Innovations in Bioactive Materials for Dental Pulp Vitality Preservation in Children and Adolescents
Abstract
:1. Introduction
2. Literature Search Strategy
3. Criteria of Vital Pulp Therapy
3.1. Tooth Structure and Caries Invasion
3.2. Diagnosis and Treatment Planning
3.3. Vital Pulp Therapy
4. Dental Biomaterials for VPT
4.1. Restorative Dentistry and Pulp Preservation
Biomaterial | Brand Name | Composition | Mechanism of Action | Advantages | Limitations |
---|---|---|---|---|---|
Calcium Hydroxide [47] | Dycal–Dentsply | Ca(OH)2 in paste or powder form | Releases Ca2+ and OH− inducing mineralized barrier formation, and antibacterial properties | Biocompatibility promotes hard tissue formation | Low mechanical properties and porosity in the newly formed mineralized tissue Tissue necrosis and inflammation High Solubility |
Mineral Trioxide Aggregate (MTA) [51] | ProRoot MTA–Denstply MTA Angelus–Angelus NeoMTA plus–Avalon | Tricalcium silicate, dicalcium silicate, tricalcium aluminate | Promotes dentin bridge formation, seals pulp exposure, and releases Ca2+ | High biocompatibility, durable seal | Prolonged setting time Lower compressive strength and hardness than TheraCal LC Discoloration potential |
Biodentine [52,53] | Biodentine by Septodont | Calcium silicate-based with additives (zirconium oxide, etc.) | Similar to MTA, fast-setting, forms hydroxyapatite | Stimulates odontoblastic differentiation [51] Color Stability [52,53] Low Cytotoxicity [52,53] | Less radiopacity than MTA. Lower wash-out resistance |
Endo sequence Root Repair Material [54] | Endosequence–Brasseler | Calcium phosphate, calcium silicate-based | Seals pulp exposure, biocompatible, | No mixing required, high sealing ability, Easy Handling | Limited data on long-term effectiveness, and more expensive |
TheraCal LC [55] | Theracal–Bisco | Light-curable calcium silicate | Forms a durable layer, calcium release | Easy handling promotes healing | Low biocompatibility and high cytotoxicity due to the presence of monomers like BisGMA, HEMA, TEGDMA, and UDMA |
4.2. Recent Advancements in the Vital Pulp Therapy (Table 2)
Biomaterial | Type of Study | Composition | Mechanism of Action | Advantages | Limitation |
---|---|---|---|---|---|
Collagen, Gelatin, and Gelatin-Methacrylate [59,60] | In Vitro | Collagen-sourced from animal sources Gelatin–collagen denaturation Modified gelatin with methacrylate groups | Influences cellular morphology, differentiation and adhesion | Exhibits low immunogenicity, permeability, porosity, biocompatibility, and biodegradability | Inadequate mechanical strength and structural stability upon hydration |
Chitosan [15,61] | In Vitro In Vivo and RCT | Natural protein derived from animals | Mimics dentin matrix protein 1 (DMP1) Facilitates both intra-fibrillary (within collagen fibers) and extra-fibrillary remineralization | Restores the structural integrity of demineralized dentin Biocompatible alternative to natural proteins | Requires extended treatment duration (7–14 days) Long-term stability under oral conditions needs validation |
Alginate [16] | In Vivo | Alginate reinforced Laponite Hydrosphere with hDPCs and VEGF | Promotes extracellular matrix deposition (fibronectin and collagen type I) and vascularized pulp-like tissue formation through VEGF-mediated angiogenesis | Supports hDPSC differentiation, extracellular matrix deposition, and micro-vessel formation Biocompatibility: High cell viability | Requires precise control over microsphere size and composition during preparation Limited Long-Term Data: The study focuses on short-term outcomes (1 month in vivo), with long-term efficacy yet to be validated |
Platelet-Rich Plasma (PRP) and Platelet-Rich Fibrin (PRF) [62,63] | Clinical trial | Autologous blood-derived plasma and fibrin clot | Delivers growth factors, promotes pulp healing | Natural, promotes pulp regeneration | Limited availability, patient-specific |
Demineralized Dentin Matrix(DDM) [52,64,65] | In Vivo and RCT | Fresh dentin Demineralization using EDTA or hydrochloric acid | Promotes dentinal bridge formation | Stimulates the formation of ordered odontoblast layers and a homogeneous tubular structure Offers a natural alternative to silicate-based cements for healing dentin defects | May have variable performance depending on the quality of the dentin matrix source Long-term clinical efficacy still needs to be established through further studies |
Laser-Assisted VPT [51,66] | RCT Fotona–Erbium-doped Yttrium Aluminium Garnet, Biolase –Erbium Chromium laser | Laser technology (e.g., Erbium, Neodymium) | Laser application sterilizes pulp and promotes wound healing; may stimulate dentinogenesis | Minimally invasive, enhances disinfection, promotes healing | Requires specialized equipment, technique-sensitive, high initial cost |
Nanohydroxyapatite (nHAp)/NanoMatrix [17,53] | In Vitro In Vivo | Nanoscale hydroxyapatite particles, often in paste or gel Reinforced with Nitric-Oxide peptide | Mimics dentin, promotes mineralization, and dentin bridge formation | Biocompatible, low inflammatory, and proangiogenic response | Limited studies may require longer-term evaluations |
4.2.1. Platelet-Rich Plasma/Fibrin, Chitosan, and Collagen
4.2.2. Alginate and Decellularized Human Teeth as Scaffolds for Tooth Regeneration
4.2.3. Laser Therapy in Vital Pulp Therapy
4.2.4. Nitric Oxide-Releasing Nanomatrix Gel
5. Clinical Implications and Future Applications
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AAPD | American Academy of Pediatric Dentistry |
VPT | Vital Pulp Therapy |
IPT | Indirect Pulp Treatment |
DPC | Direct Pulp Capping |
CH | Calcium Hydroxide |
CSC | Calcium Silicate Cement |
GIC | Glass Ionomer Cement |
MTA | Mineral Trioxide Aggregate |
RMGIC | Resin Modified Glass Ionomer Cement |
PRP | Platelet-Rich Plasma |
PRF | Platelet-Rich Fibrin |
NO | Nitric Oxide |
RCTs | Randomized controlled trials |
CBCT | cone-beam computed tomography |
References
- Duncan, H.F.; Galler, K.M.; Tomson, P.L.; Simon, S.; El-Karim, I.; Kundzina, R.; Krastl, G.; Dammaschke, T.; Fransson, H.; Markvart, M.; et al. European Society of Endodontology position statement: Management of deep caries and the exposed pulp. Int. Endod. J. 2019, 52, 923–934. [Google Scholar] [CrossRef] [PubMed]
- AAPD. Definition of Dental Home. Available online: https://www.aapd.org/research/oral-health-policies--recommendations/Dental-Home/ (accessed on 5 December 2024).
- Hilton, T.J. Keys to clinical success with pulp capping: A review of the literature. Oper. Dent. 2009, 34, 615–625. [Google Scholar] [CrossRef]
- Kunert, M.; Lukomska-Szymanska, M. Bio-Inductive Materials in Direct and Indirect Pulp Capping—A Review Article. Materials 2020, 13, 1204. [Google Scholar] [CrossRef] [PubMed]
- Cushley, S.; Duncan, H.F.; Lappin, M.J.; Chua, P.; Elamin, A.D.; Clarke, M.; El-Karim, I.A. Efficacy of direct pulp capping for management of cariously exposed pulps in permanent teeth: A systematic review and meta-analysis. Int. Endod. J. 2021, 54, 556–571. [Google Scholar] [CrossRef]
- Torabinejad, M.; Hong, C.U.; Lee, S.J.; Monsef, M.; Pitt Ford, T.R. Investigation of mineral trioxide aggregate for root-end filling in dogs. J. Endod. 1995, 21, 603–608. [Google Scholar] [CrossRef] [PubMed]
- Parirokh, M.; Torabinejad, M. Mineral trioxide aggregate: A comprehensive literature review--Part I: Chemical, physical, and antibacterial properties. J. Endod. 2010, 36, 16–27. [Google Scholar] [CrossRef]
- Torabinejad, M.; Parirokh, M.; Dummer, P.M.H. Mineral trioxide aggregate and other bioactive endodontic cements: An updated overview—Part II: Other clinical applications and complications. Int. Endod. J. 2018, 51, 284–317. [Google Scholar] [CrossRef]
- Vallés, M.; Mercadé, M.; Duran-Sindreu, F.; Bourdelande, J.L.; Roig, M. Color stability of white mineral trioxide aggregate. Clin. Oral Investig. 2013, 17, 1155–1159. [Google Scholar] [CrossRef]
- Camilleri, J. Hydration mechanisms of mineral trioxide aggregate. Int. Endod. J. 2007, 40, 462–470. [Google Scholar] [CrossRef]
- Ha, W.N.; Duckmanton, P.; Kahler, B.; Walsh, L.J. A survey of various endodontic procedures related to mineral trioxide aggregate usage by members of the Australian Society of Endodontology. Aust. Endod. J. 2016, 42, 132–138. [Google Scholar] [CrossRef]
- Nowicka, A.; Lipski, M.; Parafiniuk, M.; Sporniak-Tutak, K.; Lichota, D.; Kosierkiewicz, A.; Kaczmarek, W.; Buczkowska-Radlińska, J. Response of human dental pulp capped with biodentine and mineral trioxide aggregate. J. Endod. 2013, 39, 743–747. [Google Scholar] [CrossRef] [PubMed]
- Sen, H.G.; Helvacioglu-Yigit, D.; Yilmaz, A. Radiopacity evaluation of calcium silicate cements. BMC Oral Health 2023, 23, 491. [Google Scholar] [CrossRef] [PubMed]
- Arandi, N.Z.; Rabi, T. TheraCal LC: From Biochemical and Bioactive Properties to Clinical Applications. Int. J. Dent. 2018, 2018, 3484653. [Google Scholar] [CrossRef] [PubMed]
- Leite, M.L.; Anselmi, C.; Soares, I.P.M.; Manso, A.P.; Hebling, J.; Carvalho, R.M.; de Souza Costa, C.A. Calcium silicate-coated porous chitosan scaffold as a cell-free tissue engineering system for direct pulp capping. Dent. Mater. 2022, 38, 1763–1776. [Google Scholar] [CrossRef]
- Zhang, R.; Xie, L.; Wu, H.; Yang, T.; Zhang, Q.; Tian, Y.; Liu, Y.; Han, X.; Guo, W.; He, M.; et al. Alginate/laponite hydrogel microspheres co-encapsulating dental pulp stem cells and VEGF for endodontic regeneration. Acta Biomater. 2020, 113, 305–316. [Google Scholar] [CrossRef]
- Moon, C.Y.; Nam, O.H.; Kim, M.; Lee, H.S.; Kaushik, S.N.; Cruz Walma, D.A.; Jun, H.W.; Cheon, K.; Choi, S.C. Effects of the nitric oxide releasing biomimetic nanomatrix gel on pulp-dentin regeneration: Pilot study. PLoS ONE 2018, 13, e0205534. [Google Scholar] [CrossRef]
- Garant, P.R. Oral cells and Tissues; Dickson, A., Ed.; Quintessence Publishing Co., Inc.: Batavia, IL, USA, 2003. [Google Scholar]
- Tjäderhane, L. The Root Canal Anatomy in Permanent Dentition; Versiani, M., Basrani, B., Sousa-Neto, M., Eds.; Springer: Cham, Switzerland, 2019; pp. 17–27. [Google Scholar]
- Healy, K.E. A3 Dentin and Enamel; Murphy, W., Black, J., Hastings, G., Eds.; Springer: New York, NY, USA, 2016. [Google Scholar]
- Machiulskiene, V.; Campus, G.; Carvalho, J.C.; Dige, I.; Ekstrand, K.R.; Jablonski-Momeni, A.; Maltz, M.; Manton, D.J.; Martignon, S.; Martinez-Mier, E.A.; et al. Terminology of Dental Caries and Dental Caries Management: Consensus Report of a Workshop Organized by ORCA and Cariology Research Group of IADR. Caries Res. 2020, 54, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.J.; Cassidy, N.; Perry, H.; Bègue-Kirn, C.; Ruch, J.V.; Lesot, H. Reactionary dentinogenesis. Int. J. Dev. Biol. 1995, 39, 273–280. [Google Scholar] [PubMed]
- Bjørndal, L. The caries process and its effect on the pulp: The science is changing and so is our understanding. Pediatr. Dent. 2008, 30, 192–196. [Google Scholar] [CrossRef]
- Hargreaves, K.M.; Diogenes, A.; Teixeira, F.B. Treatment Options: Biological Basis of Regenerative Endodontic Procedures. J. Endod. 2013, 39, S30–S43. [Google Scholar] [CrossRef]
- Stookey, G.K.; González-Cabezas, C. Emerging methods of caries diagnosis. J. Dent. Educ. 2001, 65, 1001–1006. [Google Scholar] [CrossRef]
- Dayo, A.F.; Wolff, M.S.; Syed, A.Z.; Mupparapu, M. Radiology of Dental Caries. Dent. Clin. N. Am. 2021, 65, 427–445. [Google Scholar] [CrossRef] [PubMed]
- Gomez, J. Detection and diagnosis of the early caries lesion. BMC Oral Health 2015, 15 (Suppl. S1), S3. [Google Scholar] [CrossRef] [PubMed]
- Foxton, R.M. Current perspectives on dental adhesion: (2) Concepts for operatively managing carious lesions extending into dentine using bioactive and adhesive direct restorative materials. Jpn. Dent. Sci. Rev. 2020, 56, 208–215. [Google Scholar] [CrossRef]
- Bromberg, N.; Brizuela, M. Dental Cone Beam Computed Tomography. 2025. Available online: https://europepmc.org/article/NBK/nbk592390 (accessed on 18 April 2025).
- AAE. Guide to Clinical Endodontics. Available online: https://www.aae.org/specialty/clinical-resources/guide-clinical-endodontics/ (accessed on 25 January 2024).
- AAPD. Pulp Therapy for Primary and Immature Permanent Teeth. Available online: https://www.aapd.org/research/oral-health-policies--recommendations/pulp-therapy-for-primary-and-immature-permanent-teeth/ (accessed on 18 April 2025).
- Coll, J.A.; Dhar, V.; Chen, C.-Y.; Crystal, Y.O.; Guelmann, M.; Marghalani, A.A.; AlShamali, S.; Xu, Z.; Glickman, G.N.; Wedeward, R. Use of Vital Pulp Therapies in Primary Teeth 2024. Pediatr. Dent. 2024, 46, 13–26. [Google Scholar]
- Dammaschke, T. The history of direct pulp capping. J. Hist. Dent. 2008, 56, 9–23. [Google Scholar] [PubMed]
- Ricucci, D.; Siqueira, J.F.; Li, Y.; Tay, F.R. Vital pulp therapy: Histopathology and histobacteriology-based guidelines to treat teeth with deep caries and pulp exposure. J. Dent. 2019, 86, 41–52. [Google Scholar] [CrossRef]
- Elmsmari, F.; Ruiz, X.-F.; Miró, Q.; Feijoo-Pato, N.; Durán-Sindreu, F.; Olivieri, J.G. Outcome of Partial Pulpotomy in Cariously Exposed Posterior Permanent Teeth: A Systematic Review and Meta-analysis. J. Endod. 2019, 45, 1296–1306.e1293. [Google Scholar] [CrossRef]
- Cvek, M. Prognosis of luxated non-vital maxillary incisors treated with calcium hydroxide and filled with gutta-percha. A retrospective clinical study. Endod. Dent. Traumatol. 1992, 8, 45–55. [Google Scholar] [CrossRef]
- Chailertvanitkul, P.; Paphangkorakit, J.; Sooksantisakoonchai, N.; Pumas, N.; Pairojamornyoot, W.; Leela-Apiradee, N.; Abbott, P.V. Randomized control trial comparing calcium hydroxide and mineral trioxide aggregate for partial pulpotomies in cariously exposed pulps of permanent molars. Int. Endod. J. 2014, 47, 835–842. [Google Scholar] [CrossRef]
- Fong, C.D.; Davis, M.J. Partial pulpotomy for immature permanent teeth, its present and future. Pediatr. Dent. 2002, 24, 29–32. [Google Scholar]
- Bjørndal, L.; Simon, S.; Tomson, P.L.; Duncan, H.F. Management of deep caries and the exposed pulp. Int. Endod. J. 2019, 52, 949–973. [Google Scholar] [CrossRef] [PubMed]
- Simon, S.; Perard, M.; Zanini, M.; Smith, A.J.; Charpentier, E.; Djole, S.X.; Lumley, P.J. Should pulp chamber pulpotomy be seen as a permanent treatment? Some preliminary thoughts. Int. Endod. J. 2013, 46, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Abed, D.; Bchara, J.; Bshara, N. Vital Pulpotomy on immature lower first permanent molars using Portland cement, a case of failure and success-case report with 2 years follow-up. Clin. Case Rep. 2023, 11, e7272. [Google Scholar] [CrossRef]
- Duncan, H.F.; El-Karim, I.; Dummer, P.M.H.; Whitworth, J.; Nagendrababu, V. Factors that influence the outcome of pulpotomy in permanent teeth. Int. Endod. J. 2023, 56 (Suppl. 2), 62–81. [Google Scholar] [CrossRef]
- Cushley, S.; Duncan, H.F.; Lappin, M.J.; Tomson, P.L.; Lundy, F.T.; Cooper, P.; Clarke, M.; El Karim, I.A. Pulpotomy for mature carious teeth with symptoms of irreversible pulpitis: A systematic review. J. Dent. 2019, 88, 103158. [Google Scholar] [CrossRef]
- Igna, A. Vital Pulp Therapy in Primary Dentition: Pulpotomy-A 100-Year Challenge. Children 2021, 8, 841. [Google Scholar] [CrossRef]
- Schwendicke, F.; Brouwer, F.; Schwendicke, A.; Paris, S. Different materials for direct pulp capping: Systematic review and meta-analysis and trial sequential analysis. Clin. Oral Investig. 2016, 20, 1121–1132. [Google Scholar] [CrossRef] [PubMed]
- Da Rosa, W.L.O.; Cocco, A.R.; Silva, T.M.D.; Mesquita, L.C.; Galarça, A.D.; Silva, A.F.D.; Piva, E. Current trends and future perspectives of dental pulp capping materials: A systematic review. J. Biomed. Mater. Res. Part B Appl. Biomater. 2018, 106, 1358–1368. [Google Scholar] [CrossRef]
- Watanabe, M.; Okamoto, M.; Komichi, S.; Huang, H.; Matsumoto, S.; Moriyama, K.; Ohshima, J.; Abe, S.; Morita, M.; Ali, M.; et al. Novel Functional Peptide for Next-Generation Vital Pulp Therapy. J. Dent. Res. 2023, 102, 322–330. [Google Scholar] [CrossRef]
- Dawood, A.E.; Parashos, P.; Wong, R.H.K.; Reynolds, E.C.; Manton, D.J. Calcium silicate-based cements: Composition, properties, and clinical applications. J. Investig. Clin. Dent. 2017, 8, e12195. [Google Scholar] [CrossRef] [PubMed]
- Tran, X.V.; Gorin, C.; Willig, C.; Baroukh, B.; Pellat, B.; Decup, F.; Opsahl Vital, S.; Chaussain, C.; Boukpessi, T. Effect of a calcium-silicate-based restorative cement on pulp repair. J. Dent. Res. 2012, 91, 1166–1171. [Google Scholar] [CrossRef]
- Tian, K.V.; Yang, B.; Yue, Y.; Bowron, D.T.; Mayers, J.; Donnan, R.S.; Dobó-Nagy, C.; Nicholson, J.W.; Fang, D.C.; Greer, A.L.; et al. Atomic and vibrational origins of mechanical toughness in bioactive cement during setting. Nat. Commun. 2015, 6, 8631. [Google Scholar] [CrossRef] [PubMed]
- Afkhami, F.; Rostami, G.; Xu, C.; Peters, O.A. The application of lasers in vital pulp therapy: Clinical and radiographic outcomes. BMC Oral Health 2024, 24, 333. [Google Scholar] [CrossRef]
- Kim, I.-H.; Jeon, M.; Cheon, K.; Kim, S.; Jung, H.-S.; Shin, Y.; Kang, C.; Kim, S.-O.; Choi, H.-J.; Lee, H.-S.; et al. In Vivo Evaluation of Decellularized Human Tooth Scaffold for Dental Tissue Regeneration. Appl. Sci. 2021, 11, 8472. [Google Scholar] [CrossRef]
- Zaen El-Din, A.M.; Hamama, H.H.; Abo El-Elaa, M.A.; Grawish, M.E.; Mahmoud, S.H.; Neelakantan, P. The effect of four materials on direct pulp capping: An animal study. Aust. Endod. J. 2020, 46, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.; Nawal, R.R.; Augustine, J.; Urs, A.B.; Talwar, S. Evaluation of Endosequence Root Repair Material and Endocem MTA as direct pulp capping agents: An in vivo study. Aust. Endod. J. 2022, 48, 251–257. [Google Scholar] [CrossRef]
- Lee, H.; Shin, Y.; Kim, S.O.; Lee, H.S.; Choi, H.J.; Song, J.S. Comparative Study of Pulpal Responses to Pulpotomy with ProRoot MTA, RetroMTA, and TheraCal in Dogs’ Teeth. J. Endod. 2015, 41, 1317–1324. [Google Scholar] [CrossRef]
- Ge, K.X.; Lam, W.Y.-H.; Chu, C.-H.; Yu, O.Y. Updates on the clinical application of glass ionomer cement in restorative and preventive dentistry. J. Dent. Sci. 2024, 19, S1–S9. [Google Scholar] [CrossRef]
- AAE Position Statement on Vital Pulp Therapy. J. Endod. 2021, 47, 1340–1344. [CrossRef]
- Duncan, H.F. Present status and future directions—Vital pulp treatment and pulp preservation strategies. Int. Endod. J. 2022, 55, 497–511. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.; Lv, Y. Application of Collagen Scaffold in Tissue Engineering: Recent Advances and New Perspectives. Polymers 2016, 8, 42. [Google Scholar] [CrossRef]
- Xie, Z.; Jiang, W.; Liu, H.; Chen, L.; Xuan, C.; Wang, Z.; Shi, X.; Lin, Z.; Gao, X. Antimicrobial Peptide- and Dentin Matrix-Functionalized Hydrogel for Vital Pulp Therapy via Synergistic Bacteriostasis, Immunomodulation, and Dentinogenesis. Adv. Healthc. Mater. 2024, 13, e2303709. [Google Scholar] [CrossRef] [PubMed]
- Zhu, N.; Chatzistavrou, X.; Papagerakis, P.; Ge, L.; Qin, M.; Wang, Y. Silver-Doped Bioactive Glass/Chitosan Hydrogel with Potential Application in Dental Pulp Repair. ACS Biomater. Sci. Eng. 2019, 5, 4624–4633. [Google Scholar] [CrossRef] [PubMed]
- Shobana, S.; Kavitha, M.; Srinivasan, N. Efficacy of Platelet Rich Plasma and Platelet Rich Fibrin for Direct Pulp Capping in Adult Patients with Carious Pulp Exposure- A Randomised Controlled Trial. Eur. Endod. J. 2022, 7, 114–121. [Google Scholar] [CrossRef]
- Farshidfar, N.; Jafarpour, D.; Firoozi, P.; Sahmeddini, S.; Hamedani, S.; de Souza, R.F.; Tayebi, L. The application of injectable platelet-rich fibrin in regenerative dentistry: A systematic scoping review of In vitro and In vivo studies. Jpn. Dent. Sci. Rev. 2022, 58, 89–123. [Google Scholar] [CrossRef]
- Sedek, E.M.; Abdelkader, S.; Fahmy, A.E.; Kamoun, E.A.; Nouh, S.R.; Khalil, N.M. Histological evaluation of the regenerative potential of a novel photocrosslinkable gelatin-treated dentin matrix hydrogel in direct pulp capping: An animal study. BMC Oral Health 2024, 24, 114. [Google Scholar] [CrossRef]
- Holiel, A.A.; Mahmoud, E.M.; Abdel-Fattah, W.M. Tomographic evaluation of direct pulp capping using a novel injectable treated dentin matrix hydrogel: A 2-year randomized controlled clinical trial. Clin. Oral Investig. 2021, 25, 4621–4634. [Google Scholar] [CrossRef]
- Yazdanfar, I.; Barekatain, M.; Zare Jahromi, M. Combination effects of diode laser and resin-modified tricalcium silicate on direct pulp capping treatment of caries exposures in permanent teeth: A randomized clinical trial. Lasers Med. Sci. 2020, 35, 1849–1855. [Google Scholar] [CrossRef]
- Anitua, E.; Sánchez, M.; Orive, G.; Andía, I. The potential impact of the preparation rich in growth factors (PRGF) in different medical fields. Biomaterials 2007, 28, 4551–4560. [Google Scholar] [CrossRef]
- Dohan Ehrenfest, D.M.; Rasmusson, L.; Albrektsson, T. Classification of platelet concentrates: From pure platelet-rich plasma (P-PRP) to leucocyte- and platelet-rich fibrin (L-PRF). Trends Biotechnol. 2009, 27, 158–167. [Google Scholar] [CrossRef] [PubMed]
- Hirani, P.; Sarangi, S.; Chandak, M.; Patel, A.; Ikhar, A.; Naladkar, K. Innovative Pulp Preservation: The Use of Platelet-Rich Fibrin (PRF) and Mineral Trioxide Aggregate (MTA) in Treating Dental Pulp Exposure. Cureus 2024, 16, e63740. [Google Scholar] [CrossRef] [PubMed]
- Kaushik, S.N.; Scoffield, J.; Andukuri, A.; Alexander, G.C.; Walker, T.; Kim, S.; Choi, S.C.; Brott, B.C.; Eleazer, P.D.; Lee, J.Y.; et al. Evaluation of ciprofloxacin and metronidazole encapsulated biomimetic nanomatrix gel on. Biomater. Res. 2015, 19, 9. [Google Scholar] [CrossRef] [PubMed]
- Kaushik, S.N.; Kim, B.; Walma, A.M.; Choi, S.C.; Wu, H.; Mao, J.J.; Jun, H.W.; Cheon, K. Biomimetic microenvironments for regenerative endodontics. Biomater. Res. 2016, 20, 14. [Google Scholar] [CrossRef]
- Shah, D.; Lynd, T.; Ho, D.; Chen, J.; Vines, J.; Jung, H.D.; Kim, J.H.; Zhang, P.; Wu, H.; Jun, H.W.; et al. Pulp-Dentin Tissue Healing Response: A Discussion of Current Biomedical Approaches. J. Clin. Med. 2020, 9, 434. [Google Scholar] [CrossRef]
- Yun, K.-H.; Ko, M.-J.; Chae, Y.-K.; Lee, K.; Nam, O.-H.; Lee, H.-S.; Cheon, K.; Choi, S.-C. Doxycycline-Loaded Nitric Oxide-Releasing Nanomatrix Gel in Replanted Rat Molar on Pulp Regeneration. Appl. Sci. 2021, 11, 6041. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Desai, P.K.; Hiwalkar, S.M.; Kim, H.-J.; Shin, J.; Lee, H.-S.; Jun, H.-W.; Cheon, K. Innovations in Bioactive Materials for Dental Pulp Vitality Preservation in Children and Adolescents. Appl. Sci. 2025, 15, 4699. https://doi.org/10.3390/app15094699
Desai PK, Hiwalkar SM, Kim H-J, Shin J, Lee H-S, Jun H-W, Cheon K. Innovations in Bioactive Materials for Dental Pulp Vitality Preservation in Children and Adolescents. Applied Sciences. 2025; 15(9):4699. https://doi.org/10.3390/app15094699
Chicago/Turabian StyleDesai, Purva K., Shreya M. Hiwalkar, Hyun-Joo Kim, Jonghyun Shin, Hyo-Seol Lee, Ho-Wook Jun, and Kyounga Cheon. 2025. "Innovations in Bioactive Materials for Dental Pulp Vitality Preservation in Children and Adolescents" Applied Sciences 15, no. 9: 4699. https://doi.org/10.3390/app15094699
APA StyleDesai, P. K., Hiwalkar, S. M., Kim, H.-J., Shin, J., Lee, H.-S., Jun, H.-W., & Cheon, K. (2025). Innovations in Bioactive Materials for Dental Pulp Vitality Preservation in Children and Adolescents. Applied Sciences, 15(9), 4699. https://doi.org/10.3390/app15094699