Evaluating the Dietary Effects of White Grape Pomace Supplementation in Laying Hens Exposed to Thermal Stress: Hematological, Biochemical, Cecal Fermentation Metabolites, Histomorphology Approaches
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design and Housing Conditions
2.2. Blood Sample Collection
2.3. Apparent Absorption Coefficients Assessment
2.4. Intestinal Microbiota Cecal Analysis
2.5. Cecal Fermentation Metabolites Evaluation
2.6. Histomorphological Analyses
2.7. Statistical Analysis
3. Results
3.1. Hematological Parameters Profile Evaluation
3.2. Serum Biochemical Parameters Evaluation
3.3. Nutrient Digestibility Evaluation
3.4. Cecal Intestinal Microbiota Evaluation
3.5. Cecal Short-Chain Fatty Acids Evaluation
3.6. Intestinal Morphometry Evaluation
3.7. Intestinal Morphology Evaluation
4. Discussion
4.1. Hematological Parameters Analysis
4.2. Serum Biochemical Parameters Analysis
4.3. Apparent Absorption Coefficients Evolution
4.4. Cecal Intestinal Microbiota Analysis
4.5. Cecal Short-Chain Fatty Acids Analysis
4.6. Intestinal Morphometric Measurements
4.7. Intestinal Histomorphometry Measurements
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nawaz, A.H.; Amoah, K.; Leng, Q.Y.; Zheng, J.H.; Zhang, W.L. Poultry Response to Heat Stress: Its Physiological, Metabolic, and Genetic Implications on Meat Production and Quality Including Strategies to Improve Broiler Production in a Warming World. Front. Vet. Sci. 2021, 8, 699081. [Google Scholar] [CrossRef]
- Oluwagbenga, E.M.; Fraley, G.S. Heat Stress and Poultry Production: A Comprehensive Review. Poult. Sci. 2023, 102, 103141. [Google Scholar] [CrossRef]
- Selye, H. A Syndrome Produced by Diverse Nocuous Agents. Nature 1936, 138, 32. [Google Scholar] [CrossRef]
- von Faber, H. Stress and General Adaptation Syndrome in Poultry. World’s Poult. Sci. J. 1964, 20, 175–182. [Google Scholar] [CrossRef]
- Zmrhal, V.; Svoradova, A.; Venusova, E.; Slama, P. The Influence of Heat Stress on Chicken Immune System and Mitigation of Negative Impacts by Baicalin and Baicalein. Animals 2023, 13, 2564. [Google Scholar] [CrossRef]
- Nanto-Hara, F.; Kikusato, M.; Ohwada, S.; Toyomizu, M. Heat Stress Directly Affects Intestinal Integrity in Broiler Chickens. J. Poult. Sci. 2020, 57, 284–290. [Google Scholar] [CrossRef]
- Gungor, E.; Altop, A.; Erener, G. Effect of Raw and Fermented Grape Pomace on the Growth Performance, Antioxidant Status, Intestinal Morphology, and Selected Bacterial Species in Broiler Chicks. Animals 2021, 11, 364. [Google Scholar] [CrossRef] [PubMed]
- Hrabčáková, P.; Voslářová, E.; Bedáňová, I.; Pištěková, V.; Chloupek, J.; Večerek, V. Haematological and Biochemical Parameters during the Laying Period in Common Pheasant Hens Housed in Enhanced Cages. Sci. World J. 2014, 2014, 364602. [Google Scholar] [CrossRef] [PubMed]
- Cummings, A.; Cray, C.; Montiani-Ferreira, F.; Hess, L. Generation of Reference Intervals and Evaluation of Seasonal Variation in Clinical Pathology Parameters of Backyard Laying Hens. J. Avian Med. Surg. 2025, 39, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Wagner, E.C.; Prevolsek, J.S.; Wynne-Edwards, K.E.; Williams, T.D. Hematological changes associated with egg production: Estrogen dependence and repeatability. J. Exp. Biol. 2008, 211, 400–408. [Google Scholar] [CrossRef]
- Elagib, H.A.; Elamin, K.M.; Ahmed, A.D.A.; Malik, H.E. Blood biochemical profile of males and females of three indigenous chicken ecotypes in Sudan. J. Vet. Adv. 2012, 2, 568–572. [Google Scholar]
- Mohamed, A.S.A.; Lozovskiy, A.R.; Ali, A.M.A. Nutritional strategies to alleviate heat stress effects through feed restrictions and feed additives (vitamins and minerals) in broilers under summer conditions. J. Anim. Behav. Biometeorol. 2019, 7, 123–131. [Google Scholar] [CrossRef]
- Král, I.; Suchý, P. Haematological studies in adolescent breeding cocks. Acta Vet. Brno 2000, 69, 189–194. [Google Scholar] [CrossRef]
- Oke, O.E.; Akosile, O.A.; Oni, A.I.; Opowoye, I.O.; Ishola, C.A.; Adebiyi, J.O.; Odeyemi, A.J.; Adjei-Mensah, B.; Uyanga, V.A.; Abioja, M.O. Oxidative Stress in Poultry Production. Poult. Sci. 2024, 103, 104003. [Google Scholar] [CrossRef]
- Blasi, F.; Di Mattia, C.; Martuscelli, M.; Di Giovanni, S.; Cossignani, L. Grape Pomace for Feed Enrichment to Improve the Quality of Animal-Derived Foods: A Review. Foods 2024, 13, 3541. [Google Scholar] [CrossRef]
- Surai, P.F.; Kochish, I.I.; Fisinin, V.I.; Kidd, M.T. Antioxidant defense systems and oxidative stress in poultry biology: An update. Antioxidants 2019, 8, 235. [Google Scholar] [CrossRef]
- Selim, S.; Abdel-Megeid, N.S.; Alhotan, R.A.; Ebrahim, A.; Hussein, E. Grape Pomace: Agrifood By-Product with Potential to Enhance Performance, Yolk Quality, Antioxidant Capacity, and Eggshell Ultrastructure in Laying Hens. Vet. Sci. 2023, 10, 461. [Google Scholar] [CrossRef]
- Kim, D.-H.; Song, J.-Y.; Park, J.; Kwon, B.-Y.; Lee, K.-W. The Effect of Low Temperature on Laying Performance and Physiological Stress Responses in Laying Hens. Animals 2023, 13, 3824. [Google Scholar] [CrossRef] [PubMed]
- Cornescu, G.M.; Panaite, T.D.; Cișmileanu, A.E.; Sărăcilă, M.; Untea, A.E.; Vârzaru, I. White Grape Pomace Effect on Laying Hens’ Productivity, Egg Quality Traits, and Antioxidant Capacity under Normal, Heat, and Cold Thermal Conditions. Agriculture 2024, 14, 2209. [Google Scholar] [CrossRef]
- Lohmann Tierzucht. Management Guide: Management Systems for Successful Egg Production. 2021. Available online: https://lohmann-breeders.com/media/2021/03/LTZ_MG_management-systems_EN.pdf (accessed on 20 November 2024).
- ISO 15189:2022; Medical Laboratories—Requirements for Quality and Competence. International Organization for Standardization (ISO): Geneva, Switzerland, 2022.
- Panaite, T.D.; Criste, R.; Olteanu, M.; Vlaicu, A.; Soica, C. Coefficients of Apparent Absorption of the Dietary Nutrients from Broiler Feeds that Include Oil Industry by-Products (Rapeseeds, Grapes, Buckthorn, Flax and Pumpkin Meals). Sci. Pap. Anim. Sci. Biotechnol. 2017, 50, 22. [Google Scholar]
- Commission Regulation (EC) No 152/2009 of 27 January 2009 Laying Down the Methods of Sampling and Analysis for the Official Control of Feed, O.J. L 54, 26.02.2009 (Annex III, F). Available online: https://eur-lex.europa.eu/eli/reg/2009/152/oj/eng (accessed on 20 November 2024).
- Bounous, D.I.; Wyatt, R.D.; Gibbs, P.S.; Kilburn, J.V.; Quist, C.F. Normal hematologic and serum biochemical reference intervals for juvenile wild turkeys. J. Wildl. Dis. 2000, 36, 393–396. [Google Scholar] [CrossRef]
- Altan, Ö.; Altan, A.; Çabuk, M.; Bayraktar, H. Effects of heat stress on some blood parameters in broilers. Turk. J. Vet. Anim. Sci. 2000, 24, 145–148. [Google Scholar]
- Nazifi, S.; Saeb, M.; Rowghani, E.; Kaveh, K. The influences of thermal stress on serum biochemical parameters of Iranian fat-tailed sheep and their correlation with T3, T4 and cortisol concentrations. Comp. Clin. Pathol. 2003, 12, 135–139. [Google Scholar] [CrossRef]
- Pârvu, G. Fiziologia Animalelor Domestice; Editura Didactică și Pedagogică: București, Romania, 1992. [Google Scholar]
- Lara, L.J.; Rostagno, M.H. Impact of Heat Stress on Poultry Production. Animals 2013, 3, 356–369. [Google Scholar] [CrossRef]
- Nwaigwe, C.U.; Ihedioha, J.I.; Shoyinka, S.V.; Nwaigwe, C.O. Evaluation of the Hematological and Clinical Biochemical Markers of Stress in Broiler Chickens. Vet. World 2020, 13, 2294–2300. [Google Scholar] [CrossRef]
- Ribeiro, L.R.R.; Sans, E.C.O.; Santos, R.M.; Taconelli, C.A.; de Farias, R.; Molento, C.F.M. Will the White Blood Cells Tell? A Potential Novel Tool to Assess Broiler Chicken Welfare. Front. Vet. Sci. 2024, 11, 1384802. [Google Scholar] [CrossRef]
- Kumar, P.; Ahmed, M.A.; Abubakar, A.A.; Hayat, M.N.; Kaka, U.; Ajat, M.; Goh, Y.M.; Sazili, A.Q. Improving Animal Welfare Status and Meat Quality through Assessment of Stress Biomarkers: A Critical Review. Meat Sci. 2023, 197, 109048. [Google Scholar] [CrossRef] [PubMed]
- Maxwell, M.H.; Robertson, G.W. The Avian Heterophil Leucocyte: A Review. World’s Poult. Sci. J. 1998, 54, 155–178. [Google Scholar] [CrossRef]
- Gross, W.B.; Siegel, H.S. Evaluation of the Heterophil/Lymphocyte Ratio as a Measure of Stress in Chickens. Avian Dis. 1983, 27, 972–979. [Google Scholar] [CrossRef]
- Aikpitanyi, K.U.; Imasuen, J.A. Evaluation of Blood Biochemical Indices and Egg Yolk Lipid Profile in Laying Hens Fed Diets with Black Pepper and Red Pepper Additives. Eur. J. Vet. Med. 2024, 4, 1–9. [Google Scholar] [CrossRef]
- Ali, R.A.; Wuescher, L.M.; Worth, R.G. Platelets: Essential components of the immune system. Curr. Trends Immunol. 2015, 16, 65–78. [Google Scholar]
- Hata, T.; Kawabata, A.; Itoh, E. Platelet hypoaggregability in rats exposed to SART stress (repeated cold stress). Thromb. Res. 1992, 65, 617–629. [Google Scholar] [CrossRef]
- Campo, J.L.; Prieto, M.T.; Davila, S.G. Effects of housing system and cold stress on heterophil-to-lymphocyte ratio, fluctuating asymmetry, and tonic immobility duration of chickens. Poult. Sci. 2008, 87, 621–626. [Google Scholar] [CrossRef] [PubMed]
- Xing, L.; Li, T.; Zhang, Y.; Bao, J.; Wei, H.; Li, J. Intermittent and mild cold stimulation maintains immune function stability through increasing the levels of intestinal barrier genes of broilers. Animals 2023, 13, 2138. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Herranz, B.; Romero, C.; Sánchez-Román, I.; García-Belenguer, E.; Mariscal, C.; Arija, I. Enriching Eggs with Bioactive Compounds through Inclusion of Grape Pomace in Laying Hens’ Diet: Effect on Internal and External Egg Quality Parameters. Foods 2024, 13, 1553. [Google Scholar] [CrossRef]
- Chedea, V.S.; Macovei, Ș.O.; Bocșan, I.C.; Măgureanu, D.C.; Levai, A.M.; Buzoianu, A.D.; Pop, R.M. Grape Pomace Polyphenols as a Source of Compounds for Management of Oxidative Stress and Inflammation—A Possible Alternative for Non-Steroidal An-ti-Inflammatory Drugs? Molecules 2022, 27, 6826. [Google Scholar] [CrossRef] [PubMed]
- Barrett, N.W.; Rowland, K.; Schmidt, C.J.; Lamont, S.J.; Rothschild, M.F.; Ashwell, C.M.; Persia, M.E. Effects of Acute and Chronic Heat Stress on Performance, Egg Quality, Body Temperature, and Blood Gas Parameters of Laying Hens. Poult. Sci. 2019, 98, 6684–6692. [Google Scholar] [CrossRef]
- Kaiser, J.C.; Reider, H.; Pabilonia, K.L.; Moore, A.R. Establishment of Biochemical Reference Values for Backyard Chickens in Colorado (Gallus gallus domesticus). Vet. Clin. Pathol. 2022, 51, 577–584. [Google Scholar] [CrossRef]
- Livingston, M.L.; Pokoo-Aikins, A.; Frost, T.; Laprade, L.; Hoang, V.; Nogal, B.; Phillips, C.; Cowieson, A.J. Effect of Heat Stress, Dietary Electrolytes, and Vitamins E and C on Growth Performance and Blood Biochemistry of the Broiler Chicken. Front. Anim. Sci. 2022, 3, 807267. [Google Scholar] [CrossRef]
- Teyssier, J.-R.; Brugaletta, G.; Sirri, F.; Dridi, S.; Rochell, S.J. A Review of Heat Stress in Chickens. Part II: Insights into Protein and Energy Utilization and Feeding. Front. Physiol. 2022, 13, 943612. [Google Scholar] [CrossRef]
- Li, D.; Tong, Q.; Shi, Z.; Zheng, W.; Wang, Y.; Li, B.; Yan, G. Effects of cold stress and ammonia concentration on productive performance and egg quality traits of laying hens. Animals 2020, 10, 2252. [Google Scholar] [CrossRef]
- Khalil, M.M.; Abdollahi, M.R.; Zaefarian, F.; Chrystal, P.V.; Ravindran, V. Broiler Age Influences the Apparent Metabolizable Energy of Soybean Meal and Canola Meal. Animals 2023, 13, 219. [Google Scholar] [CrossRef]
- Kang, H.K.; Park, S.B.; Jeon, J.J.; Kim, H.S.; Park, K.T.; Kim, S.H.; Hong, E.C.; Kim, C.H. Effect of Increasing Levels of Apparent Metabolizable Energy on Laying Hens in Barn System. Asian Australas. J. Anim. Sci. 2018, 31, 1766–1772. [Google Scholar] [CrossRef]
- Jha, R.; Mishra, P. Dietary fiber in poultry nutrition and their effects on nutrient utilization, performance, gut health, and on the environment: A review. J. Anim. Sci. Biotechnol. 2021, 12, 51. [Google Scholar] [CrossRef]
- Singh, A.K.; Kim, W.K. Effects of dietary fiber on nutrients utilization and gut health of poultry: A review of challenges and opportunities. Animals 2021, 11, 181. [Google Scholar] [CrossRef]
- Abdulla, N.R.; Loh, T.C.; Akit, H.; Sazili, A.Q.; Foo, H.L. Effects of Dietary Oil Sources and Calcium:Phosphorus Levels on Growth Performance, Gut Morphology and Apparent Digestibility of Broiler Chickens. S. Afr. J. Anim. Sci. 2016, 46, 42–53. [Google Scholar] [CrossRef]
- Brenes, A.; Viveros, A.; Goñi, I.; Centeno, C.; Sáyago-Ayerdi, S.G.; Arija, I.; Saura-Calixto, F. Effect of Grape Pomace Concentrate and Vitamin E on Digestibility of Polyphenols and Antioxidant Activity in Chickens. Poult. Sci. 2008, 87, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Nardoia, M.; Romero, C.; Brenes, A.; Arija, I.; Viveros, A.; Ruiz-Capillas, C.; Chamorro, S. Addition of fermented and unfermented grape skin in broilers’ diets: Effect on digestion, growth performance, intestinal microbiota and oxidative stability of meat. Animal 2020, 14, 1371–1381. [Google Scholar] [CrossRef] [PubMed]
- Panaite, T.D.; Saracila, M.; Soica, C.; Tabuc, C.; Vlaicu, A.; Olteanu, M.; Turcu, R. Effect of the Inclusion of Grape Seed Oil in Broiler Diet on the Intestinal Microflora Balance. J. Hyg. Eng. Des. 2020, 33, 225–232. [Google Scholar]
- Hajati, H.; Hassanabadi, A.; Golian, A.; Nassiri-Moghaddam, H.; Nassiri, M.R. The effect of grape seed extract and vitamin C feed supplementation on some blood parameters and HSP70 gene expression of broiler chickens suffering from chronic heat stress. Ital. J. Anim. Sci. 2015, 14, 3273. [Google Scholar] [CrossRef]
- Dunkley, K.D.; Dunkley, C.S.; Njongmeta, N.L.; Callaway, T.R.; Hume, M.E.; Kubena, L.F.; Nisbet, D.J.; Ricke, S.C. Comparison of In Vitro Fermentation and Molecular Microbial Profiles of High-Fiber Feed Substrates Incubated with Chicken Cecal Inocula. Poult. Sci. 2007, 86, 801–810. [Google Scholar] [CrossRef]
- Chaudhary, A.; Mishra, P.; Al Amaz, S.; Mahato, P.L.; Das, R.; Jha, R.; Mishra, B. Dietary supplementation of microalgae mitigates the negative effects of heat stress in broilers. Poult. Sci. October 2023, 102, 102958. [Google Scholar] [CrossRef]
- Wasti, S.; Sah, N.; Mishra, B. Impact of heat stress on poultry health and performances, and potential mitigation strategies. Animals 2020, 10, 1266. [Google Scholar] [CrossRef]
- Mei, X.; Ma, B.; Zhai, X.; Zhang, A.; Lei, C.; Zuo, L.; Yang, X.; Zhou, C.; Wang, H. Florfenicol enhances colonization of a Salmonella enterica serovar Enteritidis floR mutant with major alterations to the intestinal microbiota and metabolome in neonatal chickens. Appl. Environ. Microbiol. 2021, 87, e0168121. [Google Scholar] [CrossRef]
- Erinle, T.J.; Oladokun, S.; MacIsaac, J.; Rathgeber, B.; Adewole, D. Dietary Grape Pomace—Effects on Growth Performance, Intestinal Health, Blood Parameters, and Breast Muscle Myopathies of Broiler Chickens. Poult. Sci. 2022, 101, 101519. [Google Scholar] [CrossRef]
- Viveros, A.; Chamorro, S.; Pizarro, M.; Arija, I.; Centeno, C.; Brenes, A. Effects of Dietary Polyphenol-Rich Grape Products on Intestinal Microflora and Gut Morphology in Broiler Chicks. Poult. Sci. 2011, 90, 566–578. [Google Scholar] [CrossRef]
- Pascual, A.; Pauletto, M.; Trocino, A.; Birolo, M.; Dacasto, M.; Giantin, M.; Bordignon, F.; Ballarin, C.; Bortoletti, M.; Pillan, G.; et al. Effect of the Dietary Supplementation with Extracts of Chestnut Wood and Grape Pomace on Performance and Jejunum Response in Female and Male Broiler Chickens at Different Ages. J. Anim. Sci. 2022, 13, 102. [Google Scholar] [CrossRef] [PubMed]
- Chamorro, S.; Viveros, A.; Rebolé, A.; Arija, I.; Romero, C.; Alvarez, I.; Rey, A.; Brenes, A. Impact of a Sustained Consumption of Grape Extract on Digestion, Gut Microbial Metabolism and Intestinal Barrier in Broiler Chickens. Food Funct. 2019, 10, 1444–1454. [Google Scholar] [CrossRef] [PubMed]
- Mazzoni, M.; Zampiga, M.; Clavenzani, P.; Lattanzio, G.; Tagliavia, C.; Sirri, F. Effect of chronic heat stress on gastrointestinal histology and expression of feed intake-regulatory hormones in broiler chickens. Animal 2022, 16, 100600. [Google Scholar] [CrossRef]
- Ahmad, R.; Yu, Y.-H.; Hsiao, F.S.-H.; Su, C.-H.; Liu, H.-C.; Tobin, I.; Zhang, G.; Cheng, Y.-H. Influence of Heat Stress on Poultry Growth Performance, Intestinal Integrity, and Immune Response, and Mitigation Strategies. Animals 2022, 12, 2297. [Google Scholar] [CrossRef] [PubMed]
- Kikusato, M.; Toyomizu, M. Mechanisms Underlying the Effects of Heat Stress on Intestinal Integrity, Inflammation, and Microbiota in Chickens. J. Poult. Sci. 2023, 60, 2023021. [Google Scholar] [CrossRef] [PubMed]
- Bi, Y.; Wei, H.; Chai, Y.; Wang, H.; Xue, Q.; Li, J. Intermittent mild cold acclimation ameliorates intestinal inflammation and immune dysfunction in acute cold-stressed broilers by regulating the TLR4/MyD88/NF-κB pathway. Poult. Sci. 2024, 103, 103637. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Wang, Y.; Zhao, X.; Yu, Y.; Guo, Y.; Li, Z.; Zhou, Z. Growth performance and gut health of cold-stressed broilers in response to supplementation with a combination of sodium butyrate and vitamin D3. Animals 2025, 15, 861. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Li, S.; Xin, H.; Li, J.; Li, X.; Zhang, R.; Li, J.; Bao, J. Proper Cold Stimulation Starting at an Earlier Age Can Increase Feed Intake and Ameliorate Intestinal Morphology Damage in Broilers. Poult. Sci. 2020, 99, 2570–2580. [Google Scholar] [CrossRef]
- Iqbal, Y.; Cottrell, J.J.; Suleria, H.A.R.; Dunshea, F.R. Gut microbiota–polyphenol interactions in chicken: A review. Animals 2020, 10, 1391. [Google Scholar] [CrossRef]
- Al-Qaisi, M.; Abdelqader, A.; Abuajamieh, M.; Abedal-Majed, M.; Al-Fataftah, A.R. Impacts of Dietary Betaine on Rectal Temperature, Laying Performance, Metabolism, Intestinal Morphology and Follicular Development in Heat-Exposed Laying Hens. J. Therm. Biol. 2023, 117, 103714. [Google Scholar] [CrossRef]







| Specifications | C | E |
|---|---|---|
| Corn, % | 39.06 | 49.66 |
| Wheat, % | 20.00 | - |
| White grape pomace, % | - | 6 |
| Soybean meal, 46 CP % | 26.33 | 28.25 |
| Methionine, % | 0.23 | 0.26 |
| L-Threonine, % | 0.01 | 0.01 |
| Calcium carbonate, 38% | 9.20 | 9.16 |
| Monocalcium phosphate, % | 0.56 | 0.66 |
| Salt, % | 0.37 | 0.37 |
| Vegetal oil, % | 3.19 | 4.58 |
| Choline, 60% | 0.05 | 0.05 |
| Premix *, 1% | 1.00 | 1.00 |
| Total ingredients, % | 100.00 | 100.00 |
| Calculated composition | ||
| Metabolizable energy, kcal/kg | 2850.00 | 2850.00 |
| Dry matter, % | 89.29 | 90.10 |
| Crude protein, % | 18.00 | 18.00 |
| Crude digestible protein, % | 15 | 14.50 |
| Ether extract, % | 5.53 | 7.14 |
| Crude ash, % | 2.26 | 2.58 |
| Crude fiber, % | 4.71 | 5.65 |
| Calcium, % | 4.19 | 4.19 |
| Available phosphorus, % | 0.38 | 0.38 |
| Calcium/phosphorus | 11.03 | 11.03 |
| Sodium, % | 0.18 | 0.18 |
| Chloride, % | 0.27 | 0.25 |
| Lysine, % | 0.89 | 0.90 |
| Digestible lysine, % | 0.80 | 0.81 |
| Methionine, % | 0.50 | 0.52 |
| Digestible methionine, % | 0.48 | 0.50 |
| Methionine + cysteine, % | 0.85 | 0.80 |
| Methionine + cystine, % | 0.72 | 0.72 |
| Threonine, % | 0.64 | 0.66 |
| Tryptophan, % | 0.20 | 0.19 |
| Arginine, % | 1.05 | 1.04 |
| Linoleic acid (C18:2) | 2.86 | 3.69 |
| Metabolizable energy/crude protein | 158.33 | 158.33 |
| Total vitamin E (mg/kg) | 83.23 | 96.40 |
| DPPH (mM echiv Trolox) | 1.19 | 2.41 |
| Total polyphenols, mg/g GAE | 2.34 | 3.71 |
| Specification | HCT, % | WBC, % | PLT, % | HET, % | LYM, % | MON, % | EOS, % |
|---|---|---|---|---|---|---|---|
| NT | |||||||
| CON | 28.83 | 24.53 | 12.55 ab | 48.00 | 42.83 a | 6.33 | 2.50 |
| WGP | 30.00 | 24.00 | 12.93 a | 45.50 | 45.67 a | 6.33 | 2.00 |
| HST | |||||||
| CON | 27.33 | 26.90 | 10.60 abc | 57.67 | 32.83 b | 9.67 | 1.40 |
| WGP | 28.17 | 29.53 | 7.25 c | 59.83 | 34.83 b | 4.83 | 1.50 |
| LST | |||||||
| CON | 30.08 | 28.67 | 8.90 bc | 44.00 | 45.00 a | 9.17 | 1.67 |
| WGP | 27.75 | 25.33 | 7.48 c | 49.50 | 43.33 a | 5.00 | 2.40 |
| Main effect | |||||||
| Diet | |||||||
| CCON | 28.75 | 26.70 | 10.68 a | 49.89 | 40.22 | 8.39 a | 1.86 |
| WGP | 28.64 | 26.29 | 9.22 b | 51.61 | 41.28 | 5.39 b | 1.97 |
| SEM D | 0.539 | 2.020 | 0.497 | 2.380 | 2.530 | 0.919 | 0.297 |
| Temperature | |||||||
| NT | 29.42 | 24.27 | 12.74 a | 46.75 b | 44.25 a | 6.33 | 2.25 |
| HST | 27.75 | 28.22 | 8.92 b | 58.75 a | 33.83 b | 7.25 | 1.45 |
| LST | 28.92 | 27.00 | 8.19 b | 46.75 b | 44.17 a | 7.08 | 2.03 |
| SEM T | 0.661 | 2.48 | 0.609 | 2.92 | 3.09 | 1.13 | 0.352 |
| p-value | |||||||
| D | 0.885 | 0.887 | 0.046 | 0.613 | 0.770 | 0.028 | 0.819 |
| T | 0.204 | 0.521 | ≤0.0001 | 0.008 | 0.035 | 0.829 | 0.446 |
| D × T | 0.136 | 0.699 | 0.113 | 0.626 | 0.862 | 0.273 | 0.492 |
| Specification | ALB, g/dL | GLOB, g/dL | ALB/GLOB | Ca, mg/dL | Cl, mmol/L | K, mmol/L | Na, mmol/L | Na/K Ratio | TP, g/dL |
|---|---|---|---|---|---|---|---|---|---|
| NT | |||||||||
| CON | 2.13 | 3.15 | 0.689 | 28.50 | 117.25 | 9.17 a | 153.62 | 23.43 b | 5.30 |
| WGP | 2.15 | 3.17 | 0.688 | 28.92 | 116.10 | 6.87 ab | 155.95 | 31.58 ab | 5.30 |
| HST | |||||||||
| CON | 1.78 | 2.90 | 0.613 | 23.07 | 132.88 | 3.60 b | 145.98 | 40.55 a | 4.70 |
| WGP | 1.79 | 2.82 | 0.637 | 24.52 | 116.58 | 3.80 b | 155.40 | 41.05 a | 4.60 |
| LST | |||||||||
| CON | 2.00 | 3.37 | 0.599 | 25.27 | 118.48 | 3.64 b | 159.73 | 44.07 a | 5.38 |
| WGP | 2.00 | 3.15 | 0.636 | 30.02 | 120.90 | 3.79 b | 160.05 | 42.12 a | 5.30 |
| Main effect | |||||||||
| Diet | |||||||||
| CON | 1.97 | 3.14 | 0.634 | 25.61 | 122.87 | 5.47 | 153.11 | 36.02 | 5.13 |
| WGP | 1.98 | 3.04 | 0.654 | 27.82 | 117.86 | 4.82 | 157.13 | 38.25 | 5.02 |
| SEMD | 0.059 | 0.108 | 0.018 | 1.16 | 3.58 | 0.702 | 2.41 | 2.23 | 0.151 |
| Temperature | |||||||||
| NT | 2.14 a | 3.16 | 0.688 | 28.71 | 116.68 | 8.02 a | 154.78 | 27.51 b | 5.30 a |
| HST | 1.78 b | 2.86 | 0.625 | 23.79 | 124.73 | 3.70 b | 150.69 | 40.80 a | 4.65 b |
| LST | 2.00 ab | 3.26 | 0.618 | 27.65 | 119.69 | 3.71 b | 159.89 | 43.09 a | 5.27 ab |
| SEMT | 0.073 | 0.132 | 0.022 | 1.42 | 4.39 | 0.860 | 2.96 | 2.73 | 0.185 |
| p-value | |||||||||
| D | 0.922 | 0.539 | 0.437 | 0.189 | 0.330 | 0.517 | 0.248 | 0.484 | 0.607 |
| T | 0.006 | 0.099 | 0.060 | 0.051 | 0.433 | 0.001 | 0.105 | 0.001 | 0.031 |
| D × T | 0.999 | 0.822 | 0.829 | 0.538 | 0.292 | 0.509 | 0.527 | 0.406 | 0.905 |
| Specification | Feed Intake (g/Head/Day) | Excreta (g/Head/Day) | Nutrient Digestibility (%) | ||||||
|---|---|---|---|---|---|---|---|---|---|
| OM | CP | EE | CF | NFE | ASH | GE | |||
| NT | |||||||||
| CON | 121.25 a | 131.04 a | 72.72 ab | 86.80 b | 88.86 ab | 23.02 abc | 71.57 | 47.46 bc | 80.08 |
| WGP | 115.14 a | 118.40 a | 72.51 b | 86.51 b | 88.93 ab | 14.74 bc | 71.96 | 44.35 c | 80.26 |
| HST | |||||||||
| CON | 96.94 b | 57.19 b | 76.71 a | 89.07 a | 89.89 a | 29.70 a | 74.75 | 57.82 a | 82.90 |
| WGP | 96.70 b | 61.63 b | 74.02 ab | 87.67 ab | 89.94 a | 25.06 ab | 72.24 | 52.36 ab | 81.09 |
| LST | |||||||||
| CON | 123.23 a | 121.56 a | 75.02 ab | 87.71 ab | 86.84 b | 25.98 ab | 74.09 | 56.47 a | 81.66 |
| WGP | 113.44 a | 119.90 a | 72.95 ab | 86.70 b | 88.25 ab | 14.40 c | 72.11 | 45.35 bc | 80.32 |
| Main effect | |||||||||
| Diet | |||||||||
| CON | 113.81 a | 103.26 | 74.82 a | 87.86 a | 88.53 | 26.23 a | 73.47 | 53.92 a | 81.55 |
| WGP | 108.43 b | 99.98 | 73.16 b | 86.96 b | 89.04 | 18.07 b | 72.10 | 47.35 b | 80.55 |
| SEMD | 1.62 | 1.80 | 0.570 | 0.292 | 0.308 | 1.40 | 0.604 | 1.03 | 0.418 |
| Temperature | |||||||||
| NT | 118.19 a | 124.72 a | 72.62 b | 86.65 b | 88.90 a | 18.88 b | 71.77 | 45.91 b | 80.17 b |
| HST | 96.82 b | 59.41 b | 75.37 a | 88.38 a | 89.91 a | 27.38 a | 73.49 | 55.09 a | 82.00 a |
| LST | 118.33 a | 120.73 a | 73.99 ab | 87.21 ab | 87.54 b | 20.19 b | 73.10 | 50.91 a | 80.99 ab |
| SEMT | 1.98 | 2.20 | 0.699 | 0.358 | 0.377 | 1.79 | 0.740 | 1.27 | 0.511 |
| p-value | |||||||||
| D | 0.020 | 0.198 | 0.042 | 0.031 | 0.244 | 0.000 | 0.112 | 0.000 | 0.095 |
| T | 0.000 | 0.000 | 0.023 | 0.003 | 0.000 | 0.002 | 0.228 | 0.000 | 0.044 |
| D × T | 0.231 | 0.023 | 0.429 | 0.545 | 0.351 | 0371 | 0.337 | 0.075 | 0.356 |
| Specification | Lactobacillus sp. (log10 CFU/g) | Enterobacteriaceae (log10 CFU/g) | Staphylococcus sp. (log10 CFU/g) |
|---|---|---|---|
| NT | |||
| CON | 9.86 | 4.14 | 4.53 |
| WGP | 8.81 | 4.22 | 4.08 |
| HST | |||
| CON | 9.67 | 3.78 | 4.96 |
| WGP | 9.73 | 3.00 | 5.05 |
| LST | |||
| CON | 9.26 | 4.57 | 5.16 |
| WGP | 9.57 | 3.45 | 5.28 |
| Main effect | |||
| Diet | |||
| CON | 9.59 | 4.49 | 4.55 |
| WGP | 9.37 | 3.41 | 4.80 |
| SEMD | 0.299 | 0.489 | 0.391 |
| Temperature | |||
| NT | 9.34 | 4.18 | 3.81 |
| HST | 9.70 | 3.39 | 5.01 |
| LST | 9.41 | 4.28 | 5.22 |
| SEMT | 0.366 | 0.580 | 0.479 |
| p-value | |||
| D | 0.599 | 0.175 | 0.654 |
| T | 0.761 | 0.548 | 0.121 |
| D × T | 0.399 | 0.408 | 0.933 |
| Specification | Acetate (C2) | Propionate (C3) | Isobutyrate (iC4) | Butyrate (C4) | Isovalerate (iC5) | Valerate (C5) |
|---|---|---|---|---|---|---|
| NT | ||||||
| CON | 42.03 | 13.92 | 1.44 b | 8.69 | 1.95 | 1.81 |
| WGP | 46.58 | 14.13 | 1.33 b | 14.42 | 2.32 | 1.55 |
| HST | ||||||
| CON | 28.96 | 9.28 | 1.31 b | 7.81 | 1.25 | 1.39 |
| WGP | 27.00 | 11.24 | 1.12 b | 4.84 | 1.32 | 1.08 |
| LST | ||||||
| CON | 33.92 | 18.64 | 3.28 a | 9.36 | 1.44 | 1.36 |
| WGP | 29.60 | 14.56 | 3.52 a | 6.96 | 0.91 | 1.23 |
| Main effect | ||||||
| Diet | ||||||
| CON | 34.97 | 13.95 | 2.01 | 8.62 | 1.547 | 1.52 |
| WGP | 34.40 | 13.31 | 1.99 | 8.74 | 1.516 | 1.28 |
| SEM D | 2.31 | 1.63 | 0.119 | 1.56 | 0.194 | 0.228 |
| Temperature | ||||||
| NT | 44.31 a | 14.03 | 1.39 b | 11.56 | 2.13 a | 1.68 |
| HST | 27.98 b | 10.26 | 1.21 b | 6.33 | 1.29 ab | 1.23 |
| LST | 31.76 b | 16.60 | 3.40 a | 8.16 | 1.17 b | 1.29 |
| SEM T | 2.93 | 2.06 | 0.151 | 1.98 | 0.246 | 0.289 |
| p-value | ||||||
| D | 0.864 | 0.788 | 0.918 | 0.958 | 0.912 | 0.482 |
| T | 0.004 | 0.141 | 0.0001 | 0.181 | 0.028 | 0.472 |
| D × T | 0.518 | 0.581 | 0.581 | 0.224 | 0.416 | 0.975 |
| Specification | ALBW | ACW | Intestinal Length (cm) | ||||
|---|---|---|---|---|---|---|---|
| DL | JL | IL | CEL | CL | |||
| NT | |||||||
| CON | 1819.17 a | 1128.33 a | 28.67 | 86.50 a | 53.17 | 36.92 a | 11.75 ab |
| WGP | 1791.67 a | 1062.50 ab | 26.40 | 73.00 ab | 68.00 | 30.60 ab | 13.30 a |
| HST | |||||||
| CON | 1549.17 b | 928.33 bc | 22.33 | 66.33 b | 59.50 | 29.33 ab | 9.33 b |
| WGP | 1497.50 b | 901.67 c | 22.33 | 66.33 b | 54.83 | 29.67 ab | 8.33 b |
| LST | |||||||
| CON | 1612.50 ab | 978.33 abc | 22.83 | 63.50 b | 56.33 | 26.67 b | 9.00 ab |
| WGP | 1850.83 a | 1099.17 a | 21.83 | 67.83 b | 62.33 | 30.66 b | 9.00 ab |
| Main effect | |||||||
| Diet | |||||||
| CON | 1660.3 | 1011.7 | 24.28 | 72.11 | 56.33 | 30.97 | 10.02 |
| WGP | 1713.3 | 1021.1 | 23.86 | 69.06 | 61.72 | 30.31 | 10.03 |
| SEM D | 32.3 | 21.5 | 1.13 | 2.13 | 3.10 | 1.34 | 0.649 |
| Temperature | |||||||
| NT | 1805.4 | 1095.4 a | 27.53 a | 79.75 a | 60.58 | 33.76 | 12.52 a |
| HST | 1523.3 | 915.0 b | 22.33 b | 66.33 b | 57.17 | 29.50 | 8.83 b |
| LST | 1731.7 | 1038.8 a | 22.33 b | 65.67 b | 59.33 | 28.67 | 9.00 b |
| SEM T | 1713.3 | 26.4 | 1.34 | 2.61 | 3.67 | 1.64 | 0.77 |
| p-value | |||||||
| D | 0.255 | 0.759 | 0.790 | 0.327 | 0.221 | 0.733 | 0.841 |
| T | 0.000 | 0.000 | 0.017 | 0.001 | 0.809 | 0.090 | 0.004 |
| D × T | 0.026 | 0.044 | 0.695 | 0.066 | 0.202 | 0.107 | 0.525 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cornescu, G.M.; Panaite, T.D.; Cișmileanu, A.E.; Gal, C.; Gagniuc, E.; Tudorică, C.G.; Dumitru, M. Evaluating the Dietary Effects of White Grape Pomace Supplementation in Laying Hens Exposed to Thermal Stress: Hematological, Biochemical, Cecal Fermentation Metabolites, Histomorphology Approaches. Appl. Sci. 2025, 15, 12903. https://doi.org/10.3390/app152412903
Cornescu GM, Panaite TD, Cișmileanu AE, Gal C, Gagniuc E, Tudorică CG, Dumitru M. Evaluating the Dietary Effects of White Grape Pomace Supplementation in Laying Hens Exposed to Thermal Stress: Hematological, Biochemical, Cecal Fermentation Metabolites, Histomorphology Approaches. Applied Sciences. 2025; 15(24):12903. https://doi.org/10.3390/app152412903
Chicago/Turabian StyleCornescu, Gabriela Maria, Tatiana Dumitra Panaite, Ana Elena Cișmileanu, Claudiu Gal, Elvira Gagniuc, Cristina Gabriela Tudorică, and Mihaela Dumitru. 2025. "Evaluating the Dietary Effects of White Grape Pomace Supplementation in Laying Hens Exposed to Thermal Stress: Hematological, Biochemical, Cecal Fermentation Metabolites, Histomorphology Approaches" Applied Sciences 15, no. 24: 12903. https://doi.org/10.3390/app152412903
APA StyleCornescu, G. M., Panaite, T. D., Cișmileanu, A. E., Gal, C., Gagniuc, E., Tudorică, C. G., & Dumitru, M. (2025). Evaluating the Dietary Effects of White Grape Pomace Supplementation in Laying Hens Exposed to Thermal Stress: Hematological, Biochemical, Cecal Fermentation Metabolites, Histomorphology Approaches. Applied Sciences, 15(24), 12903. https://doi.org/10.3390/app152412903

