Selected microRNAs as Potential Diagnostic Biomarkers in Polycystic Ovary Syndrome in Adolescent Girls
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Control Groups
2.2. miRNA Extraction, cDNA Synthesis and qPCR
2.3. Statistical Analysis
3. Results
3.1. Characteristics of the Studied Groups
3.2. Comparative Analysis of Plasma Levels of Selected miRNAs in Samples of the Studied Groups
3.3. Analysis of the Correlation Between Plasma Levels of the miRNAs and Clinical Parameters of PCOS Patients
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PCOS | Polycystic ovary syndrome |
AMH | Anti-Mullerian hormone |
HA | Hyperandrogenism |
OA | Oligomenorrhea/secondary amenorrhea |
BMI | Body mass index |
WC | Waist circumference |
SBP | Systolic blood pressure |
DBP | Diastolic blood pressure |
FGS | Ferriman–Gallwey scale |
SHBG | Sex-hormone binding globulin |
FAI | Free androgen index |
17-OHP | 17-hydroxyprogesterone |
DHEA-S | Dehydroepiandrosterone sulphate |
HOMA-IR | Homeostatic model assessment for insulin resistance |
References
- Teede, H.J.; Tay, C.T.; Laven, J.J.E.; Dokras, A.; Moran, L.J.; Piltonen, T.T.; Costello, M.F.; Boivin, J.; Redman, L.M.; Boyle, J.A.; et al. Recommendations from the 2023 international evidence-based guideline for the assessment and management of polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 2023, 108, 2447–2469. [Google Scholar] [CrossRef] [PubMed]
- Rodgers, R.J.; Avery, J.C.; Moore, V.M.; Davies, M.J.; Azziz, R.; Stener-Victorin, E.; Moran, L.J.; Robertson, S.A.; Stepto, N.K.; Norman, R.J.; et al. Complex diseases and co-morbidities: Polycystic ovary syndrome and type 2 diabetes mellitus. Endocr. Connect. 2019, 8, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Salari, N.; Nankali, A.; Ghanbari, A.; Jafarpour, S.; Ghasemi, H.; Dokaneheifard, S.; Mohammadi, M. Global prevalence of polycystic ovary syndrome in women worldwide: A comprehensive systematic review and meta-analysis. Arch. Gynecol. Obstet. 2024, 310, 1303–1314. [Google Scholar] [CrossRef] [PubMed]
- Neven, A.C.H.; Forslund, M.; Ranashinha, S.; Mousa, A.; Tay, C.T.; Peña, A.; Oberfield, S.; Witchel, S.; Teede, H.; Boyle, J.A. Prevalence and accurate diagnosis of polycystic ovary syndrome in adolescents across world regions: A systematic review and meta-analysis. Eur. J. Endocrinol. 2024, 191, S15–S27. [Google Scholar] [CrossRef]
- Ibáñez, L.; Oberfield, S.E.; Witchel, S.; Auchus, R.J.; Chang, R.J.; Codner, E.; Dabadghao, P.; Darendeliler, F.; Elbarbary, N.S.; Gambineri, A.; et al. An international consortium update: Pathophysiology, diagnosis, and treatment of polycystic ovarian syndrome in adolescence. Horm. Res. Paediatr. 2017, 88, 371–395. [Google Scholar] [CrossRef]
- Witchel, S.F.; Oberfield, S.E.; Peña, A.S. Polycystic ovary syndrome: Pathophysiology, presentation, and treatment with emphasis on adolescent girls. J. Endocr. Soc. 2019, 3, 1545–1573. [Google Scholar] [CrossRef]
- Louwers, Y.V.; Laven, J.S.E. Characteristics of polycystic ovary syndrome throughout life. Ther. Adv. Reprod. Health 2020, 14, 1–9. [Google Scholar] [CrossRef]
- Harris, H.R.; Terry, K.L. Polycystic ovary syndrome and risk of endometrial, ovarian, and breast cancer: A systematic review. Fertil. Res. Pract. 2016, 5, 2–14. [Google Scholar] [CrossRef]
- Ramezani, T.F.; Amiri, M. Polycystic ovary syndrome in adolescents: Challenges in diagnosis and treatment. Int. J. Endocrinol. Metab. 2019, 17, e91554. [Google Scholar] [CrossRef]
- Peña, A.S.; Witchel, S.F.; Hoeger, K.M.; Oberfield, S.E.; Vogiatzi, M.G.; Misso, M.; Garad, R.; Dabadghao, P.; Teede, H. Adolescent polycystic ovary syndrome according to the international evidence-based guideline. BMC Med. 2020, 18, 72. [Google Scholar] [CrossRef]
- Abdalla, M.; Deshmukh, H.; Atkin, S.L.; Sathyapalan, T. miRNAs as a novel clinical biomarker and therapeutic targets in polycystic ovary syndrome (PCOS): A review. Life Sci. 2020, 259, 118174. [Google Scholar] [CrossRef]
- Deswal, R.; Dang, A.S. Dissecting the role of micro-RNAs as a diagnostic marker for polycystic ovary syndrome: A systematic review and meta-analysis. Fertil. Steril. 2020, 113, 661–669.e2. [Google Scholar] [CrossRef] [PubMed]
- Díaz, M.; Bassols, J.; López-Bermejo, A.; de Zegher, F.; Ibáñez, L. Low circulating levels of miR-451a in girls with polycystic ovary syndrome: Different effects of randomized treatments. J. Clin. Endocrinol. Metab. 2020, 105, dgz204. [Google Scholar] [CrossRef] [PubMed]
- Song, D.K.; Sung, Y.A.; Lee, H. The role of serum microRNA-6767-5p as a biomarker for the diagnosis of polycystic ovary syndrome. PLoS ONE 2016, 11, e0163756. [Google Scholar] [CrossRef] [PubMed]
- De Nardo Maffazioli, G.; Baracat, E.C.; Soares, J.M.; Carvalho, K.C.; Maciel, G.A.R. Evaluation of circulating microRNA profiles in Brazilian women with polycystic ovary syndrome: A preliminary study. PLoS ONE 2022, 17, e0275031. [Google Scholar] [CrossRef]
- Deans, R. Polycystic ovary syndrome in adolescence. Med. Sci. 2019, 7, 101. [Google Scholar] [CrossRef]
- Yetim Şahin, A.; Baş, F.; Yetim, Ç.; Uçar, A.; Poyrazoğlu, Ş.; Bundak, R.; Darendeliler, F. Determination of insulin resistance and its relationship with hyperandrogenemia, anti-Müllerian hormone, inhibin A, inhibin B, and insulin-like peptide-3 levels in adolescent girls with polycystic ovary syndrome. Turk. J. Med. Sci. 2019, 49, 1117–1125. [Google Scholar] [CrossRef]
- Udesen, P.B.; Sørensen, A.E.; Svendsen, R.; Frisk, N.L.S.; Hess, A.L.; Aziz, M.; Wissing, M.L.M.; Englund, A.L.M.; Dalgaard, L.T. Circulating miRNAs in women with polycystic ovary syndrome: A longitudinal cohort study. Cells 2023, 12, 983. [Google Scholar] [CrossRef]
- Du, H.; Zhao, Y.; Yin, Z.; Wang, D.W.; Chen, C. The role of miR-320 in glucose and lipid metabolism disorder-associated diseases. Int. J. Biol. Sci. 2021, 17, 402–416. [Google Scholar] [CrossRef]
- Sørensen, A.E.; Wissing, M.L.; Salö, S.; Englund, A.L.M.; Dalgaard, L.T. MicroRNAs related to polycystic ovary syndrome (PCOS). Genes 2014, 5, 684–708. [Google Scholar] [CrossRef]
- Cirillo, F.; Catellani, C.; Lazzeroni, P.; Sartori, C.; Nicoli, A.; Amarri, S.; La Sala, G.B.; Street, M.E. MiRNAs regulating insulin sensitivity are dysregulated in polycystic ovary syndrome (PCOS) ovaries and are associated with markers of inflammation and insulin sensitivity. Front. Endocrinol. 2019, 10, 879. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Xu, P.; Wang, J.; Zhang, C. The role of MiRNA in polycystic ovary syndrome (PCOS). Gene 2019, 706, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.X.; Lin, Y.S.; Li, S.C.; Yao, X.; Cheng, M.; Zhu, L.; Liu, H.Y. microRNA-194 is increased in polycystic ovary syndrome granulosa cell and induce KGN cells apoptosis by direct targeting heparin-binding EGF-like growth factor. Reprod. Biol. Endocrinol. 2021, 19, 170. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Wang, W.; Wang, F.; Yang, S.; Hu, J.; Lu, B.; Pan, Z.; Ma, Y.; Zheng, M.; Zhou, L.; et al. Plasma-derived exosomal miR-15a-5p as a promising diagnostic biomarker for early detection of endometrial carcinoma. Mol. Cancer 2021, 20, 57. [Google Scholar] [CrossRef]
- Meng, L.; Yang, H.; Jin, C.; Quan, S. miR-28-5p suppresses cell proliferation and weakens the progression of polycystic ovary syndrome by targeting prokineticin-1. Mol. Med. Rep. 2019, 20, 2468–2475. [Google Scholar] [CrossRef]
- Krentowska, A.; Ponikwicka-Tyszko, D.; Łebkowska, A.; Adamska, A.; Sztachelska, M.; Milewska, G.; Hryniewicka, J.; Wołczyński, S.; Kowalska, I. Serum expression levels of selected microRNAs and their association with glucose metabolism in young women with polycystic ovary syndrome. Pol. Arch. Intern. Med. 2024, 134, 16637. [Google Scholar] [CrossRef]
- Rashad, N.M.; Ateya, M.A.; Saraya, Y.S.; Elnagar, W.M.; Helal, K.F.; Lashin, M.E.; Abdelrhman, A.A.; Alil, A.E.; Yousef, M.S. Association of miRNA—320 expression level and its target gene endothelin-1 with the susceptibility and clinical features of polycystic ovary syndrome. J. Ovarian Res. 2019, 12, 39. [Google Scholar] [CrossRef]
- Soyman, Z.; Durmus, S.; Ates, S.; Simsek, G.; Sozer, V.; Kundaktepe, B.P.; Kurtulus, D.; Gelisgen, R.; Sal, V.; Uzun, H. Circulating mir-132, mir-146a, mir-222, and mir-320 expression in differential diagnosis of women with polycystic ovary syndrome. Acta Endocrinol. 2022, 18, 13–19. [Google Scholar] [CrossRef]
- Li, W.; Wang, S.; Shan, B.; Cheng, X.; He, H.; Qin, J.; Tang, Y.; Zhao, H.; Tian, M.; Zhang, X.; et al. CircHECTD1 regulates cell proliferation and migration by the miR-320-5p/SLC2A1 axis in glioblastoma multiform. Front. Oncol. 2021, 11, 666391. [Google Scholar] [CrossRef]
- Ruiz-Manriquez, L.M.; Ledesma Pacheco, S.J.; Medina-Gomez, D.; Uriostegui-Pena, A.G.; Estrada-Meza, C.; Bandyopadhyay, A.; Pathak, S.; Banerjee, A.; Chakraborty, S.; Srivastava, A.; et al. A brief review on the regulatory roles of microRNAs in cystic diseases and their use as potential biomarkers. Genes 2022, 13, 191. [Google Scholar] [CrossRef]
- Murri, M.; Insenser, M.; Fernández-Durán, E.; San-Millán, J.L.; Escobar-Morreale, H.F. Effects of polycystic ovary syndrome (PCOS), sex hormones, and obesity on circulating miRNA-21, miRNA-27b, miRNA-103, and miRNA-155 expression. J. Clin. Endocrinol. Metab. 2013, 98, E1835–E1844. [Google Scholar] [CrossRef] [PubMed]
- Wong, N.D.; Budoff, M.J.; Ferdinand, K.; Graham, I.M.; Michos, E.D.; Reddy, T.; Shapiro, M.D.; Toth, P.P. Atherosclerotic cardiovascular disease risk assessment: An american society for preventive cardiology clinical practice statement. Am. J. Prev. Cardiol. 2022, 10, 100335. [Google Scholar] [CrossRef] [PubMed]
- Rudnicka, E.; Suchta, K.; Grymowicz, M.; Calik-Ksepka, A.; Smolarczyk, K.; Duszewska, A.M.; Smolarczyk, R.; Meczekalski, B. Chronic low grade inflammation in pathogenesis of PCOS. Int. J. Mol. Sci. 2021, 22, 3789. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Huang, J.; Chen, Y.; Yang, Y.; Li, R.; Li, Y.; Chen, X.; Yang, D. Identification of several circulating microRNAs from a genome-wide circulating microRNA expression profile as potential biomarkers for impaired glucose metabolism in polycystic ovarian syndrome. Endocrine 2016, 53, 280–290. [Google Scholar] [CrossRef]
- Yen, Y.T.; Yang, J.C.; Chang, J.B.; Tsai, S.C. Down-regulation of miR-194-5p for predicting metastasis in breast cancer cells. Int. J. Mol. Sci. 2021, 23, 325. [Google Scholar] [CrossRef]
miRNAs | Stem Loop 5′-3′ | |
---|---|---|
miR-451a | CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGAACTCAGT | |
miR-15a-5p | CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGCACAAACC | |
miR-320-5p | CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGGGAAGAAC | |
miR-28-5p | CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGCTCAATAG | |
miR-103a-5p | CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGTCATAGCC | |
miR-194-5p | CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGTCCACATG | |
Forward 5′-3′ | Reverse 5′-3′ | |
miR-451a | ACACTCCAGCTGGGAAACCGTTACCATTAC | GTCGGCAATTCAGTTGAG |
miR-15a-5p | ACACTCCAGCTGGGTAGCAGCACATAATGG | |
miR-320-5p | ACACTCCAGCTGGGGCCTTCTCTTCCCGGT | |
miR-28-5p | ACACTCCAGCTGGGAAGGAGCTCACAGTCT | |
miR-103a-5p | ACACTCCAGCTGGGAGCAGCATTGTACAGGG | |
miR-194-5p | ACACTCCAGCTGGGTCTAACAGCAACTCCA | |
U6 | GCTTCGGCAGCACATATACTAAAAT | CGCTTCACGAATTTGCGTGTCAT |
Parameter | PCOS N = 34 | HC N = 11 | HAC N = 8 | p-Value PCOS and HC | p-Value PCOS and HAC | p-Value HC and HAC |
---|---|---|---|---|---|---|
Age (years) | 16.0 ± 1.4 | 15.3 ± 1.4 | 16.1 ± 0.9 | 0.161 | 0.836 | 0.216 |
Weight (kg) | 71.9 ± 15.8 | 72.6 ± 16.7 | 61.2 ± 14.6 | 0.902 | 0.107 | 0.154 |
Height (cm) | 161.8 ± 7.6 | 165.1 ± 5.9 | 159.4 ± 10.0 | 0.190 | 0.469 | 0.136 |
BMI (kg/m2) | 27.5 ± 6.4 | 26.6 ± 5.4 | 24.0 ± 4.6 | 0.636 | 0.171 | 0.305 |
WC (cm) | 85.0 ± 16.0 | 84.7 ± 19.6 | 78.3 ± 10.7 | 0.958 | 0.368 | 0.514 |
SBP (mmHg) | 117.2 ± 12.7 | 120.3 ± 9.9 | 114.7 ± 4.9 | 0.445 | 0.616 | 0.180 |
DBP (mmHg) | 77.0 ± 8.6 | 78.7 ± 10.8 | 73.1 ± 6.9 | 0.597 | 0.271 | 0.244 |
Hirsutism (%) | 88.0 | 9.0 | 29.0 | <0.001 | <0.001 | 0.307 |
FGS (points) | 15.1 ± 6.8 | 3.5 ± 7.3 | 4.7 ± 8.1 | <0.001 | 0.018 | 0.807 |
Acne (%) | 74.0 | 42.0 | 57.0 | 0.048 | 0.398 | 0.541 |
Seborrhea (%) | 74.0 | 50.0 | 29.0 | 0.141 | 0.022 | 0.390 |
Parameter | PCOS N = 34 | HC N = 11 | HAC N = 8 | p-Value PCOS and HC | p-Value PCOS and HAC | p-Value HC and HAC |
---|---|---|---|---|---|---|
FBG (mmol/L) | 4.6 ± 0.7 | 4.8 ± 0.6 | 4.2 ± 0.7 | 0.507 | 0.185 | 0.105 |
Cholesterol (mmol/L) | 4.3 ± 0.7 | 4.2 ± 0.4 | 4.3 ± 0.4 | 0.779 | 0.727 | 0.457 |
TG (mmol/L) | 1.2 ± 0.7 | 1.0 ± 0.5 | 0.8 ± 0.3 | 0.359 | 0.212 | 0.547 |
HDL (mmol/L) | 1.3 ± 0.3 | 1.5 ± 0.4 | 1.5 ± 0.3 | 0.067 | 0.134 | 0.981 |
LDL (mmol/L) | 2.4 ± 0.6 | 2.2 ± 0.4 | 2.5 ± 0.5 | 0.354 | 0.826 | 0.319 |
Insulin (µIU/mL) | 22.8 ± 17.6 | 16.2 ± 10.2 | 8.6 ± 5.6 | 0.231 | 0.042 | 0.086 |
HOMA-IR | 4.9 ± 4.4 | 3.6 ± 2.7 | 1.6 ± 1.0 | 0.333 | 0.061 | 0.085 |
CRP (mg/L) | 2.7 ± 4.5 | 1.5 ± 1.1 | 1.5 ± 1.0 | 0.348 | 0.908 | 0.492 |
LH (mIU/mL) | 12.6 ± 15.0 | 6.7 ± 5.0 | 8.7 ± 5.9 | 0.212 | 0.542 | 0.517 |
Testosterone (nmol/L) | 1.8 ± 0.8 | 0.9 ± 0.2 | 2.2 ± 0.1 | <0.001 | 0.133 | <0.001 |
Androstendione (nmol/L) | 14.5 ± 5.4 | 5.6 ± 3.5 | 13.4 ± 3.7 | <0.001 | 0.603 | <0.001 |
AMH (pmol/L) | 49.1 ± 32.9 | 19.6 ± 12.4 | 32.5 ± 30.0 | 0.004 | 0.224 | 0.204 |
SHBG (nmol/L) | 28.9 ± 22.6 | 49.3 ± 20.8 | 51.9 ± 25.4 | 0.009 | 0.021 | 0.813 |
FAI | 10.9 ± 12.2 | 1.8 ± 0.7 | 5.2 ± 2.5 | 0.018 | 0.230 | <0.001 |
miRNA | Correlation | r | p |
---|---|---|---|
miR-320-5p | SBP (mmHg) | 0.434 | 0.010 |
miR-103a-5p | CRP (mg/L) | 0.493 | 0.003 |
miR-15a-5p | SBP (mmHg) | 0.399 | 0.019 |
CRP (mg/L) | 0.481 | 0.004 | |
miR-194-5p | Weight (kg) | 0.354 | 0.040 |
WC (cm) | 0.379 | 0.027 | |
CRP (mg/L) | 0.688 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mladenov, V.; Radanova, M.; Galcheva, S.; Iotova, V. Selected microRNAs as Potential Diagnostic Biomarkers in Polycystic Ovary Syndrome in Adolescent Girls. Appl. Sci. 2025, 15, 2772. https://doi.org/10.3390/app15052772
Mladenov V, Radanova M, Galcheva S, Iotova V. Selected microRNAs as Potential Diagnostic Biomarkers in Polycystic Ovary Syndrome in Adolescent Girls. Applied Sciences. 2025; 15(5):2772. https://doi.org/10.3390/app15052772
Chicago/Turabian StyleMladenov, Vilhelm, Maria Radanova, Sonya Galcheva, and Violeta Iotova. 2025. "Selected microRNAs as Potential Diagnostic Biomarkers in Polycystic Ovary Syndrome in Adolescent Girls" Applied Sciences 15, no. 5: 2772. https://doi.org/10.3390/app15052772
APA StyleMladenov, V., Radanova, M., Galcheva, S., & Iotova, V. (2025). Selected microRNAs as Potential Diagnostic Biomarkers in Polycystic Ovary Syndrome in Adolescent Girls. Applied Sciences, 15(5), 2772. https://doi.org/10.3390/app15052772