Prediction of Lithium Battery Voltage and State of Charge Using Multi-Head Attention BiLSTM Neural Network
Abstract
:1. Introduction
2. Methodology
- 1.
- Battery Experimental Data Collection: time-series data of essential parameters, including voltage and current, were collected from practical battery operations.
- 2.
- Parameter Identification: this process determines critical parameters in the equivalent circuit, such as internal resistance and time constants of RC networks.
- 3.
- Equivalent Circuit Model Construction: a second-order RC equivalent circuit model was established in the Simulink environment.
- 4.
- Battery Data Simulation: the constructed ECM was employed to simulate charge–discharge cycles, generating extensive training data.
- 5.
- Model Training: the simulated data were used to train a bidirectional LSTM network integrated with multi-head attention mechanism.
- 6.
- Battery State Prediction: the trained model is applied to predict battery voltage and SOC.
2.1. Equivalent Circuit Model
2.2. Neural Network Models
2.2.1. LSTM
2.2.2. BiLSTM
2.2.3. Multi-Head Attention Mechanism
3. Results and Discussions
3.1. ECM Development and Parameter Identification
3.2. Data-Driven Prediction Model Development and Training
3.2.1. Data Processing
3.2.2. Model Train Flow
3.3. Model Performance Comparison
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hu, X.; Zhang, K.; Liu, K.; Lin, X.; Dey, S.; Onori, S. Advanced fault diagnosis for lithium-ion battery systems: A review of fault mechanisms, fault features, and diagnosis procedures. IEEE Ind. Electron. Mag. 2020, 14, 65–91. [Google Scholar] [CrossRef]
- Chang, W.-Y. The state of charge estimating methods for battery: A review. Int. Sch. Res. Not. 2013, 2013, 953792. [Google Scholar] [CrossRef]
- Xiong, R.; Cao, J.; Yu, Q.; He, H.; Sun, F. Critical review on the battery state of charge estimation methods for electric vehicles. IEEE Access 2017, 6, 1832–1843. [Google Scholar] [CrossRef]
- Hannan, M.A.; Lipu, M.H.; Hussain, A.; Mohamed, A. A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations. Renew. Sustain. Energy Rev. 2017, 78, 834–854. [Google Scholar] [CrossRef]
- Zubi, G.; Dufo-López, R.; Carvalho, M.; Pasaoglu, G. The lithium-ion battery: State of the art and future perspectives. Renew. Sustain. Energy Rev. 2018, 89, 292–308. [Google Scholar] [CrossRef]
- Armand, M.; Axmann, P.; Bresser, D.; Copley, M.; Edström, K.; Ekberg, C.; Guyomard, D.; Lestriez, B.; Novák, P.; Petranikova, M.; et al. Lithium-ion batteries–Current state of the art and anticipated developments. J. Power Sources 2020, 479, 228708. [Google Scholar] [CrossRef]
- Newman, J.; Tiedemann, W. Porous-electrode theory with battery applications. AIChE J. 1975, 21, 25–41. [Google Scholar] [CrossRef]
- Liu, X.; Li, W.; Zhou, A. PNGV equivalent circuit model and SOC estimation algorithm for lithium battery pack adopted in AGV vehicle. IEEE Access 2018, 6, 23639–23647. [Google Scholar] [CrossRef]
- Lu, L.; Zhang, Z.; Li, J.; Hua, J.; Ouyang, M. A review on the key issues for lithium-ion battery management in electric vehicles. J. Power Sources 2013, 226, 272–288. [Google Scholar] [CrossRef]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536. [Google Scholar] [CrossRef]
- Bishop, C.M.; Nasrabadi, N.M. Pattern Recognition and Machine Learning, 4th ed.; Springer: New York, NY, USA, 2006. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Hu, X.; Li, S.; Yang, Y. Advanced machine learning approach for lithium-ion battery state estimation in electric vehicles. IEEE Trans. Transp. Electrif. 2015, 2, 140–149. [Google Scholar] [CrossRef]
- Roman, D.; Saxena, S.; Robu, V.; Pecht, M.; Flynn, D. Machine learning pipeline for battery state-of-health estimation. Nat. Mach. Intell. 2021, 3, 447–456. [Google Scholar] [CrossRef]
- Ng, M.F.; Zhao, J.; Yan, Q.; Conduit, G.J.; Seh, Z.W. Predicting the state of charge and health of batteries using data driven machine learning. Nat. Mach. Intell. 2020, 2, 161–170. [Google Scholar] [CrossRef]
- Fei, Z.; Yang, F.; Tsui, K.L.; Li, L.; Zhang, Z. Early prediction of battery lifetime via a machine learning-based framework. Energy 2021, 225, 120205. [Google Scholar] [CrossRef]
- Miao, J.; Tong, Z.; Tong, S.; Zhang, J.; Mao, J. State of charge estimation of lithium-ion battery for electric vehicles under extreme operating temperatures based on an adaptive temporal convolutional network. Batteries 2022, 8, 145. [Google Scholar] [CrossRef]
- Ren, X.; Liu, S.; Yu, X.; Dong, X. A method for state-of-charge estimation of lithium-ion batteries based on PSO-LSTM. Energy 2021, 234, 121236. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, S.; Li, W.; Miao, Q. State-of-charge estimation of lithium-ion batteries using LSTM and UKF. Energy 2020, 201, 117664. [Google Scholar] [CrossRef]
- Wang, F.K.; Amogne, Z.E.; Chou, J.H.; Tseng, C. Online remaining useful life prediction of lithium-ion batteries using bidirectional long short-term memory with attention mechanism. Energy 2022, 254, 124344. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, N.; Chen, C.; Guo, Y. Adaptive self-attention LSTM for RUL prediction of lithium-ion batteries. Inf. Sci. 2023, 635, 398–413. [Google Scholar] [CrossRef]
- Madani, S.S.; Ziebert, C.; Vahdatkhah, P.; Sadrnezhaad, S.K. Recent progress of deep learning methods for health monitoring of lithium-ion batteries. Batteries 2024, 10, 204. [Google Scholar] [CrossRef]
- Shrivastava, P.; Soon, T.K.; Idris, M.Y.I.B.; Mekhilef, S. Overview of model-based online state-of-charge estimation using Kalman filter family for lithium-ion batteries. Renew. Sustain. Energy Rev. 2019, 113, 109233. [Google Scholar] [CrossRef]
- You, H.W.; Bae, J.I.; Cho, S.J.; Lee, J.M.; Kim, S.H. Analysis of equivalent circuit models in lithium-ion batteries. Aip Adv. 2018, 8, 125101. [Google Scholar] [CrossRef]
- Li, F.; Li, Z.; Zhang, Y.; Xu, G.; Wang, X.; Zhang, H. Analysis and Verification of Equivalent Circuit Model of Soft-Pack Lithium Batteries. Energies 2025, 18, 510. [Google Scholar] [CrossRef]
- Zaheer, M.; Guruganesh, G.; Dubey, K.A.; Ainslie, J.; Alberti, C.; Ontanon, S.; Pham, P.; Ravula, A.; Wang, Q.; Yang, L.; et al. Big Bird: Transformers for longer sequences. Adv. Neural Inf. Process. Syst. 2020, 33, 17283–17297. [Google Scholar]
Items | Value |
---|---|
Nominal capacity | 32 Ah |
Nominal voltage | 3.7 V |
Charge cutoff voltage | 4.2 V |
Discharge cutoff voltage | 3.4 V |
Polynomial Order | Fitting R2 | Fitting RMSE |
---|---|---|
4 | 0.9973 | 0.0143 |
5 | 09994 | 0.0068 |
6 | 0.9997 | 0.0050 |
7 | 0.9998 | 0.0042 |
Model | MHA-BiLSTM | A-BiLSTM | LSTM_A | LSTM | GRU |
---|---|---|---|---|---|
Voltage-MSE | 0.000902 | 0.021882 | 0.015968 | 0.016181 | 0.010469 |
SOC-MSE | 0.002253 | 0.020177 | 0.008896 | 0.017224 | 0.007566 |
Voltage-MAE | 0.028823 | 0.146407 | 0.097512 | 0.125792 | 0.120779 |
SOC-MAE | 0.046433 | 0.140330 | 0.091399 | 0.129676 | 0.081371 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xi, H.; Lv, T.; Qin, J.; Ma, M.; Xie, J.; Lu, S.; Liu, Z. Prediction of Lithium Battery Voltage and State of Charge Using Multi-Head Attention BiLSTM Neural Network. Appl. Sci. 2025, 15, 3011. https://doi.org/10.3390/app15063011
Xi H, Lv T, Qin J, Ma M, Xie J, Lu S, Liu Z. Prediction of Lithium Battery Voltage and State of Charge Using Multi-Head Attention BiLSTM Neural Network. Applied Sciences. 2025; 15(6):3011. https://doi.org/10.3390/app15063011
Chicago/Turabian StyleXi, Haiwen, Taolin Lv, Jincheng Qin, Mingsheng Ma, Jingying Xie, Shigang Lu, and Zhifu Liu. 2025. "Prediction of Lithium Battery Voltage and State of Charge Using Multi-Head Attention BiLSTM Neural Network" Applied Sciences 15, no. 6: 3011. https://doi.org/10.3390/app15063011
APA StyleXi, H., Lv, T., Qin, J., Ma, M., Xie, J., Lu, S., & Liu, Z. (2025). Prediction of Lithium Battery Voltage and State of Charge Using Multi-Head Attention BiLSTM Neural Network. Applied Sciences, 15(6), 3011. https://doi.org/10.3390/app15063011