Can Anaerobically Digested Food Effluent Support Arthrospira platensis Cultivation in Open Ponds?
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Microalga Culture
2.2. Experimental Setup and Cultivation Conditions
2.3. Biomass and Chlorophyll a Determination
2.4. Analytical Methods
2.5. Public Data Sources
2.6. Statistical Analysis
3. Results
3.1. Culture Conditions
3.2. Physicochemical Parameters and Ammonium Content
3.3. Chlorophyll a Content of Cells
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jones, E.R.; Van Vliet, M.T.H.; Qadir, M.; Bierkens, M.F.P. Country-Level and Gridded Estimates of Wastewater Production, Collection, Treatment and Reuse. Earth Syst. Sci. Data 2021, 13, 237–254. [Google Scholar] [CrossRef]
- Ahuja, S. Water Quality Worldwide. In Handbook of Water Purity and Quality; Academic Press: Cambridge, MA, USA, 2021; pp. 19–33. [Google Scholar] [CrossRef]
- Khalid, S.; Shahid, M.; Natasha; Bibi, I.; Sarwar, T.; Shah, A.H.; Niazi, N.K. A Review of Environmental Contamination and Health Risk Assessment of Wastewater Use for Crop Irrigation with a Focus on Low and High-Income Countries. Int. J. Environ. Res. Public Health 2018, 15, 895. [Google Scholar] [CrossRef] [PubMed]
- Melikoglu, M.; Lin, C.S.K.; Webb, C. Analysing Global Food Waste Problem: Pinpointing the Facts and Estimating the Energy Content. Cent. Eur. J. Eng. 2013, 3, 157–164. [Google Scholar] [CrossRef]
- He, L.; Lin, Z.; Zhu, K.; Wang, Y.; He, X.; Zhou, J. Mesophilic Condition Favors Simultaneous Partial Nitrification and Denitrification (SPND) and Anammox for Carbon and Nitrogen Removal from Anaerobic Digestate Food Waste Effluent. Sci. Total Environ. 2022, 816, 151498. [Google Scholar] [CrossRef]
- Li, G.; Bai, X.; Li, H.; Lu, Z.; Zhou, Y.; Wang, Y.; Cao, J.; Huang, Z. Nutrients Removal and Biomass Production from Anaerobic Digested Effluent by Microalgae: A Review. Int. J. Agric. Biol. Eng. 2019, 12, 8–13. [Google Scholar] [CrossRef]
- Ahmed, S.F.; Mofijur, M.; Nuzhat, S.; Chowdhury, A.T.; Rafa, N.; Uddin, M.A.; Inayat, A.; Mahlia, T.M.I.; Ong, H.C.; Chia, W.Y.; et al. Recent Developments in Physical, Biological, Chemical, and Hybrid Treatment Techniques for Removing Emerging Contaminants from Wastewater. J. Hazard. Mater. 2021, 416, 125912. [Google Scholar] [CrossRef]
- Mesa, A.P.; Grattz, P.A.C.; Vargas, J.J.V.; Ríos, L.A.; Echeverri, D.O.; Parra, A.M.M. Feasibility of Nitrogen and Phosphorus Removal from Treated Wastewater Using Microalgae and Potential Microalgae Use as Biofertilizer. J. Water Process Eng. 2025, 70, 107023. [Google Scholar] [CrossRef]
- Das, V.; Dunford, N.; Deka, D. Waste Utilization and Biodiesel Production from Desmodesmus Maximus Grown in Swine Wastewater Using Waste Eggshells as a Catalyst. Aquac. Eng. 2022, 99, 102293. [Google Scholar] [CrossRef]
- Nwoba, E.G.; Moheimani, N.R.; Ubi, B.E.; Ogbonna, J.C.; Vadiveloo, A.; Pluske, J.R.; Huisman, J.M. Macroalgae Culture to Treat Anaerobic Digestion Piggery Effluent (ADPE). Bioresour. Technol. 2017, 227, 15–23. [Google Scholar] [CrossRef]
- Chuka-ogwude, D.; Ogbonna, J.; Moheimani, N.R. A Review on Microalgal Culture to Treat Anaerobic Digestate Food Waste Effluent. Algal Res. 2020, 47, 101841. [Google Scholar] [CrossRef]
- Ayre, J.M.; Moheimani, N.R.; Borowitzka, M.A. Growth of Microalgae on Undiluted Anaerobic Digestate of Piggery Effluent with High Ammonium Concentrations. Algal Res. 2017, 24, 218–226. [Google Scholar] [CrossRef]
- Cai, T.; Park, S.Y.; Li, Y. Nutrient Recovery from Wastewater Streams by Microalgae: Status and Prospects. Renew. Sustain. Energy Rev. 2013, 19, 360–369. [Google Scholar] [CrossRef]
- Abreu, A.P.; Martins, R.; Nunes, J. Emerging Applications of Chlorella sp. and Spirulina (Arthrospira) sp. Bioengineering 2023, 10, 955. [Google Scholar] [CrossRef]
- Ragaza, J.A.; Hossain, M.S.; Meiler, K.A.; Velasquez, S.F.; Kumar, V. A Review on Spirulina: Alternative Media for Cultivation and Nutritive Value as an Aquafeed. Rev. Aquac. 2020, 12, 2371–2395. [Google Scholar] [CrossRef]
- Chalermthai, B.; Charoensuppanimit, P.; Nootong, K.; Olsen, B.D.; Assabumrungrat, S. Techno-Economic Assessment of Co-Production of Edible Bioplastic and Food Supplements from Spirulina. Sci. Rep. 2023, 13, 10190. [Google Scholar] [CrossRef]
- El-Sayed, A.E.-K.; El-Sheekh, M. Outdoor Cultivation of Spirulina Platensis for Mass Production. Not. Sci. Biol. 2018, 10, 38–44. [Google Scholar] [CrossRef]
- Cheunbarn, S.; Peerapornpisal, Y. Cultivation of Spirulina Platensis Using Anaerobically Swine Wastewater Treatment Effluent. Int. J. Agric. Biol. 2015, 12, 586–590. [Google Scholar]
- Pumas, P.; Pumas, C. Cultivation of Arthrospira (Spirulina) platensis Using Low Cost Medium Supplemented with Lac Wastewater. Chiang Mai. J. Sci. 2016, 43, 1037–1047. [Google Scholar]
- Lucakova, S.; Branyikova, I.; Branyik, T.; Matoulkova, D.; Krausova, G. Wastewater from the Demineralization of Cheese Whey for Cost-Efficient Cultivation of Spirulina. J. Appl. Phycol. 2022, 34, 89–99. [Google Scholar] [CrossRef]
- Lee, S.J.; Park, S.; Noh, W.; Yeom, D.H.; Kim, S.; Kim, D.W.; Kim, J. Regeneration of Nitrate and Phosphate from Toilet Wastewater Using Waste Alumina Adsorbent for Cultivation of Spirulina Platensis. Environ. Eng. Res. 2020, 25, 393–399. [Google Scholar] [CrossRef]
- Nogueira, S.M.S.; Junior, J.S.; Maia, H.D.; Saboya, J.P.S.; Farias, W.R.L. Use of Spirulina Platensis in Treatment of Fish Farming Wastewater. Rev. Cienc. Agron. 2018, 49, 599–606. [Google Scholar] [CrossRef]
- Olguín, E.J.; Galicia, S.; Mercado, G.; Pérez, T. Annual Productivity of Spirulina (Arthrospira) and Nutrient Removal in a Pig Wastewater Recycling Process under Tropical Conditions. J. Appl. Phycol. 2003, 15, 249–257. [Google Scholar] [CrossRef]
- Matos, Â.P.; Vadiveloo, A.; Bahri, P.A.; Moheimani, N.R. Anaerobic Digestate Abattoir Effluent (ADAE), a Suitable Source of Nutrients for Arthrospira Platensis Cultivation. Algal. Res. 2021, 54, 102216. [Google Scholar] [CrossRef]
- Nematollahi, M.A.; Laird, D.W.; Hughes, L.J.; Raeisossadati, M.; Moheimani, N.R. Effect of Organic Carbon Source and Nutrient Depletion on the Simultaneous Production of a High Value Bioplastic and a Specialty Pigment by Arthrospira platensis. Algal Res. 2020, 47, 101844. [Google Scholar] [CrossRef]
- Jeffrey, S.W.; Humphrey, G.F. New Spectrophotometric Equations for Determining Chlorophylls a, b, C1 and C2 in Higher Plants, Algae and Natural Phytoplankton. Biochem. Und Physiol. Der Pflanz. 1975, 167, 191–194. [Google Scholar] [CrossRef]
- Borowitzka, M.A. High-Value Products from Microalgae-Their Development and Commercialisation. J. Appl. Phycol. 2013, 25, 743–756. [Google Scholar] [CrossRef]
- Raeisossadati, M.; Vadiveloo, A.; Bahri, P.A.; Parlevliet, D.; Moheimani, N.R. Treating Anaerobically Digested Piggery Effluent (ADPE) Using Microalgae in Thin Layer Reactor and Raceway Pond. J. Appl. Phycol. 2019, 31, 2321. [Google Scholar] [CrossRef]
- Chuka-ogwude, D.; Ogbonna, J.; Borowitzka, M.A.; Moheimani, N.R. Screening, Acclimation and Ammonia Tolerance of Microalgae Grown in Food Waste Digestate. J. Appl. Phycol. 2020, 32, 3775–3785. [Google Scholar] [CrossRef]
- Kisielewska, M.; Dębowski, M.; Zieliński, M.; Kazimierowicz, J.; Quattrocelli, P.; Bordiean, A. Effects of Liquid Digestate Treatment on Sustainable Microalgae Biomass Production. Bioenergy Res. 2021, 15, 357–370. [Google Scholar] [CrossRef]
- Uggetti, E.; Sialve, B.; Latrille, E.; Steyer, J.P. Anaerobic Digestate as Substrate for Microalgae Culture: The Role of Ammonium Concentration on the Microalgae Productivity. Bioresour. Technol. 2014, 152, 437–443. [Google Scholar] [CrossRef]
- Tam, N.F.Y.; Wong, Y.S. Effect of Ammonia Concentrations on Growth of Chlorella vulgaris and Nitrogen Removal from Media. Bioresour. Technol. 1996, 57, 45–50. [Google Scholar] [CrossRef]
- Magro, F.G.; Margarites, A.C.; Reinehr, C.O.; Gonçalves, G.C.; Rodigheri, G.; Costa, J.A.V.; Colla, L.M. Spirulina Platensis Biomass Composition Is Influenced by the Light Availability and Harvest Phase in Raceway Ponds. Environ. Technol. 2018, 39, 1868–1877. [Google Scholar] [CrossRef] [PubMed]
- Belay, A. Mass Culture of Spirulina Outdoors-the Earthrise Farms Experience. In Spirulina platensis (Arthrospira): Physiology, Cell-Biology and Biotechnology; Vonshak, A., Ed.; Taylor and Francis Group, CRC Press: London, UK, 1997; pp. 131–158. [Google Scholar]
- Kaushik, R.; Prasanna, R.; Joshi, H.C. Utilization of Anaerobically Digested Distillery Effluent for the Production of Spirulina platensis (ARM 730). J. Sci. Ind. Res. 2006, 65, 521–525. [Google Scholar]
- Ajijah, N.; Tjandra, B.C.; Hamidah, U.; Widyarani; Sintawardani, N. Utilization of Tofu Wastewater as a Cultivation Medium for Chlorella Vulgaris and Arthrospira Platensis. In Proceedings of the 4th International Symposium on Green Technology for Value Chains, Tangerang, Indonesia, 23–24 October 2019; IOP Conference Series: Earth and Environmental Science. Institute of Physics Publishing: Bristol, UK, 2020; Volume 483. [Google Scholar]
- Krishnamoorthy, S.; Manickam, P.; Muthukaruppan, V. Evaluation of Distillery Wastewater Treatability in a Customized Photobioreactor Using Blue-Green Microalgae—Laboratory and Outdoor Study. J. Environ. Manag. 2019, 234, 412–423. [Google Scholar] [CrossRef]
- Matos, Â.P.; da Silva, T.; Sant’Anna, E.S. The Feasibility of Using Inland Desalination Concentrate (DC) as an Alternative Substrate for Spirulina platensis Mass Cultivation. Waste Biomass Valorization 2021, 12, 3193–3203. [Google Scholar] [CrossRef]
- McDowell, D.; Dick, J.T.; Eagling, L.; Julius, M.; Sheldrake, G.N.; Theodoridou, K.; Walsh, P.J. Recycling Nutrients from Anaerobic Digestates for the Cultivation of Phaeodactylum Tricornutum: A Feasibility Study. Algal. Res. 2020, 48, 101893. [Google Scholar] [CrossRef]
- Sánchez-Quintero, Á.; Leca, M.A.; Bennici, S.; Limousy, L.; Monlau, F.; Beigbeder, J.B. Treatment and Valorization of Agro-Industrial Anaerobic Digestate Using Activated Carbon Followed by Spirulina Platensis Cultivation. Sustainability 2023, 15, 4571. [Google Scholar] [CrossRef]
- Borges, J.A.; Rosa, G.M.; Meza, L.H.R.; Henrard, A.A.; Souza, M.R.A.Z.; Costa, J.A.V. Spirulina Sp. LEB-18 Culture Using Effluent from the Anaerobic Digestion. Braz. J. Chem. Eng. 2013, 30, 277–287. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Ammonia (mg N-NH3 L−1) | 2800 |
Nitrate (mg N-NO3− L−1) | <1 |
NOx-N (mg L−1) | <1 |
Total nitrogen (mg L−1) | 5300 |
Total phosphorus (mg L−1) | 520 |
Total iron (mg L−1) | 16 |
Total calcium (mg L−1) | 170 |
Magnesium (mg L−1) | 24 |
Chemical oxygen demand, COD (mg L−1) | 50,000 |
Potassium (mg L−1) | 120 |
Treatment Group | Zarrouk (%) | ADFE (%) | Description |
---|---|---|---|
Zarrouk | 100 | 0 | No ADFE added |
37.5% ADFE | 62.5 | 37.5 | ADFE added on day 0 |
50% ADFE-addition | 50 | 50 | ADFE added incrementally on days 0, 1, 5, 8, 13 |
70% ADFE-addition | 30 | 70 | ADFE added incrementally on days 0, 1, 5, 8, 13 |
Nutrients | Zarrouk | 37.5% ADFE | 50% ADFE | 70% ADFE | Chemical Detail |
---|---|---|---|---|---|
NaHCO3 (g) | 336 | 210 | 168 | 100.8 | Merck KGaA, Darmstadt, Germany |
N-NO3−1 (g) * | 8.3 | 5.19 | 4.15 | 2.49 | Merck KGaA, Darmstadt, Germany |
NaCl (g) | 20 | 12.5 | 10 | 6 | Merck KGaA, Darmstadt, Germany |
K2SO4 (g) | 20 | 12.5 | 10 | 6 | Sigma-Aldrich, St. Louis, MO, USA |
K2HPO4 (g) | 10 | 6.25 | 5 | 3 | Sigma-Aldrich, St. Louis, MO, USA |
Solution A (mL) ** | 20 | 12.5 | 10 | 6 | Composition specified in the method |
Solution B (mL) ** | 20 | 12.5 | 10 | 6 | |
Solution Fe (mL) ** | 20 | 12.5 | 10 | 6 | |
N-NH3 (g) * | 0 | 3.17 | 4.15 | 5.81 | Richgro, Garden Product, Jandakot, WA, Australia |
Treatment | Overall Volumetric Productivity (mg L−1 d−1) | Overall Areal Productivity (g m−2 d−1) | Maximum Specific Growth Rate (μmax) | Chlorophyll a (mg/g Biomass) |
---|---|---|---|---|
Zarrouk | 22.9 ± 1.76 a | 4.58 ± 0.35 a | 0.093 ± 0.03 a | 6.95 ± 0.76 a |
37.5% ADFE | 28.3 ± 1.71 b | 5.66 ± 0.34 b | 0.13 ± 0.03 a | 6.98 ± 0.15 a |
50% ADFE-addition | 41.0 ± 0.61 c | 8.20 ± 0.12 c | 0.11 ± 0.01 a | 7.17 ± 0.98 a |
70% ADFE-addition | 44.2 ± 3.48 c | 8.83 ± 0.69 c | 0.13 ± 0.01 a | 7.09 ± 0.80 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raeisossadati, M.; Bumandalai, O.; Moheimani, N.R. Can Anaerobically Digested Food Effluent Support Arthrospira platensis Cultivation in Open Ponds? Appl. Sci. 2025, 15, 3115. https://doi.org/10.3390/app15063115
Raeisossadati M, Bumandalai O, Moheimani NR. Can Anaerobically Digested Food Effluent Support Arthrospira platensis Cultivation in Open Ponds? Applied Sciences. 2025; 15(6):3115. https://doi.org/10.3390/app15063115
Chicago/Turabian StyleRaeisossadati, Mohammadjavad, Odgerel Bumandalai, and Navid Reza Moheimani. 2025. "Can Anaerobically Digested Food Effluent Support Arthrospira platensis Cultivation in Open Ponds?" Applied Sciences 15, no. 6: 3115. https://doi.org/10.3390/app15063115
APA StyleRaeisossadati, M., Bumandalai, O., & Moheimani, N. R. (2025). Can Anaerobically Digested Food Effluent Support Arthrospira platensis Cultivation in Open Ponds? Applied Sciences, 15(6), 3115. https://doi.org/10.3390/app15063115