Analytical, Numerical, and Experimental Investigation of an Eccentric Double-Ring Microwave Resonator for Electromagnetic Shielding Applications
Abstract
1. Introduction
2. Design Requirements and Modeling
- (1)
- What is the target frequency range?
- (2)
- What should the resonator configuration be?
3. Analytical and Numerical Modeling
3.1. Analytical Modeling
3.2. Numerical Calculations—Simulations
4. Simulation Results and Field Distribution
4.1. Coupling (Transmission) Parameters
4.2. Field Distribution Analysis
5. Experimental Validation
- (a)
- copper rings R1 = 95 mm, R2 = 66.5 mm (Model I);
- (b)
- steel rings R1 = 45 mm, R2 = 30 mm (Model II).
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Katsarakis, N.; Koschny, T.; Kafesaki, M.; Economou, E.N.; Soukoulis, C.M. Electric Coupling to the Magnetic Resonance of Split Ring Resonators. Appl. Phys. Lett. 2004, 84, 3838–3840. [Google Scholar] [CrossRef]
- Baena, J.D.; Bonache, J.; Martín, F.; Marqués, R.; Falcone, F.; Lopetegi, T.; Laso, M.A.G.; García-García, J.; Gil, I.; Portillo, M.F.; et al. Equivalent-Circuit Models for Split-Ring Resonators and Complementary Split-Ring Resonators Coupled to Planar Transmission Lines. IEEE Trans. Microw. Theory Tech. 2005, 53, 1451–1461. [Google Scholar] [CrossRef]
- Landy, N.I.; Sajuyigbe, S.; Mock, J.J.; Smith, D.R.; Padilla, W.J. A Perfect Metamaterial Absorber. Phys. Rev. Lett. 2008, 100, 207402. [Google Scholar] [CrossRef]
- Shadrivov, I.V.; Morrison, S.K.; Kivshar, Y.S. Tunable Split-Ring Resonators for Nonlinear Negative-Index Metamaterials. Appl. Phys. Lett. 2008, 93, 043518. [Google Scholar] [CrossRef]
- Aydin, K.; Cakmak, O.; Sahin, L.; Li, Z.; Bilotti, F.; Vegni, L.; Ozbay, E. Split Ring Resonator-Coupled Enhanced Transmission through a Single Subwavelength Aperture. Opt. Express 2008, 16, 19850–19861. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Yang, H.; Cheng, Z.; Wu, N. Perfect Metamaterial Absorber Based on a Split-Ring-Cross Resonator. Appl. Phys. A 2011, 102, 99–103. [Google Scholar] [CrossRef]
- Kapoor, M.; Daya, K.S.; Tyagi, G.S. Coupled Ring Resonator for Microwave Characterization of Dielectric Materials. Int. J. Microw. Wirel. Technol. 2012, 4, 241–246. [Google Scholar] [CrossRef]
- Islam, M.S.; Islam, M.T.; Sahar, N.M.; Rmili, H.; Amin, N.; Chowdhury, M.E.H. A Mutual Coupled Concentric Crossed-Line Split Ring Resonator (CCSRR) Based Epsilon Negative (ENG) Metamaterial for Tri-Band Microwave Applications. Results Phys. 2020, 18, 103292. [Google Scholar] [CrossRef]
- Alahnomi, R.A.; Zakaria, Z.; Yussof, Z.M.; Althuwayb, A.A.; Alhegazi, A.; Alsariera, H.; Rahman, N.A. Review of Recent Microwave Planar Resonator-Based Sensors: Techniques of Complex Permittivity Extraction, Applications, Open Challenges and Future Research Directions. Sensors 2021, 21, 2267. [Google Scholar] [CrossRef]
- Hossain, M.B.; Faruque, M.R.I.; Islam, M.T.; Singh, M.; Jusoh, M. Triple Band Microwave Metamaterial Absorber Based on Double E-Shaped Symmetric Split Ring Resonators for EMI Shielding and Stealth Applications. J. Mater. Res. Technol. 2022, 19, 3483–3492. [Google Scholar] [CrossRef]
- Walsten, A.T.; Dextre, R.A.; Polzin, K.A.; Xu, K.G. Comparison of Single and Concentric Split-Ring Resonator Generated Microplasmas. J. Vac. Sci. Technol. B 2022, 40, 014001. [Google Scholar] [CrossRef]
- Chen, I.-T.; Li, B.; Lee, S.; Chakravarthi, S.; Fu, K.-M.; Li, M. Optomechanical Ring Resonator for Efficient Microwave-Optical Frequency Conversion. Nat. Commun. 2023, 14, 7594. [Google Scholar] [CrossRef]
- Liu, Z.; Duan, J.; Wang, X. Shielding Performance of Electromagnetic Shielding Fabric Implanted with Split-Ring Resonator. Polymers 2023, 15, 1366. [Google Scholar] [CrossRef] [PubMed]
- Rahman, A.A.M.; Islam, M.T.; Rahman, M.M.; Moniruzzaman, M.; Ahmed, F.; Mouti-Guermoud, I. Resonator-Based Near-Perfect Metamaterial Absorber with High EMI Shielding for Wi-Fi and 5G Applications. Int. J. Optomechatronics 2024, 18, 2375497. [Google Scholar] [CrossRef]
- Khouser, G.H.; Choukiker, Y.K. Unique 3D Metamaterial Split Ring Resonator for Wireless Communication with High Negative Refractive Index and for Medium Ratio Waves. Waves Random Complex Media 2022, 32, 3451–3465. [Google Scholar] [CrossRef]
- Masrakin, K.; Ibrahim, S.Z.; Rahim, H.A.; Azemi, S.N.; Soh, P.J.; Tantiviwat, S. Microstrip Sensor Based on Ring Resonator Coupled with Double Square Split Ring Resonator for Solid Material Permittivity Characterization. Micromachines 2023, 14, 790. [Google Scholar] [CrossRef]
- Alibakhshikenari, M.; Virdee, B.S.; Elwi, T.A.; Lubangakene, I.D.; Jayanthi, R.K.R.; Al-Behadili, A.A.; Hassain, Z.A.A.; Ali, S.M.; Pau, G.; Livreri, P.; et al. Design of a Planar Sensor Based on Split-Ring Resonators for Non-Invasive Permittivity Measurement. Sensors 2023, 23, 5306. [Google Scholar] [CrossRef]
- Feng, Y.; Liang, M.; Zhao, X.; You, R. Fabrication and Modulation of Flexible Electromagnetic Metamaterials. Microsyst. Nanoeng. 2025, 11, 14. [Google Scholar] [CrossRef]
- Huq, S.M.I.; Xiao, G.; Bhadra, S. Printed Split Ring Resonator Based Microwave Sensor on Biodegradable Substrate for Dielectric Characterization. Sens. Actuators A Phys. 2025, 393, 116856. [Google Scholar] [CrossRef]
- Islam, M.R.; Islam, M.T.; Hoque, A.; Bais, B.; Alsaif, H.; Islam, M.S.; Soliman, M.S. Quad-Band Split Ring Resonator-Based Sensor for Microwave Sensing Application. Sci. Rep. 2025, 15, 6888. [Google Scholar] [CrossRef] [PubMed]
- Rabbani, M.G.; Islam, M.T.; Moniruzzaman, M.; Alamri, S.; Rahman, A.A.M.; Moubark, A.M.; Islam, M.S.; Soliman, M.S. Dumbbell-Shaped Structure Loaded Modified Circular Ring Resonator Based Perfect Metamaterial Absorber for S, X and Ku-Band Microwave Sensing Applications. Sci. Rep. 2024, 14, 5588. [Google Scholar] [CrossRef] [PubMed]
- Jahan, M.I.; Ullah, M.; Ahmad, H.; Roslan, R.; Misnon, I.I.; Jose, R. Two Split Rings Resonator-Based Perfect Metamaterial Absorbers with Incident and Polarization Angle Independence for Sensing Applications. J. Magn. Magn. Mater. 2024, 594, 171904. [Google Scholar] [CrossRef]
- Devoret, M.H. Quantum Fluctuations in Electrical Circuits. Elsevier Sci. 1997, 63, 351–386. [Google Scholar]
















| A Thin Conducting Ring of Radius R | |||||
| R, mm | Mod m = 1 | Mod m = 2 | Mod m = 3 | Mod m = 4 | Mod m = 5 |
| 85 | 561.3 | 1122.7 | 1684.0 | 2245.3 | 2806.7 |
| 95 | 502.3 | 1004.5 | 1506.7 | 2009.0 | 2511.2 |
| 105 | 454.4 | 908.8 | 1363.2 | 1817.7 | 2272.1 |
| A Cylindrical Conductive Ring of Radius Ref (w = 4 mm, t = 10 mm) (Reff = R − w/2) | |||||
| 83 | 574.9 | 1149.7 | 1724.6 | 2299.4 | 2874.3 |
| 93 | 513.0 | 1026.1 | 1539.1 | 2052.2 | 2565.2 |
| 103 | 463.2 | 926.5 | 1389.7 | 1852.9 | 2316.2 |
| A Thin Conducting Ring of Radius R | |||||
| R, mm | Mod m = 1 | Mod m = 2 | Mod m = 3 | Mod m = 4 | Mod m = 5 |
| 56.5 | 844.9 | 1689.8 | 2534.7 | 3379.6 | 4224.5 |
| 66.5 | 717.5 | 1435.8 | 2153.7 | 2871.6 | 3589.5 |
| 76.5 | 623.8 | 1247.7 | 1871.5 | 2495.4 | 3119.2 |
| A Cylindrical Conductive Ring of Radius Ref (w = 4 mm, t = 10 mm) (Reff = R − w/2) | |||||
| 54.5 | 875.4 | 1750.7 | 2626.1 | 3501.5 | 4376.8 |
| 64.5 | 739.7 | 1479.5 | 2219.2 | 2958.9 | 3698.7 |
| 74.5 | 639.4 | 1278.9 | 1918.3 | 2557.7 | 3197.2 |
| A Thin, Eccentric Ring Resonator (Oo) with Radii R1 + R2 | |||||
| k | m = 1 f−/f+ (MHz) | m = 2 f−/f+ (MHz) | m = 3 f−/f+ (MHz) | m = 4 f−/f+ (MHz) | m = 5 f−/f+ (MHz) |
| 0.00 | 502.30/717.50 | 1004.60/1435.00 | 1506.90/2152.50 | 2009.20/2870.00 | 2511.50/3587.50 |
| 0.25 | 489.20/760.88 | 978.39/1521.76 | 1467.59/2282.64 | 1956.78/3043.52 | 2445.98/3804.40 |
| 0.75 | 435.76/1250.41 | 871.52/2500.81 | 1307.27/3751.22 | 1743.03/5001.62 | 2178.79/6252.03 |
| Cylindrical Oo Eccentric Ring Resonators with Radii: Reff1 + Reff2 (ω = 4 mm, t = 10 mm) (Reff = R − ω/2) | |||||
| 0.00 | 513.05/739.74 | 1026.10/1479.49 | 1539.14/2219.23 | 2052.19/2958.97 | 2565.24/3698.72 |
| 0.25 | 500.07/783.84 | 1000.13/1567.68 | 1500.20/2351.51 | 2000.26/3135.35 | 2500.33/3919.19 |
| 0.75 | 446.25/1285.81 | 892.49/2571.61 | 1338.74/3857.42 | 1784.99/5143.22 | 2231.23/6429.03 |
| C12, pF | Mod m = 1 | Mod m = 2 | Mod m = 3 | Mod m = 4 | Mod m = 5 |
|---|---|---|---|---|---|
| 0.088 | 459.56/680.75 | 919.11/1361.50 | 1378.67/2042.25 | 1838.22/2723.00 | 2297.78/3403.75 |
| 0.089 | 459.25/679.47 | 918.51/1358.93 | 1377.76/2038.40 | 1837.01/2717.87 | 2296.27/3397.33 |
| 0.090 | 458.95/678.20 | 917.90/1356.39 | 1376.85/2034.59 | 1835.80/2712.78 | 2294.75/3390.98 |
| C12, pF | Mod m = 1 | Mod m = 2 | Mod m = 3 | Mod m = 4 | Mod m = 5 |
|---|---|---|---|---|---|
| 0.088 | 459.37/684.75 | 918.74/1369.51 | 1378.11/2054.26 | 1837.48/2739.01 | 2296.85/3423.76 |
| 0.089 | 459.08/683.44 | 918.16/1366.88 | 1377.24/2050.32 | 1836.32/2733.76 | 2295.40/3417.20 |
| 0.090 | 458.79/682.14 | 917.58/1364.29 | 1376.37/2046.43 | 1835.16/2728.57 | 2293.96/3410.71 |
| C12, pF | Mod m = 1 | Mod m = 2 | Mod m = 3 | Mod m = 4 | Mod m = 5 |
|---|---|---|---|---|---|
| 0.088 | 459.14/688.97 | 918.28/1377.94 | 1377.42/2066.91 | 1836.56/2755.88 | 2295.70/3444.85 |
| 0.089 | 458.87/687.63 | 917.73/1375.26 | 1376.60/2062.89 | 1835.46/2750.52 | 2294.33/3438.16 |
| 0.090 | 458.59/686.31 | 917.18/1372.61 | 1375.77/2058.92 | 1834.36/2745.22 | 2292.94/3431.53 |
| Ring Resonator | Analytical: fres, MHz (Equation (3)) | Numerical: fres, MHz (HFSS) | * Experimental: fres, MHz | |
|---|---|---|---|---|
R1 (95.0 mm) R2 (66.5 mm) R1 + R2 (95.0 + 66.5) first mode R1 + R2 (95.0 + 66.5) second mode | ![]() | 513.00 | 566.16 ** (606.49) *** (569.39) | 549.33 |
![]() | 739.74 | 727.89 ** (707.66) *** (706.48) | 745.96 | |
![]() | 489.20 **** 459.14 | 435.70 ** (408.67) *** (438.96) | 482.24 | |
| 760.88 **** 688.97 | 707.60 ** 646.68 *** (642.54) | 665.38 | ||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rupčić, S.; Mandrić, V.; Baxhaku, I. Analytical, Numerical, and Experimental Investigation of an Eccentric Double-Ring Microwave Resonator for Electromagnetic Shielding Applications. Appl. Sci. 2025, 15, 12928. https://doi.org/10.3390/app152412928
Rupčić S, Mandrić V, Baxhaku I. Analytical, Numerical, and Experimental Investigation of an Eccentric Double-Ring Microwave Resonator for Electromagnetic Shielding Applications. Applied Sciences. 2025; 15(24):12928. https://doi.org/10.3390/app152412928
Chicago/Turabian StyleRupčić, Slavko, Vanja Mandrić, and Ismail Baxhaku. 2025. "Analytical, Numerical, and Experimental Investigation of an Eccentric Double-Ring Microwave Resonator for Electromagnetic Shielding Applications" Applied Sciences 15, no. 24: 12928. https://doi.org/10.3390/app152412928
APA StyleRupčić, S., Mandrić, V., & Baxhaku, I. (2025). Analytical, Numerical, and Experimental Investigation of an Eccentric Double-Ring Microwave Resonator for Electromagnetic Shielding Applications. Applied Sciences, 15(24), 12928. https://doi.org/10.3390/app152412928




