Maxillary Deficiency: Treatments and Applications for Adolescents
Abstract
:1. Introduction
2. Orthopedic Approaches
2.1. Children in Primary and Early Mixed Dentition
2.1.1. Lingual Arch and Leaf Expander
2.1.2. Removable Expansion Plate
2.2. Preadolescents in Late Mixed Dentition and Early Adolescents
2.2.1. Tooth-Borne Expander
2.2.2. Tooth-Tissue-Borne Expander
2.3. Middle and Late Adolescents
2.3.1. Bone-Borne Maxillary Expander
2.3.2. Tooth-Bone-Borne Maxillary Expander
3. Orthognathic Surgery Approaches
3.1. Skeletally Mature Adolescents
3.1.1. Conventional Surgically Assisted Rapid Maxillary Expansion (SARME)
3.1.2. Modified SARME
- Cortical osteotomy:
- Pterygomaxillary disjunction:
- Palatal preservation:
- Segmental Le Fort I osteotomy:
3.2. Adolescents with Congenital Conditions or Treatment Challenges
3.2.1. Palatal Segmental Osteotomy
3.2.2. Distraction Osteogenesis
- Extraoral vs. internal maxillary distractors:
- Trans-suture distraction osteogenesis:
- Osteotomy-assisted distraction:
4. Comprehensive Clinical Consideration
5. Conclusions
6. Outlook
Author Contributions
Funding
Conflicts of Interest
References
- Vidalon, J.A.; Lou-Gomez, I.; Quine, A.; Diaz, K.T.; Linan Duran, C.; Lagravere, M.O. Periodontal effects of maxillary expansion in adults using non-surgical expanders with skeletal anchorage vs. surgically assisted maxillary expansion: A systematic review. Head. Face Med. 2021, 17, 47. [Google Scholar] [CrossRef] [PubMed]
- Zou, J.; Meng, M.; Law, C.S.; Rao, Y.; Zhou, X. Common dental diseases in children and malocclusion. Int. J. Oral Sci. 2018, 10, 7. [Google Scholar] [CrossRef] [PubMed]
- Angelieri, F.; Cevidanes, L.H.; Franchi, L.; Gonçalves, J.R.; Benavides, E.; McNamara, J.A., Jr. Midpalatal suture maturation: Classification method for individual assessment before rapid maxillary expansion. Am. J. Orthod. Dentofac. Orthop. 2013, 144, 759–769. [Google Scholar] [CrossRef] [PubMed]
- Grünheid, T.; Larson, C.E.; Larson, B.E. Midpalatal suture density ratio: A novel predictor of skeletal response to rapid maxillary expansion. Am. J. Orthod. Dentofac. Orthop. 2017, 151, 267–276. [Google Scholar] [CrossRef]
- Isfeld, D.; Flores-Mir, C.; Leon-Salazar, V.; Lagravère, M. Evaluation of a novel palatal suture maturation classification as assessed by cone-beam computed tomography imaging of a pre- and postexpansion treatment cohort. Angle Orthod. 2019, 89, 252–261. [Google Scholar] [CrossRef]
- Kinzinger, G.S.M.; Hourfar, J.; Buschhoff, C.; Heller, F.; Korbmacher-Steiner, H.M.; Lisson, J.A. Age-dependent interactions of maxillary sutures during RME and their effects on palatal morphology: CBCT and dental cast analysis. J. Orofac. Orthop. 2022, 83, 412–431. [Google Scholar] [CrossRef]
- Georgi, G.M.; Knauth, S.; Hirsch, E.; Schulz-Kornas, E.; Kahl-Nieke, B.; Püschel, K.; Amling, M.; Koehne, T.; Korbmacher-Steiner, H.; Petersen, J. Age-related changes in the midpalatal suture: Comparison between CBCT staging and bone micromorphology. Bone 2024, 179, 116984. [Google Scholar] [CrossRef]
- Abate, A.; Ugolini, A.; Maspero, C.; Silvestrini-Biavati, F.; Caprioglio, A.; Lanteri, V. Comparison of the skeletal, dentoalveolar, and periodontal changes after Ni-Ti leaf spring expander and rapid maxillary expansion: A three-dimensional CBCT based evaluation. Clin. Oral Investig. 2023, 27, 5249–5262. [Google Scholar] [CrossRef]
- de Oliveira, C.B.; Ayub, P.; Ledra, I.M.; Murata, W.H.; Suzuki, S.S.; Ravelli, D.B.; Santos-Pinto, A. Microimplant assisted rapid palatal expansion vs surgically assisted rapid palatal expansion for maxillary transverse discrepancy treatment. Am. J. Orthod. Dentofac. Orthop. 2021, 159, 733–742. [Google Scholar] [CrossRef]
- de Almeida, A.M.; Ozawa, T.O.; Alves, A.C.M.; Janson, G.; Lauris, J.R.P.; Ioshida, M.S.Y.; Garib, D.G. Slow versus rapid maxillary expansion in bilateral cleft lip and palate: A CBCT randomized clinical trial. Clin. Oral Investig. 2017, 21, 1789–1799. [Google Scholar] [CrossRef]
- Nienkemper, M.; Wilmes, B.; Franchi, L.; Drescher, D. Effectiveness of maxillary protraction using a hybrid hyrax-facemask combination: A controlled clinical study. Angle Orthod. 2015, 85, 764–770. [Google Scholar] [CrossRef] [PubMed]
- Liou, E.J. Effective maxillary orthopedic protraction for growing Class III patients: A clinical application simulates distraction osteogenesis. Prog. Orthod. 2005, 6, 154–171. [Google Scholar] [PubMed]
- Al-Mozany, S.A.; Dalci, O.; Almuzian, M.; Gonzalez, C.; Tarraf, N.E.; Ali Darendeliler, M. A novel method for treatment of Class III malocclusion in growing patients. Prog. Orthod. 2017, 18, 40. [Google Scholar] [CrossRef] [PubMed]
- Cozza, P.; Giancotti, A.; Petrosino, A. Rapid palatal expansion in mixed dentition using a modified expander: A cephalometric investigation. J. Orthod. 2001, 28, 129–134. [Google Scholar] [CrossRef]
- Ciavarella, D.; Lorusso, M.; Fanelli, C.; Ferrara, D.; Esposito, R.; Laurenziello, M.; Esperouz, F.; Lo Russo, L.; Tepedino, M. The Efficacy of the RME II System Compared with a Herbst Appliance in the Treatment of Class II Skeletal Malocclusion in Growing Patients: A Retrospective Study. Dent J. 2024, 12, 254. [Google Scholar] [CrossRef]
- Garib, D.; Miranda, F.; Palomo, J.M.; Pugliese, F.; da Cunha Bastos, J.C.; Dos Santos, A.M.; Janson, G. Orthopedic outcomes of hybrid and conventional Hyrax expanders. Angle Orthod. 2021, 91, 178–186. [Google Scholar] [CrossRef]
- Yoon, A.; Abdelwahab, M.; Bockow, R.; Vakili, A.; Lovell, K.; Chang, I.; Ganguly, R.; Liu, S.Y.; Kushida, C.; Hong, C. Impact of rapid palatal expansion on the size of adenoids and tonsils in children. Sleep. Med. 2022, 92, 96–102. [Google Scholar] [CrossRef]
- Chenin, D.A.; Trosien, A.H.; Fong, P.F.; Miller, R.A.; Lee, R.S. Orthodontic treatment with a series of removable appliances. J. Am. Dent. Assoc. 2003, 134, 1232–1239. [Google Scholar] [CrossRef]
- Maulik, C.; Nanda, R. Dynamic smile analysis in young adults. Am. J. Orthod. Dentofac. Orthop. 2007, 132, 307–315. [Google Scholar] [CrossRef]
- Brunetto, M.; Andriani Jda, S.; Ribeiro, G.L.; Locks, A.; Correa, M.; Correa, L.R. Three-dimensional assessment of buccal alveolar bone after rapid and slow maxillary expansion: A clinical trial study. Am. J. Orthod. Dentofac. Orthop. 2013, 143, 633–644. [Google Scholar] [CrossRef]
- Martina, R.; Cioffi, I.; Farella, M.; Leone, P.; Manzo, P.; Matarese, G.; Portelli, M.; Nucera, R.; Cordasco, G. Transverse changes determined by rapid and slow maxillary expansion—A low-dose CT-based randomized controlled trial. Orthod. Craniofac. Res. 2012, 15, 159–168. [Google Scholar] [CrossRef] [PubMed]
- de Medeiros Alves, A.C.; Garib, D.G.; Janson, G.; de Almeida, A.M.; Calil, L.R. Analysis of the dentoalveolar effects of slow and rapid maxillary expansion in complete bilateral cleft lip and palate patients: A randomized clinical trial. Clin. Oral Investig. 2016, 20, 1837–1847. [Google Scholar] [CrossRef] [PubMed]
- Bell, R.A.; LeCompte, E.J. The effects of maxillary expansion using a quad-helix appliance during the deciduous and mixed dentitions. Am. J. Orthod. 1981, 79, 152–161. [Google Scholar] [CrossRef]
- Ugolini, A.; Agostino, P.; Silvestrini-Biavati, A.; Harrison, J.E.; Batista, K.B. Orthodontic treatment for posterior crossbites. Cochrane Database Syst. Rev. 2021, 12, CD000979. [Google Scholar] [CrossRef]
- Paoloni, V.; Giuntini, V.; Lione, R.; Nieri, M.; Barone, V.; Merlo, M.M.; Mazza, F.; Passaleva, S.; Cozza, P.; Franchi, L. Comparison of the dento-skeletal effects produced by Leaf expander versus rapid maxillary expander in prepubertal patients: A two-center randomized controlled trial. Eur. J. Orthod. 2022, 44, 163–169. [Google Scholar] [CrossRef]
- Petrén, S.; Bondemark, L. Correction of unilateral posterior crossbite in the mixed dentition: A randomized controlled trial. Am. J. Orthod. Dentofac. Orthop. 2008, 133, 790.e7–790.e13. [Google Scholar] [CrossRef]
- Godoy, F.; Godoy-Bezerra, J.; Rosenblatt, A. Treatment of posterior crossbite comparing 2 appliances: A community-based trial. Am. J. Orthod. Dentofac. Orthop. 2011, 139, e45–e52. [Google Scholar] [CrossRef]
- Miamoto, C.B.; Marques, L.S.; Abreu, L.G.; Paiva, S.M. Comparison of two early treatment protocols for anterior dental crossbite in the mixed dentition: A randomized trial. Angle Orthod. 2018, 88, 144–150. [Google Scholar] [CrossRef]
- Doruk, C.; Bicakci, A.A.; Basciftci, F.A.; Agar, U.; Babacan, H. A comparison of the effects of rapid maxillary expansion and fan-type rapid maxillary expansion on dentofacial structures. Angle Orthod. 2004, 74, 184–194. [Google Scholar] [CrossRef]
- Çörekçi, B.; Göyenç, Y.B. Dentofacial changes from fan-type rapid maxillary expansion vs traditional rapid maxillary expansion in early mixed dentition. Angle Orthod. 2013, 83, 842–850. [Google Scholar] [CrossRef]
- Alves, A.C.M.; Janson, G.; McNamara, J.A., Jr.; Lauris, J.R.P.; Garib, D.G. Maxillary expander with differential opening vs Hyrax expander: A randomized clinical trial. Am. J. Orthod. Dentofac. Orthop. 2020, 157, 7–18. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, R.; Massaro, C.; Garib, D. Vertical and sagittal changes produced by an expander with differential opening versus a fan-type expander: A post-hoc analysis of a randomised controlled trial. J. Orthod. 2024, 51, 388–396. [Google Scholar] [CrossRef] [PubMed]
- Weissheimer, A.; de Menezes, L.M.; Mezomo, M.; Dias, D.M.; de Lima, E.M.; Rizzatto, S.M. Immediate effects of rapid maxillary expansion with Haas-type and hyrax-type expanders: A randomized clinical trial. Am. J. Orthod. Dentofac. Orthop. 2011, 140, 366–376. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, N.L.; Da Silveira, A.C.; Kusnoto, B.; Viana, G. Three-dimensional assessment of morphologic changes of the maxilla: A comparison of 2 kinds of palatal expanders. Am. J. Orthod. Dentofac. Orthop. 2004, 126, 354–362. [Google Scholar] [CrossRef]
- Garib, D.G.; Henriques, J.F.; Janson, G.; Freitas, M.R.; Coelho, R.A. Rapid maxillary expansion--tooth tissue-borne versus tooth-borne expanders: A computed tomography evaluation of dentoskeletal effects. Angle Orthod. 2005, 75, 548–557. [Google Scholar] [CrossRef]
- Celenk-Koca, T.; Erdinc, A.E.; Hazar, S.; Harris, L.; English, J.D.; Akyalcin, S. Evaluation of miniscrew-supported rapid maxillary expansion in adolescents: A prospective randomized clinical trial. Angle Orthod. 2018, 88, 702–709. [Google Scholar] [CrossRef]
- Lin, L.; Ahn, H.W.; Kim, S.J.; Moon, S.C.; Kim, S.H.; Nelson, G. Tooth-borne vs bone-borne rapid maxillary expanders in late adolescence. Angle Orthod. 2015, 85, 253–262. [Google Scholar] [CrossRef]
- Ouldyerou, A.; Ngan, P.; Alsharif, K.; Merdji, A.; Mukdadi, O.M. Biomechanical performance of ATOZ expander: Finite-element analysis. Am. J. Orthod. Dentofac. Orthop. 2024, 167, 331–344. [Google Scholar] [CrossRef]
- MacGinnis, M.; Chu, H.; Youssef, G.; Wu, K.W.; Machado, A.W.; Moon, W. The effects of micro-implant assisted rapid palatal expansion (MARPE) on the nasomaxillary complex--a finite element method (FEM) analysis. Prog. Orthod. 2014, 15, 52. [Google Scholar] [CrossRef]
- Carlson, C.; Sung, J.; McComb, R.W.; Machado, A.W.; Moon, W. Microimplant-assisted rapid palatal expansion appliance to orthopedically correct transverse maxillary deficiency in an adult. Am. J. Orthod. Dentofac. Orthop. 2016, 149, 716–728. [Google Scholar] [CrossRef]
- Moon, H.W.; Kim, M.J.; Ahn, H.W.; Kim, S.J.; Kim, S.H.; Chung, K.R.; Nelson, G. Molar inclination and surrounding alveolar bone change relative to the design of bone-borne maxillary expanders: A CBCT study. Angle Orthod. 2020, 90, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Gunyuz Toklu, M.; Germec-Cakan, D.; Tozlu, M. Periodontal, dentoalveolar, and skeletal effects of tooth-borne and tooth-bone-borne expansion appliances. Am. J. Orthod. Dentofac. Orthop. 2015, 148, 97–109. [Google Scholar] [CrossRef] [PubMed]
- Wilmes, B.; Nienkemper, M.; Drescher, D. Application and effectiveness of a mini-implant- and tooth-borne rapid palatal expansion device: The hybrid hyrax. World J. Orthod. 2010, 11, 323–330. [Google Scholar]
- Silva, I.; Miranda, F.; Bastos, J.; Garib, D. Comparison of alveolar bone morphology after expansion with hybrid and conventional Hyrax expanders. Angle Orthod. 2024, 94, 414–420. [Google Scholar] [CrossRef]
- De Clerck, H.J.; Proffit, W.R. Growth modification of the face: A current perspective with emphasis on Class III treatment. Am. J. Orthod. Dentofac. Orthop. 2015, 148, 37–46. [Google Scholar] [CrossRef]
- Corbridge, J.K.; Campbell, P.M.; Taylor, R.; Ceen, R.F.; Buschang, P.H. Transverse dentoalveolar changes after slow maxillary expansion. Am. J. Orthod. Dentofac. Orthop. 2011, 140, 317–325. [Google Scholar] [CrossRef]
- Levrini, L.; Carganico, A.; Abbate, L. Maxillary expansion with clear aligners in the mixed dentition: A preliminary study with Invisalign® First system. Eur. J. Paediatr. Dent. 2021, 22, 125–128. [Google Scholar] [CrossRef]
- Aragon, M.; Mendes Ribeiro, S.M.; Fernandes Fagundes, N.C.; Normando, D. Effectiveness of dental arch expansion in the orthodontic treatment with clear aligners: A scoping review. Eur. J. Orthod. 2024, 46, cjae059. [Google Scholar] [CrossRef]
- Luyten, J.; De Roo, N.M.C.; Christiaens, J.; Van Overberghe, L.; Temmerman, L.; De Pauw, G.A.M. Rapid maxillary expansion vs slow maxillary expansion in patients with cleft lip and/or palate: A systematic review and meta-analysis. Angle Orthod. 2023, 93, 95–103. [Google Scholar] [CrossRef]
- Marino Merlo, M.; Quiroga Souki, B.; Nieri, M.; Bonanno, A.; Giuntini, V.; McNamara, J.A., Jr.; Franchi, L. Comparison of the effects on facial soft tissues produced by rapid and slow maxillary expansion using stereophotogrammetry: A randomized clinical trial. Prog. Orthod. 2024, 25, 1. [Google Scholar] [CrossRef]
- Willems, G.; Butaye, C.; Raes, M.; Zong, C.; Begnoni, G.; Cadenas de Llano-Pérula, M. Early prevention of maxillary canine impaction: A randomized clinical trial. Eur. J. Orthod. 2023, 45, 359–369. [Google Scholar] [CrossRef]
- Lima Filho, R.M.; de Oliveira Ruellas, A.C. Long-term maxillary changes in patients with skeletal Class II malocclusion treated with slow and rapid palatal expansion. Am. J. Orthod. Dentofac. Orthop. 2008, 134, 383–388. [Google Scholar] [CrossRef] [PubMed]
- Martinelli, F.L.; Couto, P.S.; Ruellas, A.C. Three palatal arches used to correct posterior dental crossbites. Angle Orthod. 2006, 76, 1047–1051. [Google Scholar] [CrossRef] [PubMed]
- Philippe, J. The origin of treatment expansion. Am. J. Orthod. Dentofac. Orthop. 2007, 131, 446. [Google Scholar] [CrossRef] [PubMed]
- Jahanbin, A.; Kazemian, M.; Eslami, N.; Pouya, I.S. Maxillary Protraction With Intermaxillary Elastics to Miniplates Versus Bone-Anchored Face-Mask Therapy in Cleft Lip and Palate Patients. J. Craniofac. Surg. 2016, 27, 1247–1252. [Google Scholar] [CrossRef]
- Agostino, P.; Ugolini, A.; Signori, A.; Silvestrini-Biavati, A.; Harrison, J.E.; Riley, P. Orthodontic treatment for posterior crossbites. Cochrane Database Syst. Rev. 2014, CD000979. [Google Scholar] [CrossRef]
- Sandikçioğlu, M.; Hazar, S. Skeletal and dental changes after maxillary expansion in the mixed dentition. Am. J. Orthod. Dentofac. Orthop. 1997, 111, 321–327. [Google Scholar] [CrossRef]
- Silvestrini-Biavati, F.; Oliva, G.; Ghislanzoni, L.H.; Ottonelli, E.; Dalessandri, D.; Lanteri, V.; Ugolini, A. Evaluation of palate morphology in patients treated with leaf expander and hyrax expander: A geometric morphometric analysis. Orthod. Craniofac. Res. 2024, 27, 959–966. [Google Scholar] [CrossRef]
- Ugolini, A.; Bruni, A.; Abate, A.; Pistoni, F.; Donelli, M.; Quinzi, V.; Silvestrini Biavati, F.; Lanteri, V. Effects On Palatal Surface Area In Mixed Dentition Patients Treated With Leaf Expander And Rapid Palatal Expander, Compared To Untreated Subjects: A Randomised Clinical Trial. Eur. J. Paediatr. Dent. 2024, 26, 48–54. [Google Scholar] [CrossRef]
- Serafin, M.; Fastuca, R.; Caprioglio, A. CBCT Analysis of Dento-Skeletal Changes after Rapid versus Slow Maxillary Expansion on Deciduous Teeth: A Randomized Clinical Trial. J. Clin. Med. 2022, 11, 4887. [Google Scholar] [CrossRef]
- Kocaali, Ö.; Karslı, N. Skeletal, Dental, and Soft Tissue Changes after Slow Maxillary Expansion in Early Mixed Dentition. Turk. J. Orthod. 2024, 37, 221–231. [Google Scholar] [CrossRef] [PubMed]
- Baccetti, T.; Franchi, L.; Cameron, C.G.; McNamara, J.A., Jr. Treatment timing for rapid maxillary expansion. Angle Orthod. 2001, 71, 343–350. [Google Scholar] [CrossRef] [PubMed]
- Haas, A.J. The treatment of maxillary deficiency by opening the midpalatal suture. Angle Orthod. 1965, 35, 200–217. [Google Scholar] [CrossRef] [PubMed]
- Ballanti, F.; Lione, R.; Fanucci, E.; Franchi, L.; Baccetti, T.; Cozza, P. Immediate and post-retention effects of rapid maxillary expansion investigated by computed tomography in growing patients. Angle Orthod. 2009, 79, 24–29. [Google Scholar] [CrossRef]
- Erverdi, N.; Okar, I.; Kücükkeles, N.; Arbak, S. A comparison of two different rapid palatal expansion techniques from the point of root resorption. Am. J. Orthod. Dentofac. Orthop. 1994, 106, 47–51. [Google Scholar] [CrossRef]
- Asanza, S.; Cisneros, G.J.; Nieberg, L.G. Comparison of Hyrax and bonded expansion appliances. Angle Orthod. 1997, 67, 15–22. [Google Scholar] [CrossRef]
- Hourfar, J.; Kinzinger, G.S.; Ludwig, B.; Spindler, J.; Lisson, J.A. Differential treatment effects of two anchorage systems for rapid maxillary expansion: A retrospective cephalometric study. J. Orofac. Orthop. 2016, 77, 314–324. [Google Scholar] [CrossRef]
- Staggers, J.A. Why does a midline diastema develop during rapid palatal expansion? Am. J. Orthod. Dentofac. Orthop. 2001, 120, 12a. [Google Scholar] [CrossRef]
- Alcan, T.; Ceylanoğlu, C. Upper midline correction in conjunction with rapid maxillary expansion. Am. J. Orthod. Dentofac. Orthop. 2006, 130, 671–675. [Google Scholar] [CrossRef]
- Ramoglu, S.I.; Sari, Z. Maxillary expansion in the mixed dentition: Rapid or semi-rapid? Eur. J. Orthod. 2010, 32, 11–18. [Google Scholar] [CrossRef]
- Akkaya, S.; Lorenzon, S.; Uçem, T.T. Comparison of dental arch and arch perimeter changes between bonded rapid and slow maxillary expansion procedures. Eur. J. Orthod. 1998, 20, 255–261. [Google Scholar] [CrossRef] [PubMed]
- McNamara, J.A., Jr.; Baccetti, T.; Franchi, L.; Herberger, T.A. Rapid maxillary expansion followed by fixed appliances: A long-term evaluation of changes in arch dimensions. Angle Orthod. 2003, 73, 344–353. [Google Scholar] [CrossRef] [PubMed]
- Geran, R.G.; McNamara, J.A., Jr.; Baccetti, T.; Franchi, L.; Shapiro, L.M. A prospective long-term study on the effects of rapid maxillary expansion in the early mixed dentition. Am. J. Orthod. Dentofac. Orthop. 2006, 129, 631–640. [Google Scholar] [CrossRef]
- Davidovitch, M.; Efstathiou, S.; Sarne, O.; Vardimon, A.D. Skeletal and dental response to rapid maxillary expansion with 2- versus 4-band appliances. Am. J. Orthod. Dentofac. Orthop. 2005, 127, 483–492. [Google Scholar] [CrossRef]
- Serafin, M.; Esposito, L.; Conti, V.; Fastuca, R.; Lagravère, M.; Caprioglio, A. CBCT Comparison of Dentoskeletal Effects of Haas-Type and Hyrax-Type Expanders Using Deciduous Teeth as Anchorage: A Randomized Clinical Trial. Appl. Sci. 2021, 11, 7110. [Google Scholar] [CrossRef]
- Serafin, M.; Fastuca, R.; Zecca, P.A.; Lagravère, M.; Caprioglio, A. 3D occlusal changes of upper first molars after rapid maxillary expansion on permanent versus deciduous teeth: A retrospective multicenter CBCT study. Prog. Orthod. 2023, 24, 24. [Google Scholar] [CrossRef]
- Conroy-Piskai, C.; Galang-Boquiren, M.T.; Obrez, A.; Viana, M.G.; Oppermann, N.; Sanchez, F.; Edgren, B.; Kusnoto, B. Assessment of vertical changes during maxillary expansion using quad helix or bonded rapid maxillary expander. Angle Orthod. 2016, 86, 925–933. [Google Scholar] [CrossRef]
- Reed, N.; Ghosh, J.; Nanda, R.S. Comparison of treatment outcomes with banded and bonded RPE appliances. Am. J. Orthod. Dentofac. Orthop. 1999, 116, 31–40. [Google Scholar] [CrossRef]
- Garib, D.; Lauris, R.C.; Calil, L.R.; Alves, A.C.; Janson, G.; De Almeida, A.M.; Cevidanes, L.H.; Lauris, J.R. Dentoskeletal outcomes of a rapid maxillary expander with differential opening in patients with bilateral cleft lip and palate: A prospective clinical trial. Am. J. Orthod. Dentofac. Orthop. 2016, 150, 564–574. [Google Scholar] [CrossRef]
- Massaro, C.; Garib, D.; Cevidanes, L.; Janson, G.; Yatabe, M.; Lauris, J.R.P.; Ruellas, A.C. Maxillary dentoskeletal outcomes of the expander with differential opening and the fan-type expander: A randomized controlled trial. Clin. Oral Investig. 2021, 25, 5247–5256. [Google Scholar] [CrossRef]
- Massaro, C.; Janson, G.; Miranda, F.; Aliaga-Del Castillo, A.; Pugliese, F.; Lauris, J.R.P.; Garib, D. Dental arch changes comparison between expander with differential opening and fan-type expander: A randomized controlled trial. Eur. J. Orthod. 2021, 43, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Bistaffa, A.G.I.; Belomo-Yamaguchi, L.; de Castro Ferreira Conti, A.C.; Oltramari, P.V.P.; de Almeida, M.R.; de Almeida-Pedrin, R.R.; Fernandes, T.M.F. Dental arch changes comparison between Expander with Differential Opening, Hyrax-type and Haas-type expanders: A prospective clinical study. Orthod. Craniofac. Res. 2023, 26, 468–475. [Google Scholar] [CrossRef] [PubMed]
- Marañón-Vásquez, G.A.; de Andrade, A.; Maia, L.C.; Dos Santos, R.L.; Tanaka, O.M.; Paranhos, L.R.; Oliveira, D.D.; Pithon, M.M. Effect of treatment of transverse maxillary deficiency using rapid palatal expansion on oral health-related quality of life in children: Complementary results for a controlled clinical trial. Clin. Oral Investig. 2024, 28, 525. [Google Scholar] [CrossRef] [PubMed]
- Baysal, A.; Uysal, T.; Veli, I.; Ozer, T.; Karadede, I.; Hekimoglu, S. Evaluation of alveolar bone loss following rapid maxillary expansion using cone-beam computed tomography. Korean J. Orthod. 2013, 43, 83–95. [Google Scholar] [CrossRef]
- Jia, H.; Zhuang, L.; Zhang, N.; Bian, Y.; Li, S. Comparison of skeletal maxillary transverse deficiency treated by microimplant-assisted rapid palatal expansion and tooth-borne expansion during the post-pubertal growth spurt stage. Angle Orthod. 2021, 91, 36–45. [Google Scholar] [CrossRef]
- Inchingolo, A.D.; Ferrara, I.; Viapiano, F.; Netti, A.; Campanelli, M.; Buongiorno, S.; Latini, G.; Carpentiere, V.; Ciocia, A.M.; Ceci, S.; et al. Rapid Maxillary Expansion on the Adolescent Patient: Systematic Review and Case Report. Children 2022, 9, 1046. [Google Scholar] [CrossRef]
- Lagravère, M.O.; Carey, J.; Heo, G.; Toogood, R.W.; Major, P.W. Transverse, vertical, and anteroposterior changes from bone-anchored maxillary expansion vs traditional rapid maxillary expansion: A randomized clinical trial. Am. J. Orthod. Dentofac. Orthop. 2010, 137, e301–e312. [Google Scholar] [CrossRef]
- Lee, K.J.; Park, Y.C.; Park, J.Y.; Hwang, W.S. Miniscrew-assisted nonsurgical palatal expansion before orthognathic surgery for a patient with severe mandibular prognathism. Am. J. Orthod. Dentofac. Orthop. 2010, 137, 830–839. [Google Scholar] [CrossRef]
- Mosleh, M.I.; Kaddah, M.A.; Abd ElSayed, F.A.; ElSayed, H.S. Comparison of transverse changes during maxillary expansion with 4-point bone-borne and tooth-borne maxillary expanders. Am. J. Orthod. Dentofac. Orthop. 2015, 148, 599–607. [Google Scholar] [CrossRef]
- Xu, B.; Park, J.J.; Bai, J.; Kim, S.H. Effect of bone-borne maxillary skeletal expanders on cranial and circummaxillary sutures: A cone-beam computed tomography study. Korean J. Orthod. 2024, 54, 346–358. [Google Scholar] [CrossRef]
- Cho, A.R.; Park, J.H.; Moon, W.; Chae, J.M.; Kang, K.H. Short-term effects of microimplant-assisted rapid palatal expansion on the circummaxillary sutures in skeletally mature patients: A cone-beam computed tomography study. Am. J. Orthod. Dentofac. Orthop. 2022, 161, e187–e197. [Google Scholar] [CrossRef] [PubMed]
- Pereira, P.A.A.; Canellas, J.V.; Souza, R.B.; Tiwana, P.S.; Medeiros, P.J.; Ritto, F.G. Three-segment versus 2-segment surgically assisted rapid maxillary expansion. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2022, 133, 264–270. [Google Scholar] [CrossRef] [PubMed]
- Alyessary, A.S.; Yap, A.U.J.; Othman, S.A.; Rahman, M.T.; Radzi, Z. Effect of Piezoelectric Sutural Ostectomies on Accelerated Bone-Borne Sutural Expansion. J. Oral Maxillofac. Surg. 2018, 76, 616–630. [Google Scholar] [CrossRef] [PubMed]
- da Silva Mesquita, B.; do Egito Vasconcelos, B.C.; de Moraes, S.L.D.; Araujo Lemos, C.A.; de Luna Gomes, J.M.; Pellizzer, E.P.; de Souza Andrade, E.S. Pterygomaxillary Disjunction and its Influence on the Result of Surgically Assisted Maxillary Expansion: A Systematic Review and Meta-analysis. J. Contemp. Dent. Pract. 2020, 21, 696–700. [Google Scholar]
- Pagotto, L.E.C.; de Morais, E.F.; Pastore, G.P. Evaluation of pterygomaxillary disjunction on skeletal and dental changes after surgically assisted rapid maxillary expansion: A systematic review and meta-analysis. Heliyon 2024, 10, e38872. [Google Scholar] [CrossRef]
- Lehman, J.A., Jr.; Haas, A.J.; Haas, D.G. Surgical orthodontic correction of transverse maxillary deficiency: A simplified approach. Plast. Reconstr. Surg. 1984, 73, 62–68. [Google Scholar] [CrossRef]
- Schimming, R.; Feller, K.U.; Herzmann, K.; Eckelt, U. Surgical and orthodontic rapid palatal expansion in adults using Glassman’s technique: Retrospective study. Br. J. Oral Maxillofac. Surg. 2000, 38, 66–69. [Google Scholar] [CrossRef]
- Pogrel, M.A.; Kaban, L.B.; Vargervik, K.; Baumrind, S. Surgically assisted rapid maxillary expansion in adults. Int. J. Adult Orthodon Orthognath. Surg. 1992, 7, 37–41. [Google Scholar]
- Landes, C.A.; Laudemann, K.; Petruchin, O.; Mack, M.G.; Kopp, S.; Ludwig, B.; Sader, R.A.; Seitz, O. Comparison of bipartite versus tripartite osteotomy for maxillary transversal expansion using 3-dimensional preoperative and postexpansion computed tomography data. J. Oral Maxillofac. Surg. 2009, 67, 2287–2301. [Google Scholar] [CrossRef]
- Prado, F.B.; Rossi, A.C.; Freire, A.R.; Groppo, F.C.; De Moraes, M.; Caria, P.H. Pharyngeal airway space and frontal and sphenoid sinus changes after maxillomandibular advancement with counterclockwise rotation for Class II anterior open bite malocclusions. Dentomaxillofac Radiol. 2012, 41, 103–109. [Google Scholar] [CrossRef]
- da Costa Senior, O.; Smeets, M.; Willaert, R.; Shaheen, E.; Jacobs, R.; Politis, C. Complications Following One-Stage Versus Two-Stage Surgical Treatment of Transverse Maxillary Hypoplasia. J. Oral Maxillofac. Surg. 2021, 79, 1531–1539. [Google Scholar] [CrossRef] [PubMed]
- Dabir, A.; Vahanwala, J. Orthognathic Surgery for the Maxilla-LeFort I and Anterior Maxillary Osteotomy. In Oral and Maxillofacial Surgery for the Clinician; Bonanthaya, K., Panneerselvam, E., Manuel, S., Kumar, V.V., Rai, A., Eds.; Springer Nature: Singapore, 2021; pp. 1513–1548. [Google Scholar]
- Rachmiel, A.; Nseir, S.; Emodi, O.; Aizenbud, D. External versus Internal Distraction Devices in Treatment of Obstructive Sleep Apnea in Craniofacial Anomalies. Plast. Reconstr. Surg. Glob. Open 2014, 2, e188. [Google Scholar] [CrossRef] [PubMed]
- Meling, T.R.; Hogevold, H.E.; Due-Tonnessen, B.J.; Skjelbred, P. Midface distraction osteogenesis: Internal vs. external devices. Int. J. Oral Maxillofac. Surg. 2011, 40, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Du, S.; Lin, Z.; Zhang, P.; Zhang, X.; Bin, Y.; Wang, J.; Zhao, Z. Application of trans-sutural distraction osteogenesis based on an optical surgical navigation system to correct midfacial dysplasia. Sci. Rep. 2022, 12, 13181. [Google Scholar] [CrossRef]
- Tong, H.; Wang, X.; Song, T.; Gao, F.; Yin, J.; Li, H.; Sun, X.; Wang, Y.; Yin, N.; Zhao, Z. Trans-Sutural Distraction Osteogenesis for Midfacial Hypoplasia in Growing Patients with Cleft Lip and Palate: Clinical Outcomes and Analysis of Skeletal Changes. Plast. Reconstr. Surg. 2015, 136, 144–155. [Google Scholar] [CrossRef]
- Tong, H.; Song, T.; Sun, X.; Yin, N.; Liu, L.; Wang, X.; Zhao, Z. Imaging study of midface growth with bone-borne trans-sutural distraction osteogenesis therapy in growing cleft lip and palate patients. Sci. Rep. 2019, 9, 871. [Google Scholar] [CrossRef]
- Silveira, A.; Moura, P.M.; Harshbarger, R.J., 3rd. Orthodontic considerations for maxillary distraction osteogenesis in growing patients with cleft lip and palate using internal distractors. Semin. Plast. Surg. 2014, 28, 207–212. [Google Scholar] [CrossRef]
- Swennen, G.; Schliephake, H.; Dempf, R.; Schierle, H.; Malevez, C. Craniofacial distraction osteogenesis: A review of the literature: Part 1: Clinical studies. Int. J. Oral Maxillofac. Surg. 2001, 30, 89–103. [Google Scholar] [CrossRef]
- Cheung, L.K.; Chua, H.D. A meta-analysis of cleft maxillary osteotomy and distraction osteogenesis. Int. J. Oral Maxillofac. Surg. 2006, 35, 14–24. [Google Scholar] [CrossRef]
- Seo, H.J.; Choi, Y.K. Current trends in orthognathic surgery. Arch. Craniofac. Surg. 2021, 22, 287–295. [Google Scholar] [CrossRef]
- Brown, G.V.I. The Surgery of Oral and Facial Diseases and Malformations, Their Diagnosis and Treatment, Including Plastic Surgical Reconstruction, 4th, thoroughly rev. ed.; Lea & Febiger: Philadelphia, PA, USA, 1938. [Google Scholar]
- Barone, S.; Bennardo, F.; Salviati, M.; Calabria, E.; Bocchino, T.; Michelotti, A.; Giudice, A. Can different osteotomies have an influence on surgically assisted rapid maxillary expansion? A systematic review. Head. Face Med. 2024, 20, 16. [Google Scholar] [CrossRef] [PubMed]
- Dalband, M.; Kashani, J.; Hashemzehi, H. Three-Dimensional Finite Element Analysis of Stress Distribution and Displacement of the Maxilla Following Surgically Assisted Rapid Maxillary Expansion with Tooth- and Bone-Borne Devices. J. Dent. 2015, 12, 298–306. [Google Scholar]
- Kole, H. Surgical operations on the alveolar ridge to correct occlusal abnormalities. Oral Surg. Oral Med. Oral Pathol. 1959, 12, 515–529. [Google Scholar] [CrossRef]
- Faisal, M.M.; Bede, S.Y. The Evaluation of the Pterygomaxillary Separation Pattern in Le Fort I Osteotomy Using Cone Beam Computed Tomography. J. Craniofac. Surg. 2025. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.Y.; Yang, C.Y.; Fan, C.N.; Kuo, C.S.; Fan, S.Z.; Chen, Y.W. The effects of pterygomaxillary disjunction in surgically assisted rapid maxillary expansion: A systematic review and meta-analysis. Orthod. Craniofac Res. 2024, 27, 750–757. [Google Scholar] [CrossRef]
- Babacan, H.; Sokucu, O.; Doruk, C.; Ay, S. Rapid maxillary expansion and surgically assisted rapid maxillary expansion effects on nasal volume. Angle Orthod. 2006, 76, 66–71. [Google Scholar] [CrossRef]
- Cihaner, D.; Karabulut, D.; Dogan Onur, O.; Cansiz, E.; Arslan, Y.Z. Evaluation of Treatment Protocols in Surgically Assisted Rapid Maxillary Expansion by Finite Element Analysis. Medicina 2024, 60, 1400. [Google Scholar] [CrossRef]
- Han, U.A.; Kim, Y.; Park, J.U. Three-dimensional finite element analysis of stress distribution and displacement of the maxilla following surgically assisted rapid maxillary expansion. J. Craniomaxillofac. Surg. 2009, 37, 145–154. [Google Scholar] [CrossRef]
- Fonseca, R.J. Oral and Maxillofacial Surgery: Reconstructive and Implant Surgery; Saunders: Philadelphia, PA, USA, 2000. [Google Scholar]
- Landes, C.A.; Laudemann, K.; Petruchin, O.; Revilla, C.; Seitz, O.; Kopp, S.; Ludwig, B.; Sader, R.A. Advantages and limits of 3-segment (paramedian) versus 2-segment (median) surgically assisted rapid maxillary expansion (SARME). Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2012, 113, 29–40. [Google Scholar] [CrossRef]
- Habersack, K.; Becker, J.; Ristow, O.; Paulus, G.W. Dental and skeletal effects of two-piece and three-piece surgically assisted rapid maxillary expansion with complete mobilization: A retrospective cohort study. J. Oral Maxillofac. Surg. 2014, 72, 2278–2288. [Google Scholar] [CrossRef]
- Brugmann, S.A.; Allen, N.C.; James, A.W.; Mekonnen, Z.; Madan, E.; Helms, J.A. A primary cilia-dependent etiology for midline facial disorders. Hum. Mol. Genet. 2010, 19, 1577–1592. [Google Scholar] [CrossRef] [PubMed]
- Kloukos, D.; Fudalej, P.; Sequeira-Byron, P.; Katsaros, C. Maxillary distraction osteogenesis versus orthognathic surgery for cleft lip and palate patients. Cochrane Database Syst. Rev. 2018, 8, CD010403. [Google Scholar] [CrossRef] [PubMed]
- Winters, R.; Tatum, S.A. Craniofacial distraction osteogenesis. Facial Plast. Surg. Clin. N. Am. 2014, 22, 653–664. [Google Scholar] [CrossRef] [PubMed]
Patient Stage | Techniques | Appliances | Advantages | Disadvantage | Study |
---|---|---|---|---|---|
Children in primary and early mixed dentition (around ≤10 years of age) | Lingual arch | quadhelix | Gentle continuous force provides effective and safe skeletal changes, allowing up to 4 mm of expansion; it is also well -suited for molar derotation; cleft patients. | More buccal bone loss and fenestrations, limited to primarily dental changes when compared to the HYRAX expander. | [3,23,24] |
Fixed expander with the nickel–titanium spring | Leaf Expander | Delivers consistent force for precise control over expansion, achieving up to 6 mm of effective transverse widening. | Produces a smaller increase in posterior nasal and maxillary mid-alveolar widths in early adolescents compared to the HYRAX expander; requires monthly activation. | [8,25] | |
Removable expander with the jackscrew | Removable expansion plate | More effective in increasing canine spacing compared to the quadhelix; allows patient-managed adjustments; easy to clean; suitable for patients with additional dental concerns. | Less effective at achieving skeletal changes, increasing inter-molar width, and shortening treatment duration compared to the quadhelix; patient handling may lead to inconsistent results. | [24,26,27,28] | |
Preadolescents in late mixed dentition and early adolescents (around 10–14 years of age) | Tooth-borne expander | HYRAX expander | Rapid sutural separation enables up to 10 mm of maxillary expansion, with approximately 80% of the initial expansion being skeletal. | Significant relapse observed, with about 50% retention of skeletal expansion; requires careful activation. | [16] |
Fan-type expander | Focuses expansion primarily on the anterior segment, exerting minimal effect in the molar region. | Limited effects on posterior dimensions. | [29,30] | ||
Expander with Differential Opening | Enhanced anterior expansion, creating a trapezoid-shaped opening for divergent expansion. | - | [31,32] | ||
Tooth-tissue-borne expander | Haas expander | Delivers improved force distribution, enhancing the orthopedic response and providing greater anchorage. | Less hygienic due to trapped food particles, more cumbersome than HYRAX. | [24,33,34,35] | |
Middle and late adolescents (around 14–19 years of age) | Bone-borne expander | Bone-borne maxillary skeletal expander | Generates nearly triple the expansion within the mid-palatal suture compared to HYRAX, with uplift of maxillary posterior teeth and substantial enhancement of the buccal alveolar bone support. | - | [36] |
C-expander | Delivers superior orthopedic outcomes with fewer dentoalveolar complications compared to the HYRAX appliance. | - | [37] | ||
ATOZ expander | Delivers precise positioning with a thermoplastic guide to effectively influence sutural width compared to the C-expander; its compact size makes it suitable for narrower palates. | - | [38] | ||
Tooth-bone-borne expander | Tooth-bone-borne maxillary skeletal expander | Features precision-fit insertion slots that enable effective bicortical stabilization and apply lateral forces against critical resistance points. | Generates greater dental expansion and buccal alveolar bone height loss and thickness changes in late adolescent patients compared to the C-expander. | [39,40,41] | |
Hybrid HYRAX | Suitable for patients lacking anterior teeth anchorage, maintains buccal bone thickness, and exhibits improved efficacy for maxillary protraction compared to conventional HYRAX. | Exhibits less increase in inter-premolar distances compared to the conventional HYRAX appliance. | [42,43,44] |
Adolescent Patient Stage or Condition | Techniques | Modification | Indication | Advantages | Disadvantage | Study |
---|---|---|---|---|---|---|
Skeletally mature adolescents | Conventional SARME | - | Transverse maxillary deficiency ≥ 6.0 mm; age ≥ 18 years; no medical history of cleft and maxillary surgery | Straightforward and quick procedure; minimal impact on periodontal tissues and long-term dental health. | Temporary aesthetic concerns; limited bone expansion at the palatal level potential complications affecting the central incisors. | [92] |
Modified SARME | Cortical osteotomy | Bone-borne sutural expansion | Enhances efficiency by reducing resistance. | Lack of evidence-based research. | [93] | |
Pterygomaxillary disjunction | Younger than 20 years with bone-borne devices | Greater respiratory function; nasal adjustment reduced resistance; ideal tipping of molars. | More invasive surgical procedures; associated with increased complications. | [94,95] | ||
Palatal preservation | Maxillary transverse discrepancies with skeletally mature | Reduces surgical invasiveness; potential for fewer complications. | Potential for less effectiveness; Resistance should be released at other sutures or buttress; lack of consensus and evidence. | [96,97,98] | ||
Segmental Le Fort I osteotomy | Anterior open bite with a dual-plane maxilla; moderate transversal maxillary hypoplasia; severe proclination of the maxillary anterior teeth | Provides effective maxillary expansion; reduces aesthetic compromise; minimizes disruption of the midline dental papilla; allows for asymmetric expansions in a conservative manner; improved dental alignment. | Risk of relapse; surgical complexity due to multiple osteotomies; larger transverse displacement in the paranasal area but less increase in nasal width. | [99,100,101] | ||
Adolescents with congenital conditions or treatment challenges | Palatal segmental osteotomy | - | - | Enables advanced transverse maxillary expansion; facilitates correction of orthodontic arch discrepancies; provides better control over dentoalveolar segment movement. | Involves more complex surgical steps; risk of complications; requires precise execution to avoid unnecessary damage to the palate. | [102] |
Distraction osteogenesis | Extraoral distractors | Syndromal midface retrusion, age ≤ 17 years | Effective for large-scale movements and severe midface deficiencies; modifications to devices could be easily achieved. | Social inconvenience due to visible devices; potential for facial scarring; compromising long-term stability; extended treatment duration. | [103,104] | |
Internal distractors | Syndromal midface retrusion, age ≤ 25 years | Compact and less visible design; better bone anchorage; simplified activation and removal procedures. | Limited to smaller or moderate movements compared to external devices; may require advanced surgical expertise for proper placement and activation. | [103,104] | ||
TSDO | Maxillary retrusion with midfacial dysplasia secondary to cleft lip and palate repair | Minimally invasive; utilizes growth potential to achieve more advanced expansion. | Patient without growth potential cannot benefit; social inconvenience and discomfort. | [105,106,107] | ||
Osteotomy-assisted distraction | Maxillary hypoplasia secondary to cleft lip and palate repair, with advancement ≥ 6 mm | Effective for severe maxillary deficiencies and syndromic conditions; achieves significant transverse expansion. | Invasiveness; challenges with stability; requires precise surgical technique to avoid complications. | [108,109,110] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Tang, Z.; Shan, Z.; Leung, Y.Y. Maxillary Deficiency: Treatments and Applications for Adolescents. Appl. Sci. 2025, 15, 3256. https://doi.org/10.3390/app15063256
Yang J, Tang Z, Shan Z, Leung YY. Maxillary Deficiency: Treatments and Applications for Adolescents. Applied Sciences. 2025; 15(6):3256. https://doi.org/10.3390/app15063256
Chicago/Turabian StyleYang, Jiegang, Zhongyuan Tang, Zhiyi Shan, and Yiu Yan Leung. 2025. "Maxillary Deficiency: Treatments and Applications for Adolescents" Applied Sciences 15, no. 6: 3256. https://doi.org/10.3390/app15063256
APA StyleYang, J., Tang, Z., Shan, Z., & Leung, Y. Y. (2025). Maxillary Deficiency: Treatments and Applications for Adolescents. Applied Sciences, 15(6), 3256. https://doi.org/10.3390/app15063256