt; Elsevier: Amsterdam, The Netherlands, 2007; pp. 685–753. ISBN 978-1-84569-213-1. [Google Scholar]
- Goodson, M.; Rowbury, R.J. Resistance of Acid-Habituated Escherichia Coli to Organic Acids and Its Medical and Applied Significance. Lett. Appl. Microbiol. 1989, 8, 211–214. [Google Scholar] [CrossRef]
- Hellenic Agricultural Organization Hellenic Agricultural Organisation-Dimitra (ELGO-DIMITRA)-Quality Control of Raw Milk. Available online: https://www.elgo.gr/index.php?option=com_content&view=article&id=885&Itemid=1264&lang=el#%CF%83%CF%84%CE%B1%CF%84%CE%B9%CF%83%CF%84%CE%B9%CE%BA%CE%AC (accessed on 23 December 2024).
- Pappa, E.C.; Kondyli, E.; Sotirakoglou, K.; Bosnea, L.; Mataragas, M.; Allouche, L.; Tsiplakou, E.; Pappas, A.C. Farmers Profile and Characterization of Sheep and Goat Dairy Chain in Northwestern Greece. Sustainability 2021, 13, 833. [Google Scholar] [CrossRef]
- Kasapidou, E.; Basdagianni, Z.; Papadopoulos, V.; Karaiskou, C.; Kesidis, A.; Tsiotsias, A. Effects of Intensive and Semi-Intensive Production on Sheep Milk Chemical Composition, Physicochemical Characteristics, Fatty Acid Profile, and Nutritional Indices. Animals 2021, 11, 2578. [Google Scholar] [CrossRef]
- Raynal-Ljutovac, K.; Gaborit, P.; Lauret, A. The Relationship between Quality Criteria of Goat Milk, Its Technological Properties and the Quality of the Final Products. Small Rumin. Res. 2005, 60, 167–177. [Google Scholar] [CrossRef]
- Park, Y.W.; Juárez, M.; Ramos, M.; Haenlein, G.F.W. Physico-Chemical Characteristics of Goat and Sheep Milk. Small Rumin. Res. 2007, 68, 88–113. [Google Scholar] [CrossRef]
- Gelasakis, A.I.; Giannakou, R.; Valergakis, G.E.; Fortomaris, P.; Kominakis, A.; Arsenos, G. Prediction of Sheep Milk Chemical Composition Using Milk Yield, pH, Electrical Conductivity and Refractive Index. J. Dairy Res. 2018, 85, 78–82. [Google Scholar] [CrossRef]
- Fox, P.F.; Uniacke-Lowe, T.; McSweeney, P.L.H.; O’Mahony, J.A. Physical Properties of Milk. In Dairy Chemistry and Biochemistry; Springer International Publishing: Cham, Switzerland, 2015; pp. 321–343. ISBN 978-3-319-14891-5. [Google Scholar]
- Moore, D.A.; Taylor, J.; Hartman, M.L.; Sischo, W.M. Quality Assessments of Waste Milk at a Calf Ranch. J. Dairy Sci. 2009, 92, 3503–3509. [Google Scholar] [CrossRef]
- Caria, M.; Chessa, G.; Murgia, L.; Todde, G.; Pazzona, A. Development and Test of a Portable Device to Monitor the Health Status of Sarda Breed Sheep by the Measurement of the Milk Electrical Conductivity. Ital. J. Anim. Sci. 2016, 15, 275–282. [Google Scholar] [CrossRef]
- Serafeimidou, A.; Zlatanos, S.; Laskaridis, K.; Sagredos, A. Chemical Characteristics, Fatty Acid Composition and Conjugated Linoleic Acid (CLA) Content of Traditional Greek Yogurts. Food Chem. 2012, 134, 1839–1846. [Google Scholar] [CrossRef]
- Pappa, E.C.; Kondyli, E.; Pappas, A.C.; Kyriakaki, P.; Zoidis, E.; Papalamprou, L.; Karageorgou, A.; Simitzis, P.; Goliomytis, M.; Tsiplakou, E.; et al. Physicochemical Characteristics of Commercially Available Greek Yoghurts. Dairy 2024, 5, 436–450. [Google Scholar] [CrossRef]
- CXS 243-2003; Codex Alimentarius. International Foods Standards. Standard for Fermented Milks. Food and Agriculture Organization: Rome, Italy, 2022.
- Kupczyński, R.; Pacyga, K.; Lewandowska, K.; Bednarski, M.; Szumny, A. Milk Odd- and Branched-Chain Fatty Acids as Biomarkers of Rumen Fermentation. Animals 2024, 14, 1706. [Google Scholar] [CrossRef] [PubMed]
- Dayani, O.; Ghorbani, G.; Entz, T.; Ross, C.M.; Shah, M.A.; Beauchemin, K.A.; Mir, P.S.; Mir, Z. Effect of Dietary Soybean or Sunflower Seeds on Milk Production, Milk Fatty Acid Profile and Yield of Conjugated Linoleic Acid. Can. J. Anim. Sci. 2004, 84, 113–124. [Google Scholar] [CrossRef]
- Nudda, A.; McGuire, M.A.; Battacone, G.; Pulina, G. Seasonal Variation in Conjugated Linoleic Acid and Vaccenic Acid in Milk Fat of Sheep and Its Transfer to Cheese and Ricotta. J. Dairy Sci. 2005, 88, 1311–1319. [Google Scholar] [CrossRef]
- Paszczyk, B.; Tońska, E.; Łuczyńska, J. Health-promoting value of cow, sheep and goat milk and yogurts. Mljekarstvo Časopis za Unaprjeđenje Proizv. i Prerade Mlijeka 2019, 69, 182–192. [Google Scholar] [CrossRef]
- Daszkiewicz, T.; Kocenka, S.; Miciński, J. Changes in the Quality of Plain Yogurt Made From Cow’s, Goat’s, and Sheep’s Milk Within the Shelf Life. Acta Univ. Cibiniensis. Ser. E Food Technol. 2024, 27, 304–317. [Google Scholar] [CrossRef]
- Cardiovascular Review Group-Great Britain Department of Health. Nutritional Aspects of Cardiovascular Disease; HMSO: London, UK, 1994. [Google Scholar]
- Mensink, R.P.; Zock, P.L.; Kester, A.D.; Katan, M.B. Effects of Dietary Fatty Acids and Carbohydrates on the Ratio of Serum Total to HDL Cholesterol and on Serum Lipids and Apolipoproteins: A Meta-Analysis of 60 Controlled Trials. Am. J. Clin. Nutr. 2003, 77, 1146–1155. [Google Scholar] [CrossRef]
- Barrales, F.M.; Silveira, P.; Barbosa, P.d.P.M.; Ruviaro, A.R.; Paulino, B.N.; Pastore, G.M.; Macedo, G.A.; Martinez, J. Recovery of Phenolic Compounds from Citrus By-Products Using Pressurized Liquids—An Application to Orange Peel. Food Bioprod. Process. 2018, 112, 9–21. [Google Scholar] [CrossRef]
- Munteanu, I.G.; Apetrei, C. Analytical Methods Used in Determining Antioxidant Activity: A Review. Int. J. Mol. Sci. 2021, 22, 3380. [Google Scholar] [CrossRef]
- Chen, J.; Lindmark-Månsson, H.; Gorton, L.; Åkesson, B. Antioxidant Capacity of Bovine Milk as Assayed by Spectrophotometric and Amperometric Methods. Int. Dairy J. 2003, 13, 927–935. [Google Scholar] [CrossRef]
- Stobiecka, M.; Król, J.; Brodziak, A. Antioxidant Activity of Milk and Dairy Products. Animals 2022, 12, 245. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.T.; Nadeem, M.; Imran, M.; Ullah, R.; Ajmal, M.; Jaspal, M.H. Antioxidant Properties of Milk and Dairy Products: A Comprehensive Review of the Current Knowledge. Lipids Health Dis. 2019, 18, 41. [Google Scholar] [CrossRef]
- Fardet, A.; Rock, E. In Vitro and in Vivo Antioxidant Potential of Milks, Yoghurts, Fermented Milks and Cheeses: A Narrative Review of Evidence. Nutr. Res. Rev. 2018, 31, 52–70. [Google Scholar] [CrossRef]
- Terzioğlu, M.E.; Bakirci, İ. Comparison of Buffalo’s, Sheep’s and Goat’s Yoghurts in Terms of Their Antioxidant Activity, Angiotensin-Converting Enzyme (ACE) Inhibitory Activity, Volatile Compound Content and 5-Hydroxymethylfurfural (HMF) Content. Med. Weter. 2022, 77, 148–152. [Google Scholar] [CrossRef]
- Weltgesundheitsorganisation; FAO (Eds.) Milk and Milk Products. In Codex Alimentarius, 2nd ed.; Food and Agriculture Organization of the United Nations: Rome, Italy, 2011; ISBN 978-92-5-105837-4. [Google Scholar]
- Sert, D.; Mercan, E.; Tanrıkulu, M. Impact of High-Pressure Homogenisation of Milk on Physicochemical, Microbiological, and Textural Characteristics of Sheep Milk Yoghurt. Int. Dairy J. 2023, 144, 105704. [Google Scholar] [CrossRef]
- Terpou, A.; Bekatorou, A.; Kanellaki, M.; Koutinas, A.A.; Nigam, P. Enhanced Probiotic Viability and Aromatic Profile of Yogurts Produced Using Wheat Bran (Triticum aestivum) as Cell Immobilization Carrier. Process Biochem. 2017, 55, 1–10. [Google Scholar] [CrossRef]
- De Souza Oliveira, R.P.; Rodrigues Florence, A.C.; Perego, P.; De Oliveira, M.N.; Converti, A. Use of Lactulose as Prebiotic and Its Influence on the Growth, Acidification Profile and Viable Counts of Different Probiotics in Fermented Skim Milk. Int. J. Food Microbiol. 2011, 145, 22–27. [Google Scholar] [CrossRef] [PubMed]
- Quintanilla, P.; Beltrán, M.C.; Molina, A.; Escriche, I.; Molina, M.P. Characteristics of Ripened Tronchón Cheese from Raw Goat Milk Containing Legally Admissible Amounts of Antibiotics. J. Dairy Sci. 2019, 102, 2941–2953. [Google Scholar] [CrossRef]
- Da Silva, V.B.; Da Costa, M.P. 11-Influence of Processing on Rheological and Textural Characteristics of Goat and Sheep Milk Beverages and Methods of Analysis. In Processing and Sustainability of Beverages; Grumezescu, A.M., Holban, A.M., Eds.; Woodhead Publishing: Cambridge, UK, 2019; pp. 373–412. ISBN 978-0-12-815259-1. [Google Scholar]
- Domagała, J. Instrumental Texture, Syneresis and Microstructure of Yoghurts Prepared from Goat, Cow and Sheep Milk. Int. J. Food Prop. 2009, 12, 605–615. [Google Scholar] [CrossRef]
- Moschopoulou, E.; Sakkas, L.; Zoidou, E.; Theodorou, G.; Sgouridou, E.; Kalathaki, C.; Liarakou, A.; Chatzigeorgiou, A.; Politis, I.; Moatsou, G. Effect of Milk Kind and Storage on the Biochemical, Textural and Biofunctional Characteristics of Set-Type Yoghurt. Int. Dairy J. 2018, 77, 47–55. [Google Scholar] [CrossRef]
- Mani-López, E.; Palou, E.; López-Malo, A. Probiotic Viability and Storage Stability of Yogurts and Fermented Milks Prepared with Several Mixtures of Lactic Acid Bacteria. J. Dairy Sci. 2014, 97, 2578–2590. [Google Scholar] [CrossRef] [PubMed]
- Yadav, K.; Bajaj, R.K.; Mandal, S.; Saha, P.; Mann, B. Evaluation of Total Phenol Content and Antioxidant Properties of Encapsulated Grape Seed Extract in Yoghurt. Int. J. Dairy Technol. 2018, 71, 96–104. [Google Scholar] [CrossRef]
- Oroian, M.; Codină, G.G.; Dabija, A. Quality Characteristics of Yogurt with Different Levels of Cranberries Powder Addition of Different Particle Sizes. J. Culin. Sci. Technol. 2023, 21, 1005–1017. [Google Scholar] [CrossRef]
- Aktar, T. Physicochemical and Sensory Characterisation of Different Yoghurt Production Methods. Int. Dairy J. 2022, 125, 105245. [Google Scholar] [CrossRef]
- Mudgil, P.; Jumah, B.; Ahmad, M.; Hamed, F.; Maqsood, S. Rheological, Micro-Structural and Sensorial Properties of Camel Milk Yogurt as Influenced by Gelatin. LWT 2018, 98, 646–653. [Google Scholar] [CrossRef]
Ingredient (g/kg) | Diet | ||
---|---|---|---|
Control | UOP | POP | |
Corn grain | 300 | 300 | 300 |
Barley grain | 200 | 200 | 200 |
Wheat grain | 200 | 120 | 120 |
Soyabean meal | 110 | 110 | 110 |
Sunflower meal | 150 | 120 | 120 |
Orange peels | 0 | 110 | 110 |
Limescale | 5 | 5 | 5 |
Monocalcium phosphate | 5 | 5 | 5 |
Salt | 5 | 5 | 5 |
Vitamin and mineral premix | 25 | 25 | 25 |
Characteristic | Hedonic Scale Descriptor | ||
---|---|---|---|
1 | 4 | 7 | |
Overall appearance | |||
(colour, surface smoothness i.e., presence of lumps, whey separation and presence of air pockets) | Unacceptable | Acceptable | Exceptional |
Colour | Unacceptable | Acceptable | Exceptional |
Odour intensity | Extremely weak | Average | Extremely intense |
Odour | Unacceptable | Acceptable | Exceptional |
Taste intensity | Extremely weak | Average | Extremely intense |
Taste | Unacceptable | Acceptable | Exceptional |
Acidity | Extremely weak | Average | Extremely intense |
Texture (spoon) | Unacceptable | Acceptable | Exceptional |
Texture (mouth) | Unacceptable | Acceptable | Exceptional |
Syneresis (at spoon cutting) | Minimum | Average | Intense |
Aftertaste | Minimum | Average | Intense |
Overall acceptability | Unacceptable | Acceptable | Exceptional |
Microorganism | Treatment | ||
---|---|---|---|
Control (n = 12) | UOP (n = 12) | POP (n = 12) | |
Coliform spp. (log10 CFU/g) | <DL | <DL | <DL |
Staphylococcus aureus (log10 CFU/g) | <DL | <DL | <DL |
Escherichia coli (log10 CFU/g) | <DL | <DL | <DL |
Moulds and yeasts (log10 CFU/g) | <DL | <DL | <DL |
Salmonella spp. (Presence/Absence) | Absence | Absence | Absence |
Component | Treatment | SEM | Significance | ||
---|---|---|---|---|---|
Control (n = 4) | UOP (n = 4) | POP (n = 4) | |||
Protein (%) | 5.27 | 5.58 | 5.31 | 0.083 | NS |
Fat (%) | 5.91 | 6.77 | 6.25 | 0.169 | NS |
Lactose (%) | 4.66 | 4.72 | 4.78 | 0.024 | NS |
Total solids (%) | 16.68 a | 17.90 b | 17.17 ab | 0.186 | ** |
FPD (-°C) | 0.542 b | 0.561 a | 0.557 a | 0.027 | ** |
pH | 6.73 | 6.78 | 6.71 | 0.014 | NS |
Titratable acidity (g lactic acid/100 g milk) | 0.148 | 0.146 | 0.153 | 0.004 | NS |
Electrical Conductivity (mS/cm) | 3.92 | 4.03 | 3.99 | 0.022 | NS |
Refractive index (nD20) | 1.3531 | 1.3539 | 1.3537 | 0.000 | NS |
Brix (°Bx) | 13.38 | 13.88 | 13.93 | 0.104 | NS |
Component (%) | Treatment | SEM | Significance | ||
---|---|---|---|---|---|
Control (n = 4) | UOP (n = 4) | POP (n = 4) | |||
Moisture | 83.39 b | 82.32 a | 82.76 a | 0.176 | ** |
Ash | 0.81 a | 0.89 b | 0.88 ab | 0.020 | * |
Protein | 5.42 ab | 5.93 b | 5.53 a | 0.107 | * |
Fat | 6.06 ab | 6.79 b | 6.24 a | 0.163 | * |
Carbohydrate | 4.32 | 4.06 | 4.60 | 0.153 | NS |
Total solids | 16.61 a | 17.68 b | 17.24 a | 0.176 | ** |
Solids-not-Fat (SnF) | 10.55 | 10.89 | 11.00 | 0.160 | NS |
Variable | Treatment | SEM | Significance | ||
---|---|---|---|---|---|
Control (n = 4) | UOP (n = 4) | POP (n = 4) | |||
Fatty acid | |||||
C4:0 | 0.93 | 0.93 | 0.96 | 0.014 | NS |
C6:0 | 1.60 | 1.61 | 1.69 | 0.025 | NS |
C8:0 | 2.27 | 2.27 | 2.36 | 0.036 | NS |
C10:0 | 9.25 | 9.14 | 9.19 | 0.089 | NS |
C12:0 | 6.43 b | 6.16 ab | 5.93 a | 0.075 | * |
C13:0 | 1.23 a | 1.12 ab | 1.28 b | 0.026 | * |
C14:0 | 14.11 | 14.55 | 13.68 | 0.216 | NS |
C14:1 | 0.62 | 0.61 | 0.57 | 0.018 | NS |
C15:0 | 1.27 b | 1.02 ab | 1.04 a | 0.027 | *** |
C15:1 | 0.31 | 0.29 | 0.32 | 0.007 | NS |
C16:0 | 29.98 | 30.83 | 30.27 | 0.388 | NS |
C16:1 | 0.27 | 0.24 | 0.25 | 0.007 | NS |
C17:0 | 0.63 | 0.58 | 0.59 | 0.012 | NS |
C17:1 | 0.29 | 0.27 | 0.26 | 0.006 | NS |
C18:0 | 5.93 | 6.10 | 6.43 | 0.171 | NS |
C18:1 trans | 0.42 | 0.45 | 0.42 | 0.022 | NS |
C18:1 trans-11 (VA) | 0.84 b | 0.64 ab | 0.62 a | 0.034 | ** |
C18:1 cis-9 | 17.39 | 17.46 | 18.19 | 0.343 | NS |
C18:2 n-6 trans | 0.29 | 0.27 | 0.24 | 0.010 | NS |
C18:2 n-6 cis | 4.06 | 3.80 | 3.99 | 0.056 | NS |
C18:3 n-3 | 0.99 | 0.95 | 0.99 | 0.047 | NS |
C18:2 cis-9 trans-11 (CLA) | 0.88 b | 0.71 ab | 0.72a | 0.023 | ** |
Lipid class | |||||
SFA 1 | 72.99 | 73.74 | 72.84 | 0.397 | NS |
MUFA 2 | 20.15 | 19.96 | 20.63 | 0.331 | NS |
PUFA 3 | 6.23 | 5.73 | 5.95 | 0.086 | NS |
n-3 | 0.99 | 0.95 | 0.99 | 0.047 | NS |
n-6 | 4.36 | 4.07 | 4.23 | 0.057 | NS |
Index | Treatment | SEM | Significance | ||
---|---|---|---|---|---|
Control (n = 4) | UOP (n = 4) | POP (n = 4) | |||
AI 1 | 3.56 | 3.74 | 3.44 | 0.094 | NS |
TI 2 | 3.28 | 3.45 | 3.25 | 0.089 | NS |
h/H 3 | 0.47 | 0.45 | 0.49 | 0.014 | NS |
HPI 4 | 0.29 | 0.27 | 0.29 | 0.008 | NS |
PUFA/SFA 5 | 0.09 | 0.08 | 0.08 | 0.002 | NS |
DFA 6 | 32.30 | 31.79 | 33.00 | 0.517 | NS |
Index | Treatment | SEM | Significance | ||
---|---|---|---|---|---|
Control (n = 4) | UOP (n = 4) | POP (n = 4) | |||
TPC 1 (mg GAE/g) | 0.038 b | 0.035 b | 0.026 a | 0.012 | *** |
ABTS 2 (μM TE/g) | 102.433 | 96.433 | 97.767 | 1.599 | NS |
DPPH 3 (μM TE/g) | 23.492 | 20.506 | 22.436 | 0.661 | NS |
FRAP 4 (μM TE/g) | 66.260 | 84.027 | 71.460 | 6.283 | NS |
Storage Day/Variable | Treatment | SEM | Significance | ||
---|---|---|---|---|---|
Control (n = 4) | UOP (n = 4) | POP (n = 4) | |||
Active acidity (pH) | |||||
7 | 4.06 b | 4.08 | 4.08 | 0.034 | NS |
14 | 3.92 a | 3.96 | 3.99 | 0.026 | NS |
21 | 3.88 a | 3.90 | 3.97 | 0.027 | NS |
Titratable acidity (g lactic acid/100 g yoghurt) | |||||
0 | 1.38 | 1.38 | 1.32 | 0.044 | NS |
Storage Day/Variable | Treatment | SEM | Significance | ||
---|---|---|---|---|---|
Control (n = 4) | UOP (n = 4) | POP (n = 4) | |||
Lightness (L*) | |||||
7 | 87.37 | 85.79 | 86.30 | 0.470 | NS |
14 | 88.48 | 87.30 | 87.41 | 0.261 | NS |
21 | 88.08 | 87.84 | 87.04 | 0.310 | NS |
Redness (a*) | |||||
7 | −1.02 b | −1.70 a | −0.80 ab | 0.137 | * |
14 | −0.92 ab | −1.59 a | −0.81 b | 0.125 | * |
21 | −0.82 ab | −1.65 a | −0.82 b | 0.127 | ** |
Yellowness (b*) | |||||
7 | −10.21 a | −8.23 b | −10.12 a | 0.278 | ** |
14 | −10.81 a | −8.86 b | −10.49 ab | 0.285 | ** |
21 | −10.73 a | −8.69 b | −10.19 ab | 0.276 | ** |
Chroma (Saturation index) | |||||
7 | 10.31 b | 8.60 a | 10.17 b | 0.236 | ** |
14 | 10.87 b | 9.18 a | 10.53 ab | 0.245 | ** |
21 | 10.77 b | 9.00 a | 10.24 ab | 0.238 | ** |
Hue angle | |||||
7 | 252.48 | 243.73 | 242.88 | 6.973 | NS |
14 | 242.20 | 256.46 | 254.20 | 6.174 | NS |
21 | 265.53 | 256.42 | 252.39 | 4.286 | NS |
Whiteness index | |||||
7 | 83.52 | 83.19 | 82.84 | 0.379 | NS |
14 | 84.10 | 84.10 | 83.51 | 0.176 | NS |
21 | 83.87 | 84.69 | 83.40 | 0.243 | NS |
Storage day/Variable | Treatment | SEM | Significance | ||
---|---|---|---|---|---|
Control (n = 4) | UOP (n = 4) | POP (n = 4) | |||
Firmness (g) | |||||
7 | 310.50 a | 428.75 b | 304.00 a | 22.509 | * |
14 | 310.25 a | 517.25 b | 330.00 a | 30.231 | *** |
21 | 370.5 | 452.25 | 357.75 | 21.069 | NS |
Adhesiveness (g f mm) | |||||
7 | −1825.75 | −2578.75 | −2119.25 | 147.132 | NS |
14 | −1935.25 a | −3224.00 b | −2374 | 219.259 | * |
21 | −2247 | −2931 | −2419.25 | 192.386 | NS |
Stickiness (g) | |||||
7 | −86 | −121.25 | −96.75 | 10.102 | NS |
14 | −92.00 a | −158.75b | −111.75 ab | 10.767 | * |
21 | −113.5 | −137.75 | −113 | 116.355 | NS |
Storage Day/Variable | Treatment | SEM | Significance | ||
---|---|---|---|---|---|
Control (n = 4) | UOP (n = 4) | POP (n = 4) | |||
7 | 14,497.25 | 17,801 | 15,304.00 | 934.053 | NS |
14 | 14,094.5 | 18,960 | 15,472.25 | 1211.679 | NS |
21 | 12,444.50 a | 21,203.75 b | 15,538.25 ab | 1424.895 | * |
Storage Day/Variable | Treatment | SEM | Significance | ||
---|---|---|---|---|---|
Control (n = 4) | UOP (n = 4) | POP (n = 4) | |||
Gravity | |||||
7 | 3.21 | 0.17 | 0.83 | 0.897 | NS |
14 | 0.42 | 0.25 | 0.01 | 0.117 | NS |
21 | 2.48 | 0.02 | 0.35 | 0.824 | NS |
Centrifugation | |||||
7 | 14.17 | 11.21 | 13.83 | 1.533 | NS |
14 | 13.72 | 12.26 | 13.49 | 1.510 | NS |
21 | 13.2 | 9.63 | 10.82 | 1.704 | NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kasapidou, E.; Mitlianga, P.; Basdagianni, Z.; Papatzimos, G.; Mai, S.; Barampouti, E.M.; Papadopoulos, V.; Karatzia, M.-A. Orange Peel Feed Ingredient in Lactating Ewes: Effect on Yoghurt Chemical Composition, Fatty Acid Profile, Antioxidant Activity, Physicochemical Properties, and Sensory Quality. Appl. Sci. 2025, 15, 3641. https://doi.org/10.3390/app15073641
Kasapidou E, Mitlianga P, Basdagianni Z, Papatzimos G, Mai S, Barampouti EM, Papadopoulos V, Karatzia M-A. Orange Peel Feed Ingredient in Lactating Ewes: Effect on Yoghurt Chemical Composition, Fatty Acid Profile, Antioxidant Activity, Physicochemical Properties, and Sensory Quality. Applied Sciences. 2025; 15(7):3641. https://doi.org/10.3390/app15073641
Chicago/Turabian StyleKasapidou, Eleni, Paraskevi Mitlianga, Zoitsa Basdagianni, Georgios Papatzimos, Sofia Mai, Elli Maria Barampouti, Vasileios Papadopoulos, and Maria-Anastasia Karatzia. 2025. "Orange Peel Feed Ingredient in Lactating Ewes: Effect on Yoghurt Chemical Composition, Fatty Acid Profile, Antioxidant Activity, Physicochemical Properties, and Sensory Quality" Applied Sciences 15, no. 7: 3641. https://doi.org/10.3390/app15073641
APA StyleKasapidou, E., Mitlianga, P., Basdagianni, Z., Papatzimos, G., Mai, S., Barampouti, E. M., Papadopoulos, V., & Karatzia, M.-A. (2025). Orange Peel Feed Ingredient in Lactating Ewes: Effect on Yoghurt Chemical Composition, Fatty Acid Profile, Antioxidant Activity, Physicochemical Properties, and Sensory Quality. Applied Sciences, 15(7), 3641. https://doi.org/10.3390/app15073641