PEF Priming of Seeds for Microgreen Production: A Comparative Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. PEF Equipment, Protocols, and Application
2.3. Germination, Growth, and Harvest Conditions
2.4. Evaluation of Electroprimed Seed Germination and Growth
2.5. Post-Harvest: Nutritional and Physicochemical Evaluation
2.5.1. Microgreen Sample Preparation
Extract Preparation
2.5.2. UV–Vis Spectrophotometric Analysis
Chlorophyll a, Chlorophyll b, and Total Carotenoids
Total Phenolic Content
Antioxidant Capacity
- (a)
- DPPH Scavenging Assay
- (b) ABTS Scavenging Assay
2.5.3. Total Soluble Solids
2.5.4. Near-Infrared Reflectance Spectroscopy
2.6. Post-Harvest: Sensory Analysis
- Visual (Integrity, Colour Intensity, and Tonality);
- Mouthfeel and Flavour (Bitter, Hot, Crispy, Sweet, Fibrous, Moist, Astringent, and Aftertaste);
- Aroma (Intensity).
2.7. Data Analysis
3. Results
3.1. Germination and Plant Growth Evaluation
3.1.1. Imbibition Process: Water Uptake and Electrical Conductivity
3.1.2. Germination Indexes and Radicle Length
3.2. Post-Harvest: Nutritional and Physicochemical Evaluation
3.2.1. UV–Vis Spectrophotometric Analysis
Chlorophyll a, Chlorophyll b, and Total Carotenoids
Total Phenolic Content
- Beetroot: F(5, 60) = 5.084, p < 0.001, ηp2 = 0.770;
- Arugula: F(5, 60) = 4.777, p < 0.001, ηp2 = 0.285;
- Basil: F(5, 60) = 12.109, p < 0.001, ηp2 = 0.502.
- Beetroot: F(15, 186) = 3.081, p < 0.001, ηp2 = 0.321;
- Arugula: F(15, 186) = 2.182, p = 0.008, ηp2 = 0.150;
- Basil: F(15, 186) = 2.657, p = 0.001, ηp2 = 0.176.
- Beetroot: F(15, 77 697) = 34.498, p < 0.001, ηp2 = 0.429;
- Arugula: F(15, 77 697) = 11.045, p < 0.001, ηp2 = 0.441;
- Basil: F(15, 77 697) = 3.136, p < 0.001, ηp2 = 0.514.
Antioxidant Capacity
3.2.2. Total Soluble Solids
3.2.3. % Dry Matter
3.2.4. Near-Infrared Reflectance Spectroscopy
3.3. Post-Harvest: Sensory Analysis
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Demirtas, B. Assessment of the Impacts of the Consumers’ Awareness of Organic Food on Consumption Behavior. Food Sci. Technol. 2019, 39, 881–888. [Google Scholar] [CrossRef]
- Rezai, G.; Teng, P.K.; Mohamed, Z.; Shamsudin, M.N. Consumers’ Awareness and Consumption Intention towards Green Foods. Afr. J. Bus. Manag. 2012, 6, 4496–4503. [Google Scholar] [CrossRef]
- Dorling, D. World Population Prospects at the UN: Our Numbers Are Not Our Problem? In The Struggle for Social Sustainability; Policy Press: Bristol, UK, 2021; pp. 129–154. ISBN 978-1-4473-5612-7. [Google Scholar]
- FAO. The State of Food Security and Nutrition in the World 2022; FAO: Rome, Italy, 2022; ISBN 978-92-5-136499-4. [Google Scholar]
- Reisch, L.; Eberle, U.; Lorek, S. Sustainable Food Consumption: An Overview of Contemporary Issues and Policies. Sustain. Sci. Pract. Policy 2013, 9, 7–25. [Google Scholar] [CrossRef]
- Premanandh, J. Factors Affecting Food Security and Contribution of Modern Technologies in Food Sustainability. J. Sci. Food Agric. 2011, 91, 2707–2714. [Google Scholar] [CrossRef]
- Treadwell, D.D.; Hochmuth, R.; Landrum, L.; Laughlin, W. Microgreens: A New Specialty Crop: HS1164/HS1164, 4/2010. EDIS 2010, 2010. [Google Scholar] [CrossRef]
- Ebert, A. Sprouts, Microgreens, and Edible Flowers: The Potential for High Value Specialty Produce in Asia. In Proceedings of the Regional Symposium on High Value Vegetables in Southeast Asia, Chiang Mai, Thailand, 24 January 2012. [Google Scholar]
- Research and Market. Microgreen Market Report; Research and Market: Dublin, Ireland, 2025. [Google Scholar]
- Kyriacou, M.C.; Rouphael, Y.; Di Gioia, F.; Kyratzis, A.; Serio, F.; Renna, M.; De Pascale, S.; Santamaria, P. Micro-Scale Vegetable Production and the Rise of Microgreens. Trends Food Sci. Technol. 2016, 57, 103–115. [Google Scholar] [CrossRef]
- Leong, S.Y.; Burritt, D.J.; Oey, I. Electropriming of Wheatgrass Seeds Using Pulsed Electric Fields Enhances Antioxidant Metabolism and the Bioprotective Capacity of Wheatgrass Shoots. Sci. Rep. 2016, 6, 25306. [Google Scholar] [CrossRef]
- Pinto, E.; Almeida, A.; Aguiar, A.; Ferreira, I. Comparison between the Mineral Profile and Nitrate Content of Microgreens and Mature Lettuces. J. Food Compos. Anal. 2015, 37, 38–43. [Google Scholar] [CrossRef]
- Xiao, Z.; Lester, G.; Luo, Y.; Wang, Q. Assessment of Vitamin and Carotenoid Concentrations of Emerging Food Products: Edible Microgreens. J. Agric. Food Chem. 2012, 60, 7644–7651. [Google Scholar] [CrossRef]
- Márton, M.; Mándoki, Z.; Csapóné Kiss, Z.; Csapó, J. The Role of Sprouts in Human Nutrition. A Review. Acta Univ. Sapientiae 2010, 3, 81–117. [Google Scholar]
- International Organization of Vine and Wine Resolution OIV-OENO 634-2020; OIV: Paris, France, 2020.
- European Commission. Commission Delegated Regulation (EU) 2022/68 of 27 October 2021 Amending Delegated Regulation (EU) 2019/934 Supplementing Regulation (EU) No 1308/2013 of the European Parliament and of the Council as Regards Authorised Oenological Practices; European Commission: Brussels, Belgium, 2022. [Google Scholar]
- Aguiar-Macedo, M.; Redondo, L.M.; Pereira, M.T.; Silva, C. Pulsed Electric Fields vs. Pectolytic Enzymes in Arinto Vinification: Effects on Yield and Oenological Parameters. Appl. Sci. 2023, 13, 8343. [Google Scholar] [CrossRef]
- Golberg, A.; Sack, M.; Teissie, J.; Pataro, G.; Pliquett, U.; Saulis, G.; Stefan, T.; Miklavcic, D.; Vorobiev, E.; Frey, W. Energy-Efficient Biomass Processing with Pulsed Electric Fields for Bioeconomy and Sustainable Development. Biotechnol. Biofuels 2016, 9, 94. [Google Scholar] [CrossRef]
- Vorobiev, E.; Lebovka, N. Pulsed-Electric-Fields-Induced Effects in Plant Tissues: Fundamental Aspects and Perspectives of Applications. In Electrotechnologies for Extraction from Food Plants and Biomaterials; Food Engineering Series; Springer: New York, NY, USA, 2009. [Google Scholar] [CrossRef]
- Schwan, H.P. Electrical Properties of Tissue and Cell Suspensions. In Advances in Biological and Medical Physics; Elsevier: Amsterdam, The Netherlands, 1957; Volume 5, pp. 147–209. ISBN 978-1-4832-3111-2. [Google Scholar]
- Aguiar-Macedo, M.; Redondo, L.M.; Silva, C.; Correia, E.; Vilela, A. Impact of Monopolar and Bipolar Pulsed Electric Fields on the Quality of Tinta Roriz Wines. In IVES Conference Series; OIV: Dijon, France, 2024. [Google Scholar] [CrossRef]
- El Kantar, S.; Boussetta, N.; Lebovka, N.; Foucart, F.; Rajha, H.N.; Maroun, R.G.; Louka, N.; Vorobiev, E. Pulsed Electric Field Treatment of Citrus Fruits: Improvement of Juice and Polyphenols Extraction. Innov. Food Sci. Emerg. Technol. 2018, 46, 153–161. [Google Scholar] [CrossRef]
- Aguiar-Macedo, M.; Pereira, M.T.; Redondo, L.M.; Silva, C.; Controlling, B. Bruxellensis with Pulsed Electric Fields: Optimization of Industrial Protocols and Impact on the Wine Profile. BIO Web Conf. 2023, 68, 02041. [Google Scholar] [CrossRef]
- Mattar, J.R.; Turk, M.F.; Nonus, M.; Lebovka, N.I.; El Zakhem, H.; Vorobiev, E. Stimulation of Saccharomyces Cerevisiae Cultures by Pulsed Electric Fields. Food Bioprocess. Technol. 2014, 7, 3328–3335. [Google Scholar] [CrossRef]
- Puértolas, E.; López, N.; Condón, S.; Raso, J.; Álvarez, I. Pulsed Electric Fields Inactivation of Wine Spoilage Yeast and Bacteria. Int. J. Food Microbiol. 2009, 130, 49–55. [Google Scholar] [CrossRef]
- Attri, P.; Okumura, T.; Koga, K.; Shiratani, M.; Wang, D.; Takahashi, K.; Takaki, K. Outcomes of Pulsed Electric Fields and Nonthermal Plasma Treatments on Seed Germination and Protein Functions. Agronomy 2022, 12, 482. [Google Scholar] [CrossRef]
- Ahmed, Z.; Manzoor, M.F.; Ahmad, N.; Zeng, X.-A.; Din, Z.U.; Roobab, U.; Qayum, A.; Siddique, R.; Siddeeg, A.; Rahaman, A. Impact of Pulsed Electric Field Treatments on the Growth Parameters of Wheat Seeds and Nutritional Properties of Their Wheat Plantlets Juice. Food Sci. Nutr. 2020, 8, 2490–2500. [Google Scholar] [CrossRef]
- Sitzmann, W.; Vorobiev, E.; Lebovka, N. Applications of Electricity and Specifically Pulsed Electric Fields in Food Processing: Historical Backgrounds. Innov. Food Sci. Emerg. Technol. 2016, 37, 302–311. [Google Scholar] [CrossRef]
- Benham, C. The Electro-Vegetometer. Nature 1911, 88, 41. [Google Scholar] [CrossRef]
- Dymek, K.; Dejmek, P.; Panarese, V.; Vicente, A.A.; Wadsö, L.; Finnie, C.; Galindo, F.G. Effect of Pulsed Electric Field on the Germination of Barley Seeds. LWT-Food Sci. Technol. 2012, 47, 161–166. [Google Scholar] [CrossRef]
- Sonoda, T.; Takamura, N.; Wang, D.; Namihira, T.; Akiyama, H. Growth Control of Leaf Lettuce Using Pulsed Electric Field. In Proceedings of the 2013 19th IEEE Pulsed Power Conference (PPC), San Francisco, CA, USA, 16–21 June 2013; pp. 1–5. [Google Scholar]
- Song, Y.; Zhao, W.; Su, Z.; Guo, S.; Du, Y.; Song, X.; Shi, X.; Li, X.; Liu, Y.; Liu, Z. Effect of Pulsed Electric Field Treatment on Seed Germination and Seedling Growth of Scutellaria baicalensis. Agriculture 2024, 14, 158. [Google Scholar] [CrossRef]
- Nolan, D.A. Effects of Seed Density and Other Factors on the Yield of Microgreens Grown Hydroponically on Burlap; Major Report; Virginia Tech: Blacksburg, VA, USA, 2019; Available online: https://hdl.handle.net/10919/86642 (accessed on 21 November 2025).
- Di Gioia, F.; Santamaria, P. The Nutritional Properties of Microgreens. In Microgreens: Novel, Fresh and Functional Food to Explore all the Value of Biodiversity; ECO-logica SRL: Bari, Italy, 2015; pp. 41–50. ISBN 978-88-909289-3-2. [Google Scholar]
- Reddy, L.V.; Metzger, R.J.; Ching, T.M. Effect of Temperature on Seed Dormancy of Wheat. Crop Sci. 1985, 25, 455–458. [Google Scholar] [CrossRef]
- Walker-Simmons, M. ABA Levels and Sensitivity in Developing Wheat Embryos of Sprouting Resistant and Susceptible Cultivars 1. Plant Physiol. 1987, 84, 61–66. [Google Scholar] [CrossRef]
- Zuo, J.; Liu, J.; Gao, F.; Yin, G.; Wang, Z.; Chen, F.; Li, X.; Xu, J.; Chen, T.; Li, L.; et al. Genome-Wide Linkage Mapping Reveals QTLs for Seed Vigor-Related Traits Under Artificial Aging in Common Wheat (Triticum aestivum). Front. Plant Sci. 2018, 9, 1101. [Google Scholar] [CrossRef]
- Kader, M.A. A Comparison of Seed Germination Calculation Formulae and the Associated Interpretation of Resulting Data. J. Proc. R. Soc. New South Wales 2005, 138, 65–75. [Google Scholar] [CrossRef]
- Al-Ansari, F.; Ksiksi, T. A Quantitative Assessment of Germination Parameters: The Case of Crotalaria Persica and Tephrosia Apollinea. Open Ecol. J. 2016, 9, 13–21. [Google Scholar] [CrossRef]
- Jakusek, M.; Brennensthul, M.; Markowska, J.; Wolski, K.; Sobol, Ł. Effect of a Micronutrient Fertilizer and Fungicide on the Germination of Perennial Ryegrass Seeds (Lolium perenne L.) in Field Conditions. Agronomy 2020, 10, 1978. [Google Scholar] [CrossRef]
- Aliyar, Z.B.; Shafiei, A.B.; Seyedi, N.; Rezapour, S.; Moghanjugi, S.M. Effect of Traffic-Induced Air Pollution on Seed Germination of Arizona Cypress (Cupressus arizonica Green) and Black Pine (Pinus nigra Arnold). Urban For. Urban Green. 2020, 55, 126841. [Google Scholar] [CrossRef]
- Brown, R.F.; Mayer, D.G. Representing Cumulative Germination. 1. A Critical Analysis of Single-Value Germination Indices. Ann. Bot. 1988, 61, 117–125. [Google Scholar] [CrossRef]
- Kotowski, F. Temperature Alternation and Germination of Vegetable Seed. Acta Soc. Bot. Pol. 1927, 5, 71–78. [Google Scholar] [CrossRef]
- Abdul-Baki, A.A.; Anderson, J.D. Vigor Determination in Soybean Seed by Multiple Criteria. Crop Sci. 1973, 13, 630–633. [Google Scholar] [CrossRef]
- Pentoś, K.; Wondołowska-Grabowska, A.; Gajda, G.; Babij, M.; Chohura, P.; Zaleski, A.; Szpunar-Krok, E.; Jobczyk, W.; Romaniuk, A.; Gajda, D. The Effect on the Germination Vigour of Cucumber Seeds after Receiving Magnetic Field Treatment Pre-Sowing. Appl. Sci. 2022, 12, 5490. [Google Scholar] [CrossRef]
- Barik, S.R.; Pandit, E.; Sanghamitra, P.; Mohanty, S.P.; Behera, A.; Mishra, J.; Nayak, D.K.; Bastia, R.; Moharana, A.; Sahoo, A.; et al. Unraveling the Genomic Regions Controlling the Seed Vigour Index, Root Growth Parameters and Germination per Cent in Rice. PLoS ONE 2022, 17, e0267303. [Google Scholar] [CrossRef]
- Ferruzzi, M.G.; Blakeslee, J. Digestion, Absorption, and Cancer Preventative Activity of Dietary Chlorophyll Derivatives. Nutr. Res. 2007, 27, 1–12. [Google Scholar] [CrossRef]
- Arzola-Rodríguez, S.I.; Muñoz-Castellanos, L.-N.; López-Camarillo, C.; Salas, E. Phenolipids, Amphipilic Phenolic Antioxidants with Modified Properties and Their Spectrum of Applications in Development: A Review. Biomolecules 2022, 12, 1897. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Yu, J.; Ma, R.; Ji, Y.; Hu, Q.; Mao, Y.; Ding, C.; Li, Z.; Ge, S.; Deng, W.-W.; et al. Chlorophyll and Carotenoid Metabolism Varies with Growth Temperatures among Tea Genotypes with Different Leaf Colors in Camellia Sinensis. Int. J. Mol. Sci. 2024, 25, 10772. [Google Scholar] [CrossRef]
- Falcioni, R.; Antunes, W.C.; Demattê, J.A.M.; Nanni, M.R. A Novel Method for Estimating Chlorophyll and Carotenoid Concentrations in Leaves: A Two Hyperspectral Sensor Approach. Sensors 2023, 23, 3843. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K. Chlorophylls and Carotenoids: Pigments of Photosynthetic Biomembranes. In Methods in Enzymology; Plant Cell Membranes; Academic Press: Cambridge, MA, USA, 1987; Volume 148, pp. 350–382. [Google Scholar]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. In Methods in Enzymology; Oxidants and Antioxidants Part A; Academic Press: Cambridge, MA, USA, 1999; Volume 299, pp. 152–178. [Google Scholar]
- Dulyanska, Y.; Cruz-Lopes, L.; Esteves, B.; Ferreira, J.; Domingos, I.; Lima, M.J.; Correia, P.; Ferreira, M.; Fragata, A.; Barroca, M.; et al. Evaluation of the Antioxidant Activity of Extracts Obtained Form Cherry Seeds. Hyg. Eng. Des. 2022, 40, 221–226, UDC 634.233-157.63:615.272(469). [Google Scholar]
- Santos, S.C.R.V.L.; Guiné, R.; Barros, A. Effect of Drying Temperatures on the Phenolic Composition and Antioxidant Activity of Pears of Rocha Variety (Pyrus communis L.). J. Food Meas. Charact. 2014, 8, 105–112. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Pellegrini, N.; Colombi, B.; Del Rio, D.; Salvatore, S.; Bianchi, M.; Brighenti, F.; Serafini, M. Total Antioxidant Capacity of Plant Foods, Beverages and Oils Consumed in Italy Assessed by Three Different In Vitro Assays. J. Nutr. 2003, 133, 2812–2819. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Dulyanska, Y.; Cruz-Lopes, L.P.; Esteves, B.; Ferreira, J.V.; Domingos, I.; Lima, M.J.; Correia, P.M.R.; Ferreira, M.; Fragata, A.; Barroca, M.J.; et al. Extraction of Phenolic Compounds from Cherry Seeds: A Preliminary Study. Agronomy 2022, 12, 1227. [Google Scholar] [CrossRef]
- Paul, V.; Singh, A.; Pandey, R. Estimation of Total Soluble Solids (TSS). In Laboratory Manual on “Post-Harvest Physiology of Fruits and Flowers”; Indian Agricultural Research Institute, Division of Plant Physiology: New Delhi, India, 2010; pp. 41–43. [Google Scholar]
- Sidel, J.; Stone, H. Sensory Science: Methodology. In Handbook of Food Science, Technology, and Engineering; Hui, Y.H., Ed.; CRC Press: Boca Raton, FL, USA, 2006; ISBN 978-0-8493-9848-3. [Google Scholar]
- Stone, H.; Sidel, J.L. Sensory Evaluation Practices; Academic Press: Cambridge, MA, USA, 2004; ISBN 978-0-12-672690-9. [Google Scholar]
- Likert, R. A Technique for the Measurement of Attitudes. Arch. Psychol. 1932, 22, 55. [Google Scholar]
- Michell, K.A.; Isweiri, H.; Newman, S.E.; Bunning, M.; Bellows, L.L.; Dinges, M.M.; Grabos, L.E.; Rao, S.; Foster, M.T.; Heuberger, A.L.; et al. Microgreens: Consumer Sensory Perception and Acceptance of an Emerging Functional Food Crop. J. Food Sci. 2020, 85, 926–935. [Google Scholar] [CrossRef] [PubMed]
- Norouzian, R.; Plonsky, L. Eta- and Partial Eta-Squared in L2 Research: A Cautionary Review and Guide to More Appropriate Usage. Second Lang. Res. 2018, 34, 257–271. [Google Scholar] [CrossRef]
- Marôco, J. Análise de Equações Estruturais: Fundamentos Teóricos, Software & Aplicações; ReportNumber, Lda: Pêro Pinheiro, Portugal, 2011; ISBN 978-989-96763-1-2. [Google Scholar]
- Polachini, T.C.; Norwood, E.-A.; Le-Bail, P.; Le-Bail, A.; Cárcel, J.A. Pulsed Electric Field (PEF) Application on Wheat Malting Process: Effect on Hydration Kinetics, Germination and Amylase Expression. Innov. Food Sci. Emerg. Technol. 2023, 86, 103375. [Google Scholar] [CrossRef]
- Bagarinao, N.C.; King, J.; Leong, S.Y.; Agyei, D.; Sutton, K.; Oey, I. Effect of Germination on Seed Protein Quality and Secondary Metabolites and Potential Modulation by Pulsed Electric Field Treatment. Foods 2024, 13, 1598. [Google Scholar] [CrossRef] [PubMed]
- Nonogaki, H.; Bassel, G.W.; Bewley, J.D. Germination—Still a Mystery. Plant Sci. 2010, 179, 574–581. [Google Scholar] [CrossRef]
- Tan-Wilson, A.L.; Wilson, K.A. Mobilization of Seed Protein Reserves. Physiol. Plant 2012, 145, 140–153. [Google Scholar] [CrossRef]
- Steinbrecher, T.; Leubner-Metzger, G. The Biomechanics of Seed Germination. J. Exp. Bot. 2017, 68, 765–783. [Google Scholar] [CrossRef] [PubMed]
- Ho, S.Y.; Mittal, G.S. Electroporation of Cell Membranes: A Review. Crit. Rev. Biotechnol. 1996, 16, 349–362. [Google Scholar] [CrossRef] [PubMed]
- Joshi, R.P.; Schoenbach, K.H. Electroporation Dynamics in Biological Cells Subjected to Ultrafast Electrical Pulses: A Numerical Simulation Study. Phys. Rev. E 2000, 62, 1025–1033. [Google Scholar] [CrossRef]
- Li, Z.; Burritt, D.J. The Influence of Cocksfoot Mottle Virus on Antioxidant Metabolism in the Leaves of Dactylis glomerata L. Physiol. Mol. Plant Pathol. 2003, 62, 285–295. [Google Scholar] [CrossRef]
- Sabri, N.; Pelissier, B.; Teissié, J. Electropermeabilization of Intact Maize Cells Induces an Oxidative Stress. Eur. J. Biochem. 1996, 238, 737–743. [Google Scholar] [CrossRef]
- Weimer, P.J. Degradation of Cellulose and Hemicellulose by Ruminal Microorganisms. Microorganisms 2022, 10, 2345. [Google Scholar] [CrossRef]










| Species | Subject | E ) | I ) | Energy per Pulse) | ) |
|---|---|---|---|---|---|
| Arugula | Control | - | - | - | - |
| PEFA | 2 | 1–2 | 0.1 | 0.020 | |
| PEFB | 3 | 4–5 | 0.3 | 0.060 | |
| PEFC | 4 | 9 | 0.6 | 0.120 | |
| Basil | Control | - | - | - | - |
| PEFA | 2 | 7–8 | 0.3 | 0.050 | |
| PEFB | 3 | 15–16 | 1 | 0.167 | |
| PEFC | 4 | 25 | 2 | 0.333 | |
| Beetroot | Control | - | - | - | - |
| PEFA | 2 | 25 | 1 | 0.167 | |
| PEFB | 3 | 97–100 | 5.9 | 0.983 | |
| PEFC | 4 | 144–145 | 11.5 | 1.917 |
| Parameter | Control | PEFA | PEFB | PEFC | p | ηp2 | ||
|---|---|---|---|---|---|---|---|---|
| Beetroot | Before Imbibition | Dry Weight (g) | 8.3224 b ± 0.0046 | 8.3215 b ± 0.0042 | 8.3251 b ± 0.0024 | 8.3264 a ± 0.0028 | 0.022 | 0.255 |
| σ H2O (mS/cm) | 0.09 a ± 0.00 | 0.08 bc ± 0.01 | 0.09 ab ± 0.01 | 0.08 c ± 0.00 | <0.001 | 0.556 | ||
| °C | 13.9 a ± 0.1 | 13.9 b ± 0.0 | 13.9 b ± 0.0 | 13.9 b ± 0.0 | 0.016 | 0.273 | ||
| 1 h after Imbibition (10 min before PEF) | ||||||||
| σ (mS/cm) | 1.57 a ± 0.05 | 1.54 b ± 0.02 | 1.44 b ± 0.17 | 1.58 a ± 0.01 | 0.047 | 0.287 | ||
| °C | 13.9 ± 0.1 | 13.9 ± 0.0 | 13.9 ± 0.0 | 13.9 ± 0.1 | 0.064 | 0.200 | ||
| Post-PEF | σ (mS/cm) | 2.54 ± 0.06 | 2.56 ± 0.07 | 2.58 ± 0.08 | 2.50 ± 0.08 | 0.182 | 0.139 | |
| °C | 15.4 b ± 0.1 | 15.5 a ± 0.1 | 15.4 b ± 0.1 | 15.5 a ± 0.1 | <0.001 | 0.634 | ||
| 4 h post-PEF (Before Sowing) | Dry Weight (g) | 12.1583 b ± 0.0945 | 12.5353 ab ± 0.3407 | 12.5591 a ± 0.0912 | 12.3299 a ± 0.0924 | <0.001 | 0.459 | |
| 4 h post-PEF (Before Sowing) | σ (mS/cm) | 3.05 b ± 0.10 | 3.19 a ± 0.07 | 3.18 a ± 0.08 | 3.16 b ± 0.09 | 0.007 | 0.312 | |
| °C | 18.6 a ± 0.2 | 18.1 b ± 0.1 | 18.2 b ± 0.1 | 18.1 b ± 0.1 | <0.001 | 0.777 | ||
| Parameter | Control | PEFA | PEFB | PEFC | p | ηp2 | ||
|---|---|---|---|---|---|---|---|---|
| Arugula | Before Imbibition | Dry Weight (g) | 0.9134 ± 0.0004 | 0.9134 ± 0.0002 | 0.9136 ± 0.0002 | 0.9135 ± 0.0004 | 0.565 | 0.061 |
| σ H2O (mS/cm) | 0.09 ± 0.01 | 0.09 ± 0.00 | 0.09 ± 0.01 | 0.09 ± 0.00 | 0.100 | 0.333 | ||
| °C | 14.0 ab ± 0.1 | 13.8 c ± 0.1 | 14.0 b ± 0.1 | 13.9 bc ± 0.0 | <0.001 | 0.625 | ||
| 1 h after Imbibition (10 min before PEF) | σ (mS/cm) | 0.17 a ± 0.01 | 0.16 b ± 0.01 | 0.16 b ± 0.01 | 0.17 ab ± 0.09 | <0.001 | 0.333 | |
| °C | 14.4 a ± 0.1 | 14.5 b ± 0.1 | 14.6 b ± 0.0 | 14.7 c ± 0.1 | <0.001 | 0.704 | ||
| Post-PEF | σ (mS/cm) | 0.19 b ± 0.01 | 0.23 a ± 0.02 | 0.22 a ± 0.00 | 0.23 a ± 0.01 | <0.001 | 0.727 | |
| °C | 15.4 c ± 0.1 | 16.2 b ± 0.3 | 16.6 a ± 0.2 | 16.8 a ± 0.1 | <0.001 | 0.917 | ||
| 4 h post-PEF (Before Sowing) | Dry Weight (g) | - | - | - | - | - | - | |
| σ (mS/cm) | 0.30 b ± 0.01 | 0.32 a ± 0.02 | 0.30 b ± 0.00 | 0.31 b ± 0.01 | 0.004 | 0.331 | ||
| °C | 18.1 ± 0.1 | 18.1 ± 0.2 | 18.0 ± 0.2 | 17.9 ± 0.2 | 0.071 | 0.195 |
| Parameter | Control | PEFA | PEFB | PEFC | p | ηp2 | ||
|---|---|---|---|---|---|---|---|---|
| Basil | Before Imbibition | Dry Weight (g) | 3.0560 ± 0.0003 | 3.0559 ± 0.0003 | 3.0562 ± 0.0005 | 3.0562 ± 0.0005 | 0.212 | 0.129 |
| σ H2O (mS/cm) | 0.09 ± 0.00 | 0.09 ± 0.00 | 0.09 ± 0.00 | 0.09 ± 0.01 | 0.327 | 0.273 | ||
| °C | 14.4 a ± 0.0 | 14.3 b ± 0.1 | 14.3 b ± 0.1 | 14.4 ab ± 0.1 | 0.007 | 0.314 | ||
| 1 h after Imbibition (10 min before PEF) | σ (mS/cm) | 0.28 a ± 0.01 | 0.24 b ± 0.02 | 0.23 b ± 0.02 | 0.27 a ± 0.02 | <0.001 | 0.634 | |
| °C | 15.7 ± 0.1 | 15.8 ± 0.2 | 15.8 ± 0.1 | 15.7 ± 0.1 | 0.05 | 0.220 | ||
| Post-PEF | σ (mS/cm) | 0.35 c ± 0.01 | 0.34 c ± 0.01 | 0.37 b ± 0.00 | 0.38 a ± 0.01 | <0.001 | 0.926 | |
| °C | 15.3 c ± 0.1 | 15.6 a ± 0.1 | 15.3 c ± 0.1 | 15.5 b ± 0.1 | <0.001 | 0.824 | ||
| 4 h post-PEF (Before Sowing) | Dry Weight (g) | 42.4782 b ± 0.6799 | 41.5625 b ± 1.1760 | 43.0547 a ± 1.2489 | 43.6487 a ± 0.9732 | <0.001 | 0.38 | |
| σ (mS/cm) | 0.40 c ± 0.01 | 0.41 b ± 0.01 | 0.41 b ± 0.01 | 0.43 a ± 0.01 | <0.001 | 0.746 | ||
| °C | 17.4 ± 0.1 | 17.5 ± 0.2 | 17.4 ± 0.1 | 17.3 ± 0.1 | 0.109 | 0.170 |
| Day | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 2 | 3 | 4 | 5 | |||||||
| Beetroot | Control | 4.29 ± 2.84 | 12 | 6.66 ± 5.18 | 16 | 12.08 ± 9.04 | 18 | 18.86 ± 12.28 | 18 | 21.87 ± 13.70 | 19 |
| PEFA | 4.16 ± 3.17 | 16 | 7.47 ± 5.53 | 16 | 13.40 ± 11.56 | 16 | 18.59 ± 16.95 | 16 | 19.53 ± 17.06 | 16 | |
| PEFB | 5.44 ± 3.91 | 16 | 8.53 ± 7.17 | 17 | 15.59 ± 12.65 | 17 | 19.92 ± 17.11 | 18 | 21.28 ± 18.07 | 18 | |
| PEFC | 5.00 ± 3.16 | 20 | 9.64 ± 5.49 | 21 | 20.30 ± 12.87 | 22 | 26.89 ± 16.29 | 23 | 29.09 ± 16.13 | 23 | |
| Arugula | Control | 1.97 ± 1.75 | 18 | 7.35 ± 5.67 | 23 | 15.04 ± 9.01 | 24 | 20.23 ± 11.09 | 24 | 22.06 ± 11.22 | 25 |
| PEFA | 3.45 ± 3.70 | 20 | 10.89 ± 8.43 | 23 | 19.21 ± 11.41 | 24 | 21.06 ± 12.79 | 25 | 22.58 ± 12.99 | 25 | |
| PEFB | 4.73 ± 3.45 | 22 | 12.82 ± 7.30 | 25 | 20.43 ± 11.42 | 29 | 24.72 ± 12.14 | 29 | 29.95 ± 13.70 | 29 | |
| PEFC | 3.97 ± 3.49 | 19 | 10.77 ± 7.46 | 24 | 20.04 ± 10.61 | 26 | 23.89 ± 10.05 | 26 | 26.32 ± 9.61 | 28 | |
| Basil | Control | 1.50 ± 0.71 | 5 | 3.09 ± 1.77 | 11 | 4.64 ± 2.98 | 14 | 7.12 ± 4.23 | 14 | 7.63 ± 4.62 | 15 |
| PEFA | 1.44 ± 1.33 | 9 | 2.13 ± 1.38 | 16 | 3.32 ± 2.07 | 17 | 4.08 ± 3.86 | 19 | 4.92 ± 4.43 | 19 | |
| PEFB | 2.46 ± 2.9 | 12 | 4.29 ± 3.94 | 14 | 6.83 ± 5.26 | 15 | 8.97 ± 6.79 | 15 | 10.93 ± 9.03 | 15 | |
| PEFC | 2.15 ± 3.02 | 13 | 3.28 ± 1.76 | 16 | 6.91 ± 5.26 | 17 | 8.09 ± 5.78 | 17 | 9.27 ± 5.64 | 17 | |
| CGI | SVI | DGI (%) | |||||||
|---|---|---|---|---|---|---|---|---|---|
| Day 1 | Day 2 | Day 3 | Day 4 | Day 5 | |||||
| Beetroot | Control | 233 | 0.613 | 875 | 40.0 | 53.3 | 60.0 | 60.0 | 63.3 |
| PEFA | 240 | 1.000 | 1042 | 53.3 | 53.3 | 53.3 | 53.3 | 53.3 | |
| PEFB | 253 | 0.818 | 1135 | 53.3 | 56.7 | 56.7 | 60.0 | 60.0 | |
| PEFC | 319 | 0.793 | 1939 | 66.7 | 70.0 | 73.3 | 76.7 | 76.7 | |
| Arugula | Control | 327 | 0.694 | 1324 | 60.0 | 76.7 | 80.0 | 80.0 | 83.3 |
| PEFA | 339 | 0.758 | 1505 | 66.7 | 76.7 | 80.0 | 83.3 | 83.3 | |
| PEFB | 384 | 0.725 | 2196 | 73.3 | 83.3 | 96.7 | 96.7 | 96.7 | |
| PEFC | 349 | 0.622 | 1667 | 63.3 | 80.0 | 86.7 | 86.7 | 93.3 | |
| Basil | Control | 154 | 0.484 | 127 | 16.7 | 36.7 | 46.7 | 46.7 | 50.0 |
| PEFA | 217 | 0.559 | 148 | 30.0 | 53.3 | 56.7 | 63.3 | 63.3 | |
| PEFB | 206 | 0.789 | 437 | 40.0 | 46.7 | 50.0 | 50.0 | 50.0 | |
| PEFC | 231 | 0.773 | 402 | 43.3 | 53.3 | 56.7 | 56.7 | 56.7 | |
| Parameter | Extract | Control | PEFA | PEFB | PEFC | p | ηp2 | ||
|---|---|---|---|---|---|---|---|---|---|
| Beetroot | DPPH | US | % inhibition | 42.82 c ± 1.29 | 44.12 bc ± 1.52 | 46.35 a ± 0.11 | 44.37 b ± 0.63 | <0.001 | 0.623 |
| μg TE/g FW | 7.96 c ± 0.31 | 8.28 bc ± 0.37 | 8.82 a ± 0.03 | 8.34 b ± 0.15 | |||||
| AM | % inhibition | 39.81 b ± 1.71 | 37.95 b ± 2.66 | 38.86 b ± 1.28 | 44.73 a ± 0.59 | <0.001 | 0.720 | ||
| μg TE/g FW | 7.24 b ± 0.41 | 6.78 b ± 0.64 | 7.00 b ± 0.31 | 8.43 a ± 0.14 | |||||
| ABTS | US | % inhibition | 57.29 b ± 13.18 | 70.20 a ± 7.49 | 59.14 b ± 2.83 | 69.41 a ± 1.77 | 0.001 | 0.389 | |
| μg TE/g FW | 67.85 b ± 22.09 | 89.50 a ± 12.56 | 70.94 b ± 4.75 | 88.16 a ± 2.96 | |||||
| AM | % inhibition | 36.87 b ± 13.37 | 67.06 a ± 12.94 | 65.27 a ± 11.60 | 58.17 a ± 8.77 | <0.001 | 0.623 | ||
| μg TE/g FW | 33.61 b ± 22.41 | 84.22 a ± 21.70 | 81.23 a ± 19.46 | 69.32 a ± 27.84 |
| Parameter | Extract | Control | PEFA | PEFB | PEFC | p | ηp2 | ||
|---|---|---|---|---|---|---|---|---|---|
| Arugula | DPPH | US | % inhibition | 70.19 ab ± 4.15 | 68.37 ab ± 5.48 | 62.96 b ± 8.38 | 73.19 a ± 6.83 | 0.015 | 0.275 |
| μg TE/g FW | 14.59 ab ± 1.00 | 14.15 ab ± 1.33 | 12.84 b ± 2.03 | 15.32 a ± 1.65 | |||||
| AM | % inhibition | 70.47 ab ± 4.57 | 68.37 ab ± 5.48 | 62.96 b ± 8.38 | 73.19 a ± 6.83 | 0.015 | 0.274 | ||
| μg TE/g FW | 14.65 ab ± 1.11 | 14.15 ab ± 1.33 | 12.84 b ± 2.03 | 15.32 a ± 1.65 | |||||
| ABTS | US | % inhibition | 29.48 ± 2.81 | 31.17 ± 8.20 | 29.91 ± 0.90 | 31.52 ± 3.89 | 0.796 | 0.034 | |
| μg TE/g FW | 21.22 ± 4.70 | 24.06 ± 13.75 | 21.93 ± 1.51 | 24.63 ± 6.52 | |||||
| AM | % inhibition | 39.74 ab ± 11.69 | 28.54 c ± 5.43 | 30.28 bc ± 3.99 | 40.68 a ± 7.58 | 0.002 | 0.358 | ||
| μg TE/g FW | 38.42 ab ± 19.60 | 19.65 c ± 9.10 | 22.56 bc ± 6.70 | 39.40 a ± 12.71 |
| Parameter | Extract | Control | PEFA | PEFB | PEFC | p | ηp2 | ||
|---|---|---|---|---|---|---|---|---|---|
| Basil | DPPH | US | % inhibition | 79.44 b ± 1.36 | 78.76 b ± 0.39 | 79.22 b ± 0.68 | 81.25 a ± 1.07 | <0.001 | 0.527 |
| μg TE/g FW | 16.83 b ± 0.33 | 16.67 b ± 0.09 | 16.78 b ± 0.17 | 17.27 a ± 0.26 | |||||
| AM | % inhibition | 79.44 b ± 1.36 | 78.76 b ± 0.39 | 79.22 b ± 0.68 | 81.25 a ± 1.07 | <0.001 | 0.527 | ||
| μg TE/g FW | 16.83 b ± 0.33 | 16.67 b ± 0.09 | 16.78 b ± 0.17 | 17.27 a ± 0.26 | |||||
| ABTS | US | % inhibition | 28.95 ± 3.14 | 30.47 ± 1.27 | 31.25 ± 4.62 | 27.39 ± 2.42 | 0.060 | 0.204 | |
| μg TE/g FW | 20.33 ± 5.26 | 22.88 ± 2.13 | 24.19 ± 7.74 | 17.71 ± 4.06 | |||||
| AM | % inhibition | 30.64 ± 5.00 | 28.31 ± 5.10 | 31.53 ± 2.67 | 28.34 ± 1.14 | 0.204 | 0.132 | ||
| μg TE/g FW | 23.17 ± 8.39 | 19.26 ± 8.55 | 24.66 ± 4.47 | 19.31 ± 1.91 |
| Parameter | Control | PEFA | PEFB | PEFC | p | ηp2 | |
|---|---|---|---|---|---|---|---|
| Beetroot | Fat | 2.92 ± 0.41 | 2.70 ± 0.30 | 2.06 ± 0.20 | 4.13 ± 1.58 | 0.084 | 0.545 |
| Protein | 15.39 b ± 0.98 | 15.51 b ± 0.60 | 14.69 ab ± 0.29 | 20.72 a ± 3.90 | 0.023 | 0.678 | |
| Crude Fibre | 17.05 a ± 0.29 | 17.42 a ± 0.48 | 16.94 ab ± 0.35 | 12.84 b ± 3.13 | 0.024 | 0.672 | |
| Ash | 27.05 a ± 1.46 | 27.34 a ± 0.67 | 27.41 a ± 0.56 | 19.40 b ± 5.40 | 0.021 | 0.685 | |
| Starch | 27.81 c ± 0.74 | 27.50 c ± 0.64 | 32.54 a ± 0.58 | 30.63 b ± 0.47 | <0.001 | 0.945 | |
| Neutral Detergent Fibre | 43.69 a ± 0.84 | 45.10 a ± 0.68 | 42.78 ab ± 0.44 | 35.87 b ± 5.87 | 0.022 | 0.680 | |
| Lysine | 2.32 a ± 0.14 | 2.35 a ± 0.09 | 2.30 a ± 0.03 | 2.01 b ± 0.06 | 0.005 | 0.778 | |
| Cystine | 0.35 ± 0.02 | 0.30 ± 0.01 | 0.29 ± 0.01 | 0.50 ± 0.22 | 0.155 | 0.462 | |
| Methionine | 0.20 ± 0.06 | 0.20 ± 0.03 | 0.11 ± 0.02 | 0.40 ± 0.22 | 0.083 | 0.546 | |
| Phosphorus | 2.03 ± 0.02 | 2.05 ± 0.04 | 2.02 ± 0.01 | 1.11 ± 0.87 | 0.074 | 0.560 | |
| Arugula | Fat | 1.27 c ± 0.08 | 1.63 b ± 0.12 | 2.35 a ± 0.04 | 2.43 a ± 0.14 | <0.001 | 0.971 |
| Protein | 9.27 bc ± 0.17 | 9.03 c ± 0.11 | 10.32 a ± 0.32 | 9.56 b ± 0.08 | <0.001 | 0.905 | |
| Crude Fibre | 6.87 d ± 0.13 | 7.19 c ± 0.07 | 8.97 a ± 0.08 | 8.49 b ± 0.07 | <0.001 | 0.993 | |
| Ash | 7.80 b ± 0.65 | 7.98 b ± 0.07 | 8.57 ab ± 0.19 | 9.91 a ± 0.72 | 0.005 | 0.779 | |
| Starch | 32.00 c ± 0.33 | 34.37 b ± 0.49 | 35.85 a ± 0.42 | 35.49 a ± 0.29 | <0.001 | 0.957 | |
| Neutral Detergent Fibre | 32.76 a ± 0.24 | 31.45 b ± 0.18 | 32.19 a ± 0.37 | 30.96 b ± 0.28 | <0.001 | 0.905 | |
| Lysine | 1.58 b ± 0.03 | 1.59 b ± 0.02 | 1.45 a ± 0.02 | 1.47 a ± 0.02 | <0.001 | 0.924 | |
| Cystine | 0.28 a ± 0.00 | 0.27 a ± 0.01 | 0.15 c ± 0.02 | 0.20 b ± 0.01 | <0.001 | 0.974 | |
| Methionine | 0.11 b ± 0.01 | 0.15 b ± 0.01 | 0.13 b ± 0.01 | 0.19 a ± 0.02 | 0.001 | 0.854 | |
| Phosphorus | 0.59 c ± 0.01 | 0.66 b ± 0.01 | 0.74 a ± 0.01 | 0.76 a ± 0.02 | <0.001 | 0.982 | |
| Basil | Fat | 4.44 b ± 0.02 | 4.44 b ± 0.06 | 5.07 a ± 0.13 | 5.00 a ± 0.21 | <0.001 | 0.888 |
| Protein | 22.87 a ± 0.12 | 22.13 b ± 0.23 | 22.26 ab ± 0.15 | 22.87 a ± 0.42 | 0.013 | 0.722 | |
| Crude Fibre | 11.77 a ± 0.19 | 11.21 b ± 0.08 | 11.40 b ± 0.13 | 11.10 b ± 0.10 | 0.001 | 0.850 | |
| Ash | 17.80 a ± 0.33 | 15.94 b ± 0.41 | 16.30 b ± 0.11 | 16.44 b ± 0.31 | <0.001 | 0.887 | |
| Starch | 28.81 b ± 0.49 | 30.67 a ± 0.18 | 31.52 a ± 0.25 | 30.75 a ± 0.44 | <0.001 | 0.918 | |
| Neutral Detergent Fibre | 34.18 a ± 0.47 | 33.08 b ± 0.16 | 32.65 b ± 0.04 | 32.52 b ± 0.14 | <0.001 | 0.907 | |
| Lysine | 2.08 a ± 0.01 | 1.98 b ± 0.02 | 1.94 c ± 0.02 | 1.99 bc ± 0.03 | <0.001 | 0.883 | |
| Cystine | 0.68 a ± 0.01 | 0.64 b ± 0.01 | 0.61 c ± 0.01 | 0.63 bc ± 0.01 | <0.001 | 0.889 | |
| Methionine | 0.51 bc ± 0.00 | 0.49 c ± 0.01 | 0.54 a ± 0.01 | 0.53 ab ± 0.01 | 0.001 | 0.847 | |
| Phosphorus | 0.54 b ± 0.02 | 0.52 b ± 0.01 | 0.63 a ± 0.02 | 0.61 a ± 0.01 | <0.001 | 0.906 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aguiar-Macedo, M.; Dulyanska, Y.; Guiné, R.P.F.; Costa, D.V.T.A.; Redondo, L.M. PEF Priming of Seeds for Microgreen Production: A Comparative Study. Appl. Sci. 2025, 15, 12481. https://doi.org/10.3390/app152312481
Aguiar-Macedo M, Dulyanska Y, Guiné RPF, Costa DVTA, Redondo LM. PEF Priming of Seeds for Microgreen Production: A Comparative Study. Applied Sciences. 2025; 15(23):12481. https://doi.org/10.3390/app152312481
Chicago/Turabian StyleAguiar-Macedo, Mafalda, Yuliya Dulyanska, Raquel P. F. Guiné, Daniela V. T. A. Costa, and Luís M. Redondo. 2025. "PEF Priming of Seeds for Microgreen Production: A Comparative Study" Applied Sciences 15, no. 23: 12481. https://doi.org/10.3390/app152312481
APA StyleAguiar-Macedo, M., Dulyanska, Y., Guiné, R. P. F., Costa, D. V. T. A., & Redondo, L. M. (2025). PEF Priming of Seeds for Microgreen Production: A Comparative Study. Applied Sciences, 15(23), 12481. https://doi.org/10.3390/app152312481

