New Artichoke Flours with High Content of Bioactive Compounds
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Blanching Treatments
2.3. Drying Treatments
2.4. Phenolic Compounds and Antioxidant Capacity Analyses
2.5. Inulin Analysis
2.6. Color
2.7. Statistical Analysis
3. Results and Discussion
3.1. Drying Behavior
3.2. Total Phenolic Content
3.3. Total Antioxidant Capacity
3.4. Inulin
3.5. Color
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| TPC | Total Phenolic Content |
| TAC | Total Antioxidant Capacity |
| DPPH | 2,2-diphenyl-1-picrylhydrazyl |
| BI | Browning Index |
| TCD | Total Color Difference |
| DW | Dry Weight |
| FW | Fresh Weight |
| GAE | Galic Acid Equivalents |
| AAE | Ascorbic Acid Equivalents |
References
- Christaki, E.; Bonos, E.; Florou-Paneri, P. Nutritional and functional properties of cynara crops (Globe Artichoke and Cardoon) and their potential applications: A Review. Int. J. Appl. Sci. 2012, 2, 64–70. [Google Scholar]
- Pandino, G.; Lombardo, S.; Mauromicale, G.; Williamson, G. Profile of polyphenols and phenolic acids in bracts and receptacles of globe artichoke (Cynara cardunculus var. scolymus) germplasm. J. Food Compos. Anal. 2011, 24, 148–153. [Google Scholar] [CrossRef]
- Tortosa-Díaz, L.; Saura-Martínez, J.; Taboada-Rodríguez, A.; Martínez-Hernández, G.B.; López-Gómez, A.; Marín-Iniesta, F. Influence of industrial processing of artichoke and by-products on the bioactive and nutritional compounds. Food Eng. Rev. 2025, 17, 384–407. [Google Scholar] [CrossRef]
- Sedlar, T.; Čakarević, J.; Tomić, J.; Popović, L. Vegetable by-products as new sources of functional proteins. Plant Foods Hum. Nutr. 2021, 76, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Szabo, K.; Cătoi, A.F.; Vodnar, D.C. Bioactive compounds extracted from tomato processing by-products as a source of valuable nutrients. Plant Foods Hum. Nutr. 2018, 73, 268–277. [Google Scholar] [CrossRef]
- Kumar, M.; Barbhai, M.D.; Hasan, M.; Dhumal, S.; Singh, S.; Pandiselvam, R.; Rais, N.; Natta, S.; Senapathy, M.; Sinha, N.; et al. Onion (Allium cepa L.) peel: A review on the extraction of bioactive compounds, its antioxidant potential, and its application as a functional food ingredient. J. Food Sci. 2022, 87, 4289–4311. [Google Scholar] [CrossRef]
- Quispe, M.A.; Valenzuela, J.A.P.; de la Cruz, A.R.H.; Silva, C.R.E.; Quiñonez, G.H.; Cervantes, G.M.M. Optimization of Ultrasound-Assisted Extraction of Polyphenols From Globe Artichoke (Cynara scolymus L.) Bracts Residues Using Response Surface Methodology. Acta Sci. Pol. Technol. Aliment. 2021, 20, 277–290. [Google Scholar] [CrossRef]
- Benkhoud, H.; Baâti, T.; Njim, L.; Selmi, S.; Hosni, K. Antioxidant, antidiabetic, and antihyperlipidemic activities of wheat flour-based chips incorporated with omega-3-rich fish oil and artichoke powder. J. Food Biochem. 2021, 45, e13297. [Google Scholar] [CrossRef]
- Santos, D.; Lopes da Silva, J.A.; Pintado, M. Fruit and vegetable by-products’ flours as ingredients: A review on production process, health benefits and technological functionalities. LWT 2022, 154, 112707. [Google Scholar] [CrossRef]
- Sergio, L.; Gatto, M.A.; Spremulli, L.; Pieralice, M.; Linsalata, V.; Di Venere, D. Packaging and storage conditions to extend the shelf life of semi-dried artichoke hearts. LWT 2016, 72, 277–284. [Google Scholar] [CrossRef]
- Oliveira, S.M.; Brandão, T.R.S.; Silva, C.L.M. Influence of drying processes and pretreatments on nutritional and bioactive characteristics of dried vegetables: A review. Food Eng. Rev. 2016, 8, 134–163. [Google Scholar] [CrossRef]
- El-Sohaimy, S.A. The effect of cooking on the chemical composition of artichoke (Cynara scolymus L.). Afr. J. Food Sci. 2013, 4, 182–187. [Google Scholar] [CrossRef]
- Guillén-Ríos, P.; Burló, F.; Martínez-Sánchez, F.; Carbonell-Barrachina, Á.A. Effects of processing on the quality of preserved quartered artichokes hearts. J. Food Sci. 2006, 71, 176–180. [Google Scholar] [CrossRef]
- Ruiz-Cano, D.; Pérez-Llamas, F.; Frutos, M.J.; Arnao, M.B.; Espinosa, C.; López-Jiménez, J.Á.; Castillo, J.; Zamora, S. Chemical and functional properties of the different by-products of artichoke (Cynara scolymus L.) from industrial canning processing. Food Chem. 2014, 160, 134–140. [Google Scholar] [CrossRef]
- Guida, V.; Ferrari, G.; Pataro, G.; Chambery, A.; Di Maro, A.; Parente, A. The effects of ohmic and conventional blanching on the nutritional, bioactive compounds and quality parameters of artichoke heads. LWT 2013, 53, 569–579. [Google Scholar] [CrossRef]
- Şahin, K.; Özcan Sinir, G.; Durmus, F.; Çopur, Ö. The effect of pretreatments and vacuum drying on drying characteristics, total phenolic content and antioxidant capacity of artichoke (Cynara cardunculus Var. scolymus L.) slices. Gıda 2020, 45, 699–709. [Google Scholar] [CrossRef]
- Muştu, C.; Eren, I. Drying kinetics, heating uniformity and quality changes during the microwave vacuum drying of artichokes (Cynara scolymus L.). Ital. J. Food Sci. 2019, 31, 681–702. [Google Scholar] [CrossRef]
- Borsini, A.A.; Llavata, B.; Umaña, M.; Cárcel, J.A. Artichoke by products as a source of antioxidant and fiber: How it can be affected by drying temperature. Foods 2021, 10, 459. [Google Scholar] [CrossRef] [PubMed]
- Icier, F. Ohmic blanching effects on drying of vegetable byproduct. J. Food Process Eng. 2010, 33, 661–683. [Google Scholar] [CrossRef]
- ISO 14502-1:2005; Determination of Substances Characteristics of Green and Black Tea. Part 1: Content of Total Polyphenols in Tea-Colorimetric Method Using Folin-Ciocalteu Reagent. International Standard Organization: Geneve, Switzerland, 2005.
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Viticult. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT 1995, 28, 25–30. [Google Scholar] [CrossRef]
- El Sayed, A.M.; Hussein, R.; Motaal, A.A.; Fouad, M.A.; Aziz, M.A.; El-Sayed, A. Artichoke edible parts are hepatoprotective as commercial leaf preparation. Rev. Bras. Farmacogn. 2018, 28, 165–178. [Google Scholar] [CrossRef]
- Afolabi, I.S. Moisture migration and bulk nutrients interaction in a drying food systems: A Review. Food Nutr. Sci. 2014, 5, 692–714. [Google Scholar] [CrossRef]
- Femenia, A.; Robertson, J.A.; Waldron, K.W.; Selvendran, R.R. Cauliflower (Brassica oleracea L), globe artichoke (Cynara scolymus) and chicory witloof (Cichorium intybus) processing by-products as sources of dietary fibre. J. Sci. Food Agric. 1998, 77, 511–518. [Google Scholar] [CrossRef]
- Hatakeyama, H.; Hatakeyama, T. Lignin Structure, Properties, and Applications. In Biopolymers. Advances in Polymer Science; Abe, A., Dusek, K., Kobayashi, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; Volume 232. [Google Scholar] [CrossRef]
- Lutz, M.; Henríquez, C.; Escobar, M. Chemical composition and antioxidant properties of mature and baby artichokes (Cynara scolymus L.), raw and cooked. J. Food Compos. Anal. 2011, 24, 49–54. [Google Scholar] [CrossRef]
- Domingo, C.S.; Soria, M.; Rojas, A.M.; Fissore, E.N.; Gerschenson, L.N. Protease and hemicellulase assisted extraction of dietary fiber from wastes of Cynara cardunculus. Int. J. Mol. Sci. 2015, 16, 6057–6075. [Google Scholar] [CrossRef] [PubMed]
- Lombardo, S.; Pandino, G.; Mauromicale, G. Total polyphenol content and antioxidant activity among clones of two sicilian globe artichoke landraces. Acta Hortic. 2013, 983, 95–102. [Google Scholar] [CrossRef]
- Pandino, G.; Lombardo, S.; Mauromicale, G. Globe artichoke leaves and floral stems as a source of bioactive compounds. Ind. Crops Prod. 2013, 44, 44–49. [Google Scholar] [CrossRef]
- Lombardo, S.; Pandino, G.; Mauro, R.; Mauromicale, G. Variation of phenolic content in globe artichoke in relation to biological, technical and environmental factors. Ital. J. Agron. 2009, 4, 181–189. [Google Scholar] [CrossRef]
- Dosi, R.; Daniele, A.; Guida, V.; Ferrara, L.; Severino, V.; Di Maro, A. Nutritional and metabolic profiling of the globe artichoke (Cynara scolymus L. cv. capuanella heads) in province of Caserta, Italy. Aust. J. Crop Sci. 2013, 7, 1927–1934. [Google Scholar]
- Kayahan, S.; Saloglu, D. Comparison of phenolic compounds and antioxidant activities of raw and cooked turkish artichoke cultivars. Front. Sustain. Food syst. 2021, 5, 761145. [Google Scholar] [CrossRef]
- Fratianni, F.; Tucci, M.; De Palma, M.; Pepe, R.; Nazzaro, F. Polyphenolic composition in different parts of some cultivars of globe artichoke (Cynara Cardunculus L. var. Scolymus (L.) Fiori). Food Chem. 2007, 104, 1282–1286. [Google Scholar] [CrossRef]
- Galieni, A.; Stagnari, F.; Pisante, M.; Platani, C.; Ficcadenti, N. Biochemical characterization of artichoke (Cynara cardunculus var scolymus L.) spring genotypes from marche and abruzzo regions (central Italy). Adv. Hort. Sci. 2019, 33, 23–31. [Google Scholar] [CrossRef]
- Domínguez-Fernández, M.; Irigoyen, Á.; de los Angeles Vargas-Alvarez, M.; Ludwig, I.A.; De Peña, M.P.; Cid, C. Influence of culinary process on free and bound (poly)phenolic compounds and antioxidant capacity of artichokes. Int. J. Gastron. Food Sci. 2021, 25, 100389. [Google Scholar] [CrossRef]
- Rinaldi, M.; Littardi, P.; Cavazza, A.; Santi, S.; Grimaldi, M.; Rodolfi, M.; Ganino, T.; Chiavaro, E. Effect of different atmospheric and subatmospheric cooking techniques on qualitative properties and microstructure of artichoke heads. Food Res. Int. 2020, 137, 109679. [Google Scholar] [CrossRef]
- Xiao, H.W.; Pan, Z.; Deng, L.Z.; El-Mashad, H.M.; Yang, X.H.; Mujumdar, A.S.; Gao, Z.J.; Zhang, Q. Recent developments and trends in thermal blanching—A comprehensive review. Inf. Process. Agric. 2017, 4, 101–127. [Google Scholar] [CrossRef]
- Abdulaziz, L.; Yaziji, S.; Azizieh, A. Effect of preliminarily treatments on quality parameters of artichoke with different preservation methods. Int. J. Chemtech Res. 2015, 7, 2565–2572. [Google Scholar]
- Bureau, S.; Mouhoubi, S.; Touloumet, L.; Garcia, C.; Moreau, F.; Bédouet, V.; Renard, C.M.G.C. Are folates, carotenoids and vitamin C affected by cooking? Four domestic procedures are compared on a large diversity of frozen vegetables. LWT 2015, 64, 735–741. [Google Scholar] [CrossRef]
- Ferracane, R.; Pellegrini, N.; Visconti, A.; Graziani, G.; Chiavaro, E.; Miglio, C.; Fogliano, V. Effects of different cooking methods on antioxidant profile, antioxidant capacity, and physical characteristics of artichoke. J. Agric. Food Chem. 2008, 56, 8601–8608. [Google Scholar] [CrossRef]
- Jiménez-Monreal, A.M.; García-Diz, L.; Martínez-Tomé, M.; Mariscal, M.; Murcia, M.A. Influence of cooking methods on antioxidant activity of vegetables. J. Food Sci. 2009, 74, 97–103. [Google Scholar] [CrossRef]
- Kweon, M.H.; Hwang, H.J.; Sung, H.C. Identification and antioxidant activity of novel chlorogenic acid derivatives from bamboo (Phyllostachys edulis). J. Agric. Food Chem. 2001, 49, 4646–4655. [Google Scholar] [CrossRef] [PubMed]
- Lattanzio, V.; Kroon, P.A.; Linsalata, V.; Cardinali, A. Globe artichoke: A functional food and source of nutraceutical ingredients. J. Funct. Foods 2009, 1, 131–144. [Google Scholar] [CrossRef]
- Schütz, K.; Kammerer, D.; Carle, R.; Schieber, A. Identification and quantification of caffeoylquinic acids and flavonoids from artichoke (Cynara scolymus L.) heads, juice, and pomace by HPLC-DAD-ESI/MSn. J. Agric. Food Chem. 2004, 52, 4090–4096. [Google Scholar] [CrossRef]
- Francavilla, M.; Marone, M.; Marasco, P.; Contillo, F.; Monteleone, M. Artichoke biorefinery: From food to advanced technological applications. Foods 2021, 10, 112. [Google Scholar] [CrossRef]
- Noriega-Rodríguez, D.; Soto-Maldonado, C.; Torres-Alarcón, C.; Pastrana-Castro, L.; Weinstein-Oppenheimer, C.; Zúñiga-Hansen, M.E. Valorization of globe artichoke (Cynara Scolymus) agro-industrial discards, obtaining an extract with a selective eect on viability of cancer cell lines. Processes 2020, 8, 715. [Google Scholar] [CrossRef]
- Canale, M.; Sanfilippo, R.; Strano, M.C.; Amenta, M.; Allegra, M.; Proetto, I.; Papa, M.; Palmeri, R.; Todaro, A.; Spina, A. Artichoke industrial waste in durum wheat bread: Effects of two different preparation and drying methods of flours and evaluation of quality parameters during short storage. Foods 2023, 12, 3419. [Google Scholar] [CrossRef]
- Canale, M.; Spina, A.; Summo, C.; Strano, M.C.; Bizzini, M.; Allegra, M.; Sanfilippo, R.; Amenta, M.; Pasqualone, A. Waste from artichoke processing industry: Reuse in bread-making and evaluation of the physico-chemical characteristics of the final product. Plants 2022, 11, 3409. [Google Scholar] [CrossRef]
- Ihl, M.; Monsalves, M.; Bifani, V. Chlorophyllase inactivation as a measure of blanching efficacy and colour retention of artichokes (Cynara scolymus L.). LWT 1998, 31, 50–56. [Google Scholar] [CrossRef]





| Bracts | ||||
|---|---|---|---|---|
| TCD | BI | TPC | TAC | |
| TCD | x | 0.6772 | 0.9274 | 0.0001 |
| BI | 0.6772 | x | 0.6811 | 0.0090 |
| TPC | 0.9274 | 0.6811 | x | 0.5323 |
| TAC | 0.0001 | 0.0090 | 0.5323 | x |
| Stems | ||||
| TCD | BI | TPC | TAC | |
| TCD | x | 0.3508 | 0.9396 | 0.8036 |
| BI | 0.3508 | x | 0.5745 | 0.1068 |
| TPC | 0.9396 | 0.5745 | x | 0.3252 |
| TAC | 0.8036 | 0.1068 | 0.3252 | x |
| Hearts | ||||
| TCD | BI | TPC | TAC | |
| TCD | x | 0.9144 | 0.9274 | 0.3260 |
| BI | 0.9144 | x | 0.9662 | 0.6132 |
| TPC | 0.9274 | 0.9662 | x | 0.3335 |
| TAC | 0.3260 | 0.6132 | 0.3335 | x |
| Control | Steam (3 min) | Steam (15 min) | Immersion (3 min) | Immersion (15 min) | |
|---|---|---|---|---|---|
| Bracts | |||||
| L* | 50.6 ± 0.1 c | 43.2 ± 0.68 d | 52.9 ± 0.36 b | 52.4 ± 0.47 b | 54.1 ± 0.1 a |
| a* | 0.5 ± 0.25 c | 7 ± 0.11 a | 2.4 ± 0.11 b | −2.5 ± 1.3 d | 1.1 ± 0.17 b |
| b* | 22.0 ± 0.17 b | 18.6 ± 0.75 c | 18.6 ± 0.05 c | 26.2 ± 1.2 a | 21.2 ± 0.41 b |
| BI | 55.8 ± 0.25 c | 67.0 ± 1.4 a | 45.7 ± 0.22 e | 62.3 ± 1.4 b | 49.7 ± 0.95 d |
| TCD | - | 47.5 ± 0.89 a | 56.1 ± 0.34 bc | 58.7 ± 0.95 b | 58.1 ± 0.14 c |
| h° | 1.54 ± 0.01 a | 1.21 ± 0.01 c | 1.44 ± 0.1 b | −1.47 ± 0.04 d | 1.51 ± 0.1 a |
| Stems | |||||
| L* | 34.6 ± 0.11 d | 58.2 ± 0.75 b | 61.1 ± 1.5 a | 43.3 ± 1.3 c | 59.6 ± 0.47 ab |
| a* | 3.5 ± 0.51 a | 1.3 ± 0.15 b | 1.5 ± 0.68 b | 3.0 ± 0.1 a | −0.2 ± 0.2 c |
| b* | 14.3 ± 0.34 d | 23.5 ± 0.05 a | 21.0 ± 3.8 ab | 16.7 ± 0.41 cd | 19.0 ± 0.65 bc |
| BI | 59.5 ± 0.21 a | 52.0 ± 0.75 b | 42.9 ± 8.2 c | 52.6 ± 2.4 ab | 37.3 ±1.7 c |
| TCD | - | 45.5 ± 0.63 a | 46.9 ± 2.8 a | 29.4 ± 1.1 b | 44.6± 0.18 a |
| h° | 1.33 ± 0.04 c | 1.51 ± 0.1 a | 1.49 ± 0.04 a | 1.39 ± 0.1 b | −1.55 ± 0.01 d |
| Hearts | |||||
| L* | 51.9 ± 0.1 a | 37.0 ± 2.3 d | 46.8 ± 0.05 b | 42.7 ± 0.58 c | 52.9 ± 1.7 a |
| a* | 5.1 ± 0.41 a | 6.4 ± 1.0 a | 2.5 ± 0.47 b | 6.0 ± 1.3 a | 3.2 ± 0.23 b |
| b* | 17.0 ± 0.15 b | 17.5 ± 1.3 b | 16.5 ± 0.63 b | 18.0 ± 1.3 ab | 19.4 ± 1.0 a |
| BI | 46.3 ± 0.34 c | 75.0 ± 2.5 a | 46.5 ± 1.1 c | 63.9 ± 5.6 b | 49.1 ± 3.8 c |
| TCD | - | 41.5 ± 2.7 a | 49.7 ± 0.23 c | 46.7 ± 1.14 b | 58.7 ± 0.95 c |
| h° | 1.28 ± 0.02 b | 1.22 ± 0.04 b | 1.42 ± 0.03 a | 1.25 ± 0.05 b | 1.40 ± 0.01 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tortosa-Díaz, L.; Martínez-Hernández, G.B.; López-Avilés, F.J.; Juárez-Marín, M.; Saura-Martínez, J.; Marín-Iniesta, F. New Artichoke Flours with High Content of Bioactive Compounds. Appl. Sci. 2025, 15, 12479. https://doi.org/10.3390/app152312479
Tortosa-Díaz L, Martínez-Hernández GB, López-Avilés FJ, Juárez-Marín M, Saura-Martínez J, Marín-Iniesta F. New Artichoke Flours with High Content of Bioactive Compounds. Applied Sciences. 2025; 15(23):12479. https://doi.org/10.3390/app152312479
Chicago/Turabian StyleTortosa-Díaz, Luis, Ginés Benito Martínez-Hernández, Francisco José López-Avilés, Miguel Juárez-Marín, Jorge Saura-Martínez, and Fulgencio Marín-Iniesta. 2025. "New Artichoke Flours with High Content of Bioactive Compounds" Applied Sciences 15, no. 23: 12479. https://doi.org/10.3390/app152312479
APA StyleTortosa-Díaz, L., Martínez-Hernández, G. B., López-Avilés, F. J., Juárez-Marín, M., Saura-Martínez, J., & Marín-Iniesta, F. (2025). New Artichoke Flours with High Content of Bioactive Compounds. Applied Sciences, 15(23), 12479. https://doi.org/10.3390/app152312479

