Duality of Biochar and Organic Manure Co-Composting on Soil Heavy Metals and Enzymes Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methods of Application of Animal Manure
2.2. Collection of Soil Samples
2.3. Measurement of Soil Enzymes Activity
2.4. Soil Metal and Nutrient Analysis
3. Results and Discussion
3.1. Composition of Soil Amendments
3.2. Soil Enzyme Activity
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Antonious, G.F.; Dawood, M.H.; Turley, E.T.; Paxton, R.B. Biochar and animal manures increased yield of three varieties of turnips. Int. J. Appl. Agric. Sci. 2022, 8, 50–56. [Google Scholar] [CrossRef]
- Antonious, G.F.; Turley, E.T.; Gyawali, R.B.; Freeman, A.C. Influence of biochar and animal manures application on ammonia and nitrate concentrations in the root and shoot of three varieties of turnips. Agriculture 2023, 13, 137. [Google Scholar] [CrossRef]
- Antonious, G.F. The Impact of Organic, Inorganic Fertilizers, and Biochar on Phytochemicals Content of Three Brassicaceae Vegetables. Appl. Sci. 2023, 13, 8801. [Google Scholar] [CrossRef]
- Kavitha, B.; Reddy, P.V.L.; Kim, B.; Lee, S.S.; Pandey, S.K.; Kim, K.H. Benefits and Limitations of Biochar Amendment in Agricultural Soils: A Review. J. Environ. Manag. 2018, 227, 146–154. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, Y.; Liu, S.; Huang, X.; Li, Z.; Tan, X.; Zeng, G.; Zhou, L. Potential Benefits of Biochar in Agricultural Soils: A Review. Pedosphere 2017, 27, 645–661. [Google Scholar] [CrossRef]
- Shaaban, M.; Van Zwieten, L.; Bashir, S.; Younas, A.; Núñez-Delgado, A.; Chhajro, M.A.; Kubar, K.A.; Ali, U.; Rana, M.S.; Mehmood, M.A.; et al. A Concise Review of Biochar Application to Agricultural Soils to Improve Soil Conditions and Fight Pollution. J. Environ. Manag. 2018, 228, 429–440. [Google Scholar] [CrossRef] [PubMed]
- Alkharabsheh, H.M.; Seleiman, M.F.; Battaglia, M.L.; Shami, A.; Jalal, R.S.; Alhammad, B.A.; Almutairi, K.F.; Al-Saif, A.M. Biochar and Its Broad Impacts in Soil Quality and Fertility, Nutrient Leaching and Crop Productivity: A Review. Agronomy 2021, 11, 993. [Google Scholar] [CrossRef]
- Jeyasubramanian, K.; Thangagiri, B.; Sakthivel, A.; Dhaveethu Raja, J.; Seenivasan, S.; Vallinayagam, P.; Madhavan, D.; Malathi Devi, S.; Rathika, B. A complete review on biochar: Production, property, multifaceted applications. Fuel 2021, 292, 20243. [Google Scholar] [CrossRef]
- Haider, G.; Steffens, D.; Moser, G.; Müller, C.; Kammann, C.I. Biochar reduced nitrate leaching and improved soil moisture without yield improvements in a four-year field study. Agric. Ecosyst. Environ. 2017, 237, 80–94. [Google Scholar] [CrossRef]
- Antonious, G.F. Soil amendments for agricultural production. In Organic Fertilizers: From Basic Concepts to Applied Outcomes; Larramendy, M.L., Soloneski, S., Eds.; Intech: Rijeka, Croatia, 2016; pp. 157–187. [Google Scholar]
- Antonious, G.F.; Turley, E.T.; Dawood, M. Monitoring soil enzymes activity before and after animal manure application. Agriculture 2020, 10, 166. [Google Scholar] [CrossRef]
- Antonious, G.F.; Dawood, M.H.; Turley, E.T.; Trivette, T.G. Soil amendments enhanced summer squash yield, fruit composition, quality, and soil enzyme activity. Agric. Sci. 2022, 13, 684–701. [Google Scholar] [CrossRef]
- Lopes, L.N.; Souza, C.F.; Santoro, B.L. Utilização da TDR para monitoramento da solução de nitrato de potássioem Latossolo Vermelho-Amarelo. Eng. Agric. 2010, 30, 932–947. [Google Scholar]
- De Souza, A.H.C.; Rezende, R.; Lorenzoni, M.Z.; Seron, C.C.; Hachmann, T.L.; Lozano, C.S. Response of eggplant crop fertigated with doses of nitrogen and potassium. Rev. Bras. Eng. Agríc. Ambient. 2017, 21, 1. [Google Scholar] [CrossRef]
- Aminifard, M.H.; Aroiee, H.; Fatemi, H.; Ameri, A.; Karimpour, S. Responses of eggplant (Solanum melongena L.) to different rates of nitrogen under field conditions. J. Cent. Eur. Agric. 2010, 11, 453–458. [Google Scholar] [CrossRef]
- Amiri, E.; Gohari, A.A.; Esmailian, Y. Effect of irrigation and nitrogen on yield, yield components and water use efficiency of eggplant. Afr. J. Biotechnol. 2012, 11, 3070–3079. [Google Scholar]
- Trani, P.E. Calagem e Adubação para Hortaliças sob Cultivo Protegido; Instituto Agronômico: Campinas, Brazil, 2014; p. 25. [Google Scholar]
- Hejna, M.; Moscatelli, A.; Onelli, E.; Baldi, A.; Pilu, S.; Rossi, L. Evaluation of concentration of heavy metals in animal rearing system. Ital. J. Anim. Sci. 2019, 18, 1372–1384. [Google Scholar] [CrossRef]
- Antonious, G.F. Mobility of Nitrates and Phosphates from Animal Manure-Amended Soil to Runoff and Seepage Water from a Sweet Potato Field. Water 2024, 16, 204. [Google Scholar] [CrossRef]
- Chen, L.; Guo, H.; Luo, S.; Xiao, X.; Xi, Q.; Wei, W.; He, Y. Bioremediation of heavy metals by growing hyperaccumulator endophytic bacterium Bacillus sp. L14. Bioresour. Technol. 2010, 101, 8599–8605. [Google Scholar]
- Karaca, A.; Cetin, S.C.; Turgay, Q.C.; Kizilkaya, R. Effects of Heavy Metals on Soil Enzyme Activities. In Soil Enzyme Activities; Springer: Berlin/Heidelberg, Germany, 2010; pp. 195–218. [Google Scholar] [CrossRef]
- Antonious, G.F. Biochar and animal manure impact on soil, crop yield and quality. In Agricultural Waste; Aladjadjiyan, A., Ed.; National Biomass Association, Bulgaria & IntechOpen: Rijeka, Croatia, 2018. [Google Scholar]
- Antonious, G.F. Animal Manure Improved Antioxidants in two Brassicaceae Plants: Arugula and Mustard. EMS Environ. Sci. 2018, 1, 003. Available online: https://emspublishers.org/article.php?articleId=1026 (accessed on 24 December 2024).
- Kizilkaya, R.; Askin, T.; Bayraki, B.; Sağlam, M. Microbial characteristics of soil contaminated with heavy metals. Eur. J. Soil Biol. 2004, 40, 95–102. [Google Scholar] [CrossRef]
- Hinojosa, M.B.; Carreira, J.A.; Rodriguez-Moroto, J.M.; Garcia-Ruiz, R. Effects of pyrite sludge pollution on soil enzyme activities: Ecological dose-response model. Sci. Total Environ. 2008, 396, 89–99. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Carballo, E.; González-Barreiro, C.; Scharf, S.; Gans, O. Environmental monitoring study of selected veterinary antibiotics in animal manure and soils in Austria. Environ. Pollut. 2007, 148, 570–579. [Google Scholar] [CrossRef] [PubMed]
- Andrews, R.K.; Blakeley, R.L.; Zerner, B. Urease: A Ni (II) metalloenzyme. In The Bioinorganic Chemistry of Nickel; Lancaster, J.R., Ed.; VCH: New York, NY, USA, 1989; pp. 141–166. [Google Scholar]
- Mobley, H.L.T.; Hausinger, R.P. Microbial urease: Significance, regulation and molecular characterization. Microbiol. Rev. 1989, 53, 85–108. [Google Scholar] [CrossRef]
- Spalding, B.P. Effect of divalent metal cations respiration and extractable enzyme activities of Douglas-fir needle litter. J. Environ. Qual. 1979, 8, 105–109. [Google Scholar] [CrossRef]
- Garcia, G.J.M.; Ocampo, J.A.; Garcia, R.I. Enzymes in the arbuscular mycorrhizal symbiosis. In Enzymes in the Environment: Activity, Ecology, and Applications; Burns, R.G., Dick, R.P., Eds.; Marcel Dekker, Inc.: Basel, Switzerland, 2002; Chapter 5. [Google Scholar]
- Moya, D.; Aldás, C.; López, G.; Kaparaju, P. Municipal solid waste as a valuable renewable energy resource: A worldwide opportunity of energy recovery by using waste-to-energy technologies. Energy Procedia 2017, 134, 286–295. [Google Scholar] [CrossRef]
- Kentucky Production Guide (2022–2024). The University of Kentucky, College of Agriculture, Food and Environment, Cooperative Extension Service, ID-36. Available online: https://kentuckypestnews.wordpress.com/2021/10/26/vegetable-production-guide-for-commercial-growers-2022-2023-id-36/ (accessed on 24 December 2024).
- Tabatabai, M.A.; Bremner, J.M. Assay of urease activity in soils. Soil Biol. Biochem. 1972, 4, 479–487. [Google Scholar] [CrossRef]
- Antonious, G.F.; Turley, E.T. Trace elements composition and enzymes activity of soil amended with municipal sewage sludge at three locations in Kentucky. Int. J. Appl. Agric. Sci. 2020, 6, 89–95. [Google Scholar] [CrossRef]
- Balasubramanian, D.; Bagyaraj, D.J.; Rangaswami, G. Studies on the influence of foliar application of chemicals on the microflora and certain enzyme activities in the rhizosphere of Eleusine coracana Gaertn. Plant Soil 1970, 32, 198–206. [Google Scholar] [CrossRef]
- Tabatabai, M.A.; Bremner, J.M. Use of p-nitrophenol phosphate for assay of soil phosphatase activity. Soil Biol. Biochem. 1969, 1, 301–307. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency (EPA). Method 6020A: Inductively Coupled Plasma-Mass Spectrometry; USEPA: Washington, DC, USA, 1998. Available online: https://19january2017snapshot.epa.gov/sites/production/files/2015-07/documents/epa-6020a.pdf (accessed on 24 December 2024).
- American Public Health Association (APHA). Standard Methods for the Examination of Water and Wastewater, 21st ed.; Eaton, A.D., Clesceri, L.S., Rice, E.W., Greenberg, A.E., Eds.; Port City Press: Baltimore, MD, USA, 2005. [Google Scholar]
- SAS Institute Inc. SAS/STAT Guide; Version 9.1.3; SAS Institute Inc.: Cary, NC, USA, 2003. [Google Scholar]
- Frankenberger, W.T.; Johanson, J.B. Factors affecting invertase activity in soils. Plant Soil 1983, 3, 313–323. [Google Scholar] [CrossRef]
- Pabbisetty, S.K.; Shrivastava, A.; Satyanarayana, T. Effects of pH on the activity and stability of invertase from Thermotoga maritima. J. Enzym. Microb. Technol. 2010, 46, 98–103. [Google Scholar]
- Tan, X.; Liu, Y.; Yan, K.; Wang, Z.; Lu, G.; He, Y.; He, W. Differences in the response of soil dehydrogenase activity to Cd contamination are determined by the different substrates used for its determination. Chemosphere 2017, 169, 324–332. [Google Scholar] [CrossRef]
- Zhao, G.; Sheng, Y.; Li, C.; Liu, Q. Effects of macro metals on alkaline phosphatase activity under conditions of sulfide accumulation. Sci. Total Environ. 2019, 697, 134151. [Google Scholar] [CrossRef] [PubMed]
- Mierzwa-Hersztek, M.; Gondek, K.; Klimkowicz-Pawlas, A.; Baran, A. Effect of wheat and Miscanthus straw biochars on soil enzymatic activity, ecotoxicity, and plant yield. Int. Agrophys. 2017, 31, 367–375. [Google Scholar] [CrossRef]
- Ameloot, N.; Neve, S.D.; Jegajeevagan, K.; Yildiz, G.; Buchan, D.; Funkuin, Y.N.; Prins, W.; Bouckaert, L.; Sleutel, S. Short-term CO2 and N2O emissions and microbial properties of biochar amended sandy loam soils. Soil Biol. Biochem. 2013, 57, 401–410. [Google Scholar] [CrossRef]
- Tang, Z.; Chen, H.; He, H.; Ma, C. Assays for alkaline phosphatase activity: Progress and prospects. TrAC Trends Anal. Chem. 2019, 113, 32–43. [Google Scholar] [CrossRef]
- Tan, X.; Machmuller, M.B.; Wang, Z.; Li, X.; He, W.; Cotrufo, M.F.; Shen, W. Temperature enhances the affinity of soil alkaline phosphatase to Cd. Chemosphere 2018, 196, 214–222. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, J.; Liu, X.; Chang, T.; Wang, Q.; Shaghaleh, H.; Hamoud, Y.A. Effects of biochar and vermicompost on microorganisms and enzymatic activities in greenhouse soil. Front. Environ. Sci. 2023, 10, 1060277. [Google Scholar] [CrossRef]
- Boavida, M.J.; Wetzel, R.G. Inhibition of phosphatase activity by dissolved humic substances and hydrolytic reactivation by natural ultraviolet light. Freshw. Biol. 1998, 40, 285–293. [Google Scholar] [CrossRef]
Soil Properties | Sewage Sludge | Chicken Manure | Horse Manure | Vermi- Compost | Native Soil | Biochar | Inorganic Fertilizer | Organic Fertilizer |
---|---|---|---|---|---|---|---|---|
Soil Water pH | 5.7 ± 0.1 b | 6.2 ± 0.3 a | 5.6 ± 0.1 b | 5.7 ± 0.1 b | 6.2 ± 0.3 a | 6.4 ± 0.0 a | 6.1 ± 0.1 a | 5.8 ± 0.1 b |
N-NO3, ppm | 20.1 ± 3.5 d | 18.3 ± 9.2 d | 25.0 ± 6.0 c | 37.3 ± 11.8 bc | 20.7 ± 4.5 c | 92.6 ± 0.0 a | 79.3 ± 8.4 b | 32.7 ± 8.5 c |
N-NH4, ppm | 29.7 ± 17 b | 66.7 ± 6.4 a | 3.3 ± 0.6 c | 3.7 ± 0.6 c | 5.7 ± 3.8 c | 35.8 ± 0.2 b | 50.7 ± 56.6 a | 47 ± 23.5 a |
P, ppm | 100.3 ± 10.7 a | 89.3 ± 6.6 a | 116.0 ± 50 a | 87.7 ± 9.5 a | 95.8 ± 10.2 a | 42.8 ± 0.3 b | 121.3 ± 47.9 a | 94.8 ± 10.3 a |
K, ppm | 327.5 ± 4.9 d | 483.8 ± 74.8 b | 365.5 ± 26 bc | 557.3± 79.8 b | 336.2 ± 121 d | 22.4 ± 4.0 e | 1024.0 ± 0.38 a | 383.4 ± 0.4 bc |
C, ppm | 1050.0 ± 28 c | 1160.8 ± 51.0 bc | 1067.2 ± 23 c | 1230.2 ± 28 bc | 1091.7 ± 22 c | 50,623 ± 5.5 a | 1155.3 ± 28.1 bc | 1112.8 ± 43.9 bc |
EC, µS cm−1 | 106.4 ± 13 b | 95.8 ± 14.6 b | 89.3 ± 14.1 b | 122.3 ± 8.6 b | 94.4 ± 13.1 b | 410.3 ± 5.9 a | 134.7 ± 0.1 b | 27.9 ± 0.1 c |
Cd, ppm | 0.04 ± 0.0 a | 0.04 ± 0.0 a | 0.04 ± 0.0a | 0.04 ± 0.0 a | 0.04 ± 0.001 a | 0.04 ± 0.0 a | 0.01 ± 0.0 b | 0.05 ± 0.0 a |
Cr, ppm | 0.04 ± 0.0 a | 0.04 ± 0.0 a | 0.04 ± 0.0 a | 0.04 ± 0.0 a | 0.04 ± 0.00 a | 0.03 ± 0.0 b | 0.02 ± 0.0 b | 0.02 ± 0.0 b |
Cu, ppm | 1.9 ± 0.1 a | 2.0 ± 0.1 a | 1.9 ± 0.1 a | 2 ± 0.1 a | 1.9 ± 0.1 a | 0.26 ± 0.0 b | 0.04 ± 0.0 c | 0.004 ± 0.0 d |
Zn, ppm | 2.3 ± 0.2 a | 1.9 ± 0.10 a | 2.0 ± 0.1 a | 4.2 ± 1.7 a | 1.9 ± 0.1 a | 0.29 ± 0.0 cd | 0.10 ± 0.0 d | 0.4 ± 0.0 c |
Pb, ppm | 2.2 ± 0.1 a | 2.2 ± 0.0 a | 2.1 ± 0.0 a | 2.1 ± 0.1 a | 2.1 ± 0.1 a | 0.01 ± 0.0 b | 0.03 ± 0.0 b | 0.02 ± 0.0 b |
As, ppm | 8.6 ± 0.6 a | 8.8 ± 0.7 a | 8.2 ± 0.1 a | 8.3 ± 0.1 a | 8.4 ± 0.1 a | ND | ND | ND |
Ni, ppm | 0.7 ± 0.0 a | 0.7 ± 0.0 a | 0.6 ± 0.0 a | 0.7 ± 0.0 a | 0.7 ± 0.0 a | 0.02 ± 0.0 c | 0.007 ± 0.0 d | 0.03 ± 0.0 c |
Urease 1 | 956.3 ± 165 b | 993 ± 192 b | 805.8 ± 130 c | 1105.9 ± 141a | 911.8 ± 109 b | - | - | - |
Invertase 2 | 3696.9 ± 312 a | 3736.1 ± 339 a | 3610 ± 282 a | 3970.3 ± 27 a | 3234 ± 265 b | - | - | - |
Acid Phosphatase 3 | 1435.4 ± 107a | 1158.3 ± 42 b | 1197.3 ± 35 b | 1413.6 ± 51 a | 1354.9 ± 79 a | - | - | - |
Alkaline Phosphatase 4 | 389.3 ± 50 c | 524.43 ± 80 a | 400.7 ± 46 b | 309.38 ± 45 c | 427.6 ± 60 b | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antonious, G.F. Duality of Biochar and Organic Manure Co-Composting on Soil Heavy Metals and Enzymes Activity. Appl. Sci. 2025, 15, 3031. https://doi.org/10.3390/app15063031
Antonious GF. Duality of Biochar and Organic Manure Co-Composting on Soil Heavy Metals and Enzymes Activity. Applied Sciences. 2025; 15(6):3031. https://doi.org/10.3390/app15063031
Chicago/Turabian StyleAntonious, George F. 2025. "Duality of Biochar and Organic Manure Co-Composting on Soil Heavy Metals and Enzymes Activity" Applied Sciences 15, no. 6: 3031. https://doi.org/10.3390/app15063031
APA StyleAntonious, G. F. (2025). Duality of Biochar and Organic Manure Co-Composting on Soil Heavy Metals and Enzymes Activity. Applied Sciences, 15(6), 3031. https://doi.org/10.3390/app15063031