The Association Between Muscle Strength, Body Cell Mass, and Training Session Hours in Young Female Artistic Gymnasts: A Pilot Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants and Design of the Study
2.2. Training Information
- Training hours per session: the number of hours in each session of training, expressed in h/session;
- Training hours per week: the total number of hours of training in a week, expressed in h/week;
- Training years: the duration, for which the participant had been training, expressed in years.
2.3. Body Weight and Height
2.4. Skinfold Thickness and Circumferences
2.5. Muscle Strength
2.6. Body Composition
- Total fat mass (FM): the total fat mass expressed in kg;
- Total fat mass percentage (FM%): the total fat mass in kg out of the total body weight in kg, expressed as a percentage;
- Total fat-free mass (FFM): the total fat-free mass, expressed in kg;
- Total fat-free mass percentage (FFM%): the total fat-free mass in kg out of the total body weight in kg, expressed as a percentage;
- Phase angle (PhA°): [arctangent (Xc/R) × 180°/π], expressed in degrees (°);
- Body cell mass (BCM): the metabolically active proportion of FFM, expressed in kg.
2.7. Physical Activity Assessment
- Duration of moderate physical activity (MPA): the duration of physical activity equal to or greater than three metabolic equivalent tasks (METs), expressed in minutes;
- Daily steps (DS): the number of steps recorded during each 24 h period, expressed in number of steps;
- Physical activity level (PAL): the level of physical activity, expressed in METs;
- Total distance (TD): the total distance computed per day, expressed in km.
2.8. Statistical Analysis
3. Results
4. Discussion
4.1. Findings and Concordance with Previous Studies
4.2. Study Strengths and Limitations
4.3. Potential Implications and New Directions for Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yu, T.; Xu, Y.; Zhang, Z.; Sun, Y.; Zhong, J.; Ding, C. The impact of core training on overall athletic performance in different sports: A comprehensive meta-analysis. BMC Sports Sci. Med. Rehabil. 2025, 17, 112. [Google Scholar] [CrossRef] [PubMed]
- Park, I.; Jeon, J. Psychological Skills Training for Athletes in Sports: Web of Science Bibliometric Analysis. Healthcare 2023, 11, 259. [Google Scholar] [CrossRef]
- Kelemen, B.; Tóth, R.; Benczenleitner, O.; Tóth, L. Mental preparation in runners: Gender differences, competition levels, and psychological training effects on performance. Front. Sports Act. Living 2024, 6, 1456504. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.J. A Framework for understanding the training process leading to elite performance. Sports Med. 2003, 33, 1103–1126. [Google Scholar] [CrossRef]
- Liddle, N.; Taylor, J.M.; Chesterton, P.; Atkinson, G. The Effects of Exercise-Based Injury Prevention Programmes on Injury Risk in Adult Recreational Athletes: A Systematic Review and Meta-Analysis. Sports Med. 2024, 54, 645–658. [Google Scholar] [CrossRef]
- Weber, D.R.; Leonard, M.B.; Zemel, B.S. Body composition analysis in the pediatric population. Pediatr. Endocrinol. Rev. 2012, 10, 130–139. [Google Scholar]
- Thomas, D.M.; Crofford, I.; Scudder, J.; Oletti, B.; Deb, A.; Heymsfield, S.B. Updates on Methods for Body Composition Analysis: Implications for Clinical Practice. Curr. Obes. Rep. 2025, 14, 8. [Google Scholar] [CrossRef]
- Ackland, T.R.; Lohman, T.G.; Sundgot-Borgen, J.; Maughan, R.J.; Meyer, N.L.; Stewart, A.D.; Müller, W. Current status of body composition assessment in sport: Review and position statement on behalf of the ad hoc research working group on body composition health and performance, under the auspices of the I.O.C. Medical Commission. Sports Med. 2012, 42, 227–249. [Google Scholar] [CrossRef]
- Mathisen, T.F.; Ackland, T.; Burke, L.M.; Constantini, N.; Haudum, J.; Macnaughton, L.S.; Meyer, N.L.; Mountjoy, M.; Slater, G.; Sundgot-Borgen, J. Best practice recommendations for body composition considerations in sport to reduce health and performance risks: A critical review, original survey and expert opinion by a subgroup of the IOC consensus on Relative Energy Deficiency in Sport (REDs). Br. J. Sports Med. 2023, 57, 1148–1160. [Google Scholar] [CrossRef]
- Lukaski, H.; Raymond-Pope, C.J. New Frontiers of Body Composition in Sport. Int. J. Sport. Med. 2021, 42, 588–601. [Google Scholar] [CrossRef] [PubMed]
- Bacciotti, S.; Baxter-Jones, A.; Gaya, A.; Maia, J. The Physique of Elite Female Artistic Gymnasts: A Systematic Review. J. Hum. Kinet. 2017, 58, 247–259. [Google Scholar] [CrossRef]
- Suchomel, T.J.; Nimphius, S.; Stone, M.H. The Importance of Muscular Strength in Athletic Performance. Sports Med. 2016, 46, 1419–1449. [Google Scholar] [CrossRef]
- Moeskops, S.; Oliver, J.L.; Read, P.J.; Cronin, J.B.; Myer, G.D.; Lloyd, R.S. The Physiological Demands of Youth Artistic Gymnastics: Applications to Strength and Conditioning. Strength Cond. J. 2019, 41, 1–13. [Google Scholar] [CrossRef]
- Nïpp, H.; Debelïso, M.; Lawrence, M. The relationship between handgrip strength and performance scores in North American Collegiate Division I women’s artistic gymnasts. Turk. J. Kinesiol. 2022, 8, 56–66. [Google Scholar] [CrossRef]
- Paunović, M.; Đorđević, D.; Marinković, D.; Veličković, S.; Veličković, P.; Čović, N.; Vranešić-hadžimehmedović, D.; Mekić, A.; Jelešković, E.; Kozul, M.; et al. Is the handgrip strength influential factor on the competition result in elite male artistic gymnasts? J. Men’s Health 2023, 19, 8–14. [Google Scholar]
- Wang, Z.; Heshka, S.; Wang, J.; Gallagher, D.; Deurenberg, P.; Chen, Z.; Heymsfield, S.B. Metabolically active portion of fat-free mass: A cellular body composition level modeling analysis. Am. J. Physiol. Endocrinol. Metab. 2007, 292, 49–53. [Google Scholar] [CrossRef] [PubMed]
- Fiaccadori, E.; Morabito, S.; Cabassi, A.; Regolisti, G. Body cell mass evaluation in critically ill patients: Killing two birds with one stone. Crit. Care 2014, 18, 139. [Google Scholar] [CrossRef] [PubMed]
- Guerrini, A.; Siotto, M.; Germanotta, M.; Schirru, M.; Pavan, A.; Cipollini, V.; Insalaco, S.; Aprile, I. Body Cell Mass from Bioelectrical Impedance Analysis in Patients with Stroke Undergoing Rehabilitation. Appl. Sci. 2023, 13, 3965. [Google Scholar] [CrossRef]
- Andreoli, A.; Marfe, G.; Manzi, V.; Sinibaldi-Salimei, P. Is body cell mass a predictive index of performance in male recreational long-distance runners? Sport Sci. Health 2012, 8, 47–50. [Google Scholar] [CrossRef]
- Potter, A.W.; Chin, G.C.; Looney, D.P.; Friedl, K.E. Defining Overweight and Obesity by Percent Body Fat Instead of Body Mass Index. J. Clin. Endocrinol. Metab. 2025, 110, e1103–e1107. [Google Scholar] [CrossRef]
- Itani, L.; Kreidieh, D.; El Masri, D.; Tannir, H.; Chehade, L.; El Ghoch, M. Revising BMI Cut-Off Points for Obesity in a Weight Management Setting in Lebanon. Int. J. Environ. Res. Public Health 2020, 17, 3832. [Google Scholar] [CrossRef]
- Mascherini, G.; Galanti, G.; Massetti, L.; Calà, P.; Modesti, P.A. Growth Charts for Height, Weight, and BMI (6–18 y) for the Tuscany Youth Sports Population. Int. J. Environ. Res. Public Health 2019, 16, 4975. [Google Scholar] [CrossRef]
- González Macías, M.E.; Flores, J. Somatotype, anthropometric characteristics, body composition, and global flexibility range in artistic gymnasts and sport hoop athletes. PLoS ONE 2024, 19, e0312555. [Google Scholar] [CrossRef] [PubMed]
- Siatras, T.; Skaperda, M.; Mameletzi, D. Reliability of anthropometric measurements in young male and female artistic gymnasts. Med Probl. Perform. Artist 2010, 25, 162–166. [Google Scholar] [CrossRef]
- Casadei, K.; Kiel, J. Anthropometric Measurement. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Abe, T.; Abe, A.; Loenneke, J.P. Handgrip strength of young athletes differs based on the type of sport played and age. Am. J. Hum. Biol. 2024, 36, e24022. [Google Scholar] [CrossRef]
- Núñez-Cortés, R.; Cruz, B.d.P.; Gallardo-Gómez, D.; Calatayud, J.; Cruz-Montecinos, C.; López-Gil, J.F.; López-Bueno, R. Handgrip strength measurement protocols for all-cause and cause-specific mortality outcomes in more than 3 million participants: A systematic review and meta-regression analysis. Clin. Nutr. 2022, 41, 2473–2489. [Google Scholar] [CrossRef]
- Gränicher, P.; Maurer, Y.; Spörri, J.; Haller, B.; Swanenburg, J.; de Bie, R.A.; Lenssen, T.A.F.; Scherr, J. Accuracy and Reliability of Grip Strength Measurements: A Comparative Device Analysis. J. Funct. Morphol. Kinesiol. 2024, 9, 274. [Google Scholar] [CrossRef] [PubMed]
- Matias, C.N.; Campa, F.; Cerullo, G.; D’antona, G.; Giro, R.; Faleiro, J.; Reis, J.F.; Monteiro, C.P.; Valamatos, M.J.; Teixeira, F.J. Bioelectrical Impedance Vector Analysis Discriminates Aerobic Power in Futsal Players: The Role of Body Composition. Biology 2022, 11, 505. [Google Scholar] [CrossRef]
- Campa, F.; Toselli, S.; Mazzilli, M.; Gobbo, L.A.; Coratella, G. Assessment of Body Composition in Athletes: A Narrative Review of Available Methods with Special Reference to Quantitative and Qualitative Bioimpedance Analysis. Nutrients 2021, 13, 1620. [Google Scholar] [CrossRef] [PubMed]
- Campa, F.; Gatterer, H.; Lukaski, H.; Toselli, S. Stabilizing Bioimpedance-Vector-Analysis Measures With a 10-Minute Cold Shower After Running Exercise to Enable Assessment of Body Hydration. Int. J. Sports Physiol. Perform. 2019, 14, 1006–1009. [Google Scholar] [CrossRef]
- St-Onge, M.; Mignault, D.; Allison, D.B.; Rabasa-Lhoret, R. Evaluation of a portable device to measure daily energy expenditure in free-living adults. Am. J. Clin. Nutr. 2007, 85, 742–749. [Google Scholar] [CrossRef] [PubMed]
- Lopez, G.A.; Brønd, J.C.; Andersen, L.B.; Dencker, M.; Arvidsson, D. Validation of SenseWear Armband in children, adolescents, and adults. Scand. J. Med. Sci. Sports 2018, 28, 487–495. [Google Scholar] [CrossRef] [PubMed]
- Barreira, T.V.; Schuna, J.M.; Tudor-Locke, C.; Chaput, J.-P.; Church, T.S.; Fogelholm, M.; Hu, G.; Kuriyan, R.; Kurpad, A.; Lambert, E.V.; et al. Reliability of accelerometer-determined physical activity and sedentary behavior in school-aged children: A 12-country study. Int. J. Obes. Suppl. 2015, 5, S29–S35. [Google Scholar] [CrossRef]
- Fay, M.P.; Proschan, M.A. Wilcoxon-Mann-Whitney or t-test? On assumptions for hypothesis tests and multiple interpretations of decision rules. Stat. Surv. 2010, 4, 1–39. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi, A.; Zahediasl, S. Normality Tests for Statistical Analysis: A Guide for Non-Statisticians. Int. J. Endocrinol. Metab. 2012, 10, 486–489. [Google Scholar] [CrossRef]
- Mudelsee, M. Estimating Pearson’s Correlation Coefficient with Bootstrap Confidence Interval from Serially Dependent Time Series. Math. Geol. 2003, 35, 651–665. [Google Scholar] [CrossRef]
- Stelmach, J. Using Permutation Tests in Multiple Correlation Investigations. Acta Universitatis Lodziensis. Folia Oeconomica 2012, 269, 73–92. [Google Scholar]
- Mukaka, M.M. Statistics corner: A guide to appropriate use of correlation coefficient in medical research. Malawi Med. J. 2012, 24, 69–71. [Google Scholar]
- Martins, P.C.; Gobbo, L.A.; Silva, D.A.S. Bioelectrical impedance vector analysis (BIVA) in university athletes. J. Int. Soc. Sports Nutr. 2021, 18, 7. [Google Scholar] [CrossRef]
- Andreoli, A.; Melchiorri, G.; Brozzi, M.; Di Marco, A.; Volpe, S.L.; Garofano, P.; Di Daniele, N.; De Lorenzo, A. Effect of different sports on body cell mass in highly trained athletes. Acta Diabetol. 2003, 40, 22–25. [Google Scholar] [CrossRef]
- Dey, S.K.; Bandyopadhyay, A.; Jana, S.; Chatterjee, S.; Karmakar, N. Assessment of body cell mass in Indian junior elite players (male) of different sports using bioelectrical impedance analysis method. Med. Sport. 2015, 11, 2533–2540. [Google Scholar]
- Köhler, A.; King, R.; Bahls, M.; Groß, S.; Steveling, A.; Gärtner, S.; Schipf, S.; Gläser, S.; Völzke, H.; Felix, S.B.; et al. Cardiopulmonary fitness is strongly associated with body cell mass and fat-free mass: The Study of Health in Pomerania (SHIP). Scand. J. Med. Sci. Sports 2018, 28, 1628–1635. [Google Scholar] [CrossRef] [PubMed]
- Cebrián-Ponce, Á.; Micheli, M.L.; Politi, C.; Bianchi, E.; Carrasco-Marginet, M.; Izzicupo, P.; Mascherini, G. Bioelectrical impedance vector analysis and track and field jump performance across different specialties: Sex differences and electrode configuration. Physiol. Rep. 2024, 12, e70035. [Google Scholar] [CrossRef]
- Scheers, T.; Philippaerts, R.; Lefevre, J. Variability in physical activity patterns as measured by the SenseWear Armband: How many days are needed? Eur. J. Appl. Physiol. 2012, 112, 1653–1662. [Google Scholar] [CrossRef] [PubMed]
- Citarella, R.; Itani, L.; Intini, V.; Zucchinali, G.; Scevaroli, S.; Kreidieh, D.; Tannir, H.; El Masri, D.; El Ghoch, M. Nutritional Knowledge and Dietary Practice in Elite 24-Hour Ultramarathon Runners: A Brief Report. Sports 2019, 7, 44. [Google Scholar] [CrossRef] [PubMed]
- Solem, R. Limitation of a cross-sectional study. Am. J. Orthod. Dentofac. Orthop. 2015, 148, 205. [Google Scholar] [CrossRef]
- Farrington, D.P. Longitudinal Research Strategies: Advantages, Problems, and Prospects. J. Am. Acad. Child Adolesc. Psychiatry 1991, 30, 369–374. [Google Scholar] [CrossRef]
| Total n = 22 | Competitive Team n = 16 | Pre-Team n = 6 | Significance | |
|---|---|---|---|---|
| Median (IQR) | ||||
| Age (years) | 12.21 (11.75–12.95) | 12.37 (11.90–13.12) | 12.04 (11.03–12.82) | 0.253 |
| Weight (kg) | 43.70 (39.50–49.60) | 44.90 (41.23–50.00) | 41.30 (31.18–47.35) | 0.225 |
| Height | 151.50 (146.08–158.55) | 152.85 (148.25–158.15) | 146.70 (139.45–160.28) | 0.375 |
| BMI (kg/m2) | 18.72 (17.27–20.69) | 18.78 (18.50–20.71) | 17.79 (16.03–20.55) | 0.178 |
| Body circumferences | ||||
| Mid-upper-arm circumference (cm) | 23.00 (22.00–24.63) | 23.00 (22.15–24.88) | 22.20 (19.00–24.63) | 0.236 ¥ |
| Waist circumference (cm) | 65.20 (61.93–69.55) | 65.00 (62.25–67.85) | 67.70 (56.50–73.88) | 0.873 † |
| Hip circumference (cm) | 82.25 (77.75–85.90) | 82.75 (78.38–86.50) | 80.50 (70.88–87.50) | 0.482 ¥ |
| Chest circumference (cm) | 76.10 (70.80–78.90) | 76.35 (71.00–79.30) | 73.50 (66.38–80.15) | 0.602 ¥ |
| Shoulder width (cm) | 42.00 (40.00–43.00) | 42.25 (40.13–43.75) | 40.50 (37.75–41.25) | 0.054 ¥ |
| Thigh circumference (cm) | 41.05 (38.88–42.48) | 41.55 (40.25–42.83) | 39.50 (35.98–43.00) | 0.194 ¥ |
| Calf circumference (cm) | 31.40 (29.00–32.13) | 31.50 (30.25–32.38) | 30.40 (27.88–32.25) | 0.315 ¥ |
| Skinfolds thickness | ||||
| Triceps skinfold (mm) | 11.00 (9.00–13.25) | 10.55 (9.13–12.75) | 12.50 (8.50–14.75) | 0.504 ¥ |
| Biceps skinfold (mm) | 5.05 (4.00–6.63) | 5.00 (4.00–5.88) | 6.50 (4.00–10.88) | 0.235 † |
| Subscapular skinfold (mm) | 7.00 (6.00–8.63) | 7.00 (6.00–8.38) | 7.25 (5.00–10.05) | 1.000 † |
| Supra iliac ckinfold (mm) | 6.00 (5.00–7.70) | 6.00 (5.13–7.38) | 7.00 (4.48–14.38) | 0.292 † |
| Thigh anterior skinfold (mm) | 18.50 (16.00–23.25) | 18.50 (16.25–22.00) | 20.50 (15.25–32.25) | 0.415 † |
| Thigh posterior skinfold (mm) | 23.00 (16.00–28.25) | 23.00 (17.50–27.50) | 22.00 (15.00–29.75) | 0.919 † |
| Total n = 22 | Competitive Team n = 16 | Pre-Team n = 6 | Significance ¥ | |
|---|---|---|---|---|
| Median (IQR) | ||||
| FFM (kg) | 36.05 (32.90–39.70) | 37.75 (33.93–40.68) | 32.90 (26.68–36.28) | 0.039 |
| FFM (%) | 81.60 (78.45–84.73) | 81.65 (80.45–84.98) | 78.40 (76.03–83.33) | 0.183 |
| FM (kg) | 8.10 (6.43–9.63) | 8.10 (6.13–9.58) | 8.20 (5.90–11.38) | 0.900 |
| FM (%) | 18.40 (15.28–21.55) | 18.35 (15.03–19.55) | 21.60 (16.68–23.98) | 0.183 |
| BCM (kg) | 20.15 (17.23–21.93) | 21.00 (19.00–22.83) | 16.95 (14.53–20.18) | 0.016 |
| PhA° | 6.30 (5.80–6.50) | 6.30 (5.85–6.50) | 6.00 (5.40–6.38) | 0.170 |
| Total n = 22 | Competitive Team n = 16 | Pre-Team n = 6 | Significance | |
|---|---|---|---|---|
| Median (IQR) | ||||
| Training parameters | ||||
| Hours per session (h) | 2.67 (1.94–3.33) | 2.92 (2.67–3.40) | 1.42 (1.00–1.81) | <0.001 ¥ |
| Hours per week (h) | 8.00 (4.38–17.00) | 10.63 (8.00–17.00) | 3.75 (2.00–4.13) | <0.001 † |
| Training years (years) | 4.00 (3.00–5.25) | 4.00 (4.00–6.00) | 3.00 (1.75–4.25) | 0.058 ¥ |
| MS in right hand (kg) | 20.50 (17.00–24.00) | 23.50 (18.50–25.50) | 15.50 (11.50–19.75) | 0.011 ¥ |
| MS in left hand (kg) | 20.00 (15.50–23.25) | 21.00 (16.75–24.75) | 13.00 (10.00–20.50) | 0.025 ¥ |
| MS (kg) | 20.25 (16.13–23.63) | 22.25 (17.63–25.13) | 14.25 (10.75–20.63) | 0.013 ¥ |
| SenseWear Armband variables | ||||
| PAL (METs) | 1.50 (1.40–1.62) | 1.55 (1.49–1.64) | 1.32 (1.28–1.39) | <0.001 ¥ |
| DS (steps/day) | 8929.33 (6939.08–9985.25) | 9309.58 (8393.04–10,029.75) | 6376.33 (4929.79–8215.83) | 0.027 ¥ |
| TD (km) | 8.98 (7.16–10.58) | 9.11 (8.44–10.77) | 6.98 (4.37–8.53) | 0.018 ¥ |
| MPA (minutes) | 107.92 (91.46–153.04) | 141.58 (105.04–158.79) | 79.08 (51.83–100.13) | <0.001 ¥ |
| Training Parameters | |||||||||
|---|---|---|---|---|---|---|---|---|---|
| Training Hours per Week | Training Hours per Session | Training Years | |||||||
| ρp (95%CI) | ρb (95%CI) | Permuted p | ρp (95%CI) | ρb (95%CI) | Permuted p | ρp (95%CI) | ρb (95%CI) | Permuted p | |
| Training hours per week | 1.00 | 1.00 | -- | 0.893 ** (0.797,0.955) | 0.896 (0.837,0.934) | 0 | 0.672 ** (0.349,0.852) | 0.674 (0.382,0.821) | 0.001 |
| Training hours per session | 0.893 ** (0.797,0.955) | 0.896 (0.837,0.934) | 0 | 1.00 | 1.00 | -- | 0.620 ** (0.268,0.826) | 0.622 (0.295,0.829) | 0.002 |
| Training years | 0.672 ** (0.349,0.852) | 0.674 (0.382,0.821) | 0.001 | 0.620 ** (0.268,0.826) | 0.622 (0.295,0.829) | 0.002 | 1.00 | 1.00 | -- |
| BCM (kg) | 0.339 (−0.096,0.665) | 0.326 (−0.06,0.628) | 0.118 | 0.467 * (0.057,0.743) | 0.450 (0.028,0.753) | 0.032 | 0.257 (−0.185,0.612) | 0.246(−0.055,0.63) | 0.244 |
| MS (kg) | 0.309 (−0.129,0.647) | 0.308 (−0.097,0.592) | 0.166 | 0.522 * (0.128,0.773) | 0.510 (0.122,0.735) | 0.011 | 0.283 (−0.158,0.629) | 0.283 (−0.073,0.602) | 0.201 |
| FFM (kg) | 0.238 (−0.204,0.600) | 0.226 (−0.174,0.551) | 0.287 | 0.414 (−0.009,0.711) | 0.396 (−0.07,0.697) | 0.056 | 0.218 (−0.225,0.586) | 0.215 (−0.063,0.544) | 0.326 |
| BMI (kg/m2) | 0.191 (−0.250,0.567) | 0.184 (−0.240,0.566) | 0.387 | 0.248 (−0.194,0.606) | 0.240 (−0.204,0.632) | 0.273 | 0.192 (−0.250,0.568) | 0.181 (−0.152,0.549) | 0.386 |
| BCM (kg) | MS (kg) | ||||||||
| Pearson’s correlation | Partial correlation ¥ | Pearson’s correlation | Partial correlation £ | ||||||
| Training hours per week | 0.339 (−0.096,0.665) | -- | 0.309 (−0.129,0.647) | -- | |||||
| Training hours per session | 0.467 * (0.057,0.743) | 0.475 * (0.041,0.758) | 0.522 * (0.128,0.773) | 0.445 ** (0.003,0.741) | |||||
| Training years | 0.257 (−0.185,0.612) | -- | 0.283 (−0.158,0.629) | -- | |||||
| BCM (kg) | 1.00 | -- | 0.835 ** (0.638,0.929) | -- | |||||
| MS (kg) | 0.835 ** (0.638,0.929) | -- | 1.00 | -- | |||||
| FFM (kg) | 0.969 ** (0.925,0.987) | 0.908 ** (0.778,0.963) | 0.816 ** (0.602,0.921) | 0.748 ** (0.457,0.894) | |||||
| BMI (kg/m2) | 0.826 ** (0.620,0.925) | -- | 0.557 ** (0.177,0.793) | -- | |||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saadeddine, D.; Berri, E.; Itani, L.; Raggi, S.; Padoan, A.; Paganelli, F.; Palumbo, C.; Chiarini, F.; El Ghoch, M. The Association Between Muscle Strength, Body Cell Mass, and Training Session Hours in Young Female Artistic Gymnasts: A Pilot Study. Appl. Sci. 2025, 15, 12412. https://doi.org/10.3390/app152312412
Saadeddine D, Berri E, Itani L, Raggi S, Padoan A, Paganelli F, Palumbo C, Chiarini F, El Ghoch M. The Association Between Muscle Strength, Body Cell Mass, and Training Session Hours in Young Female Artistic Gymnasts: A Pilot Study. Applied Sciences. 2025; 15(23):12412. https://doi.org/10.3390/app152312412
Chicago/Turabian StyleSaadeddine, Dana, Elisa Berri, Leila Itani, Silvia Raggi, Arianna Padoan, Francesca Paganelli, Carla Palumbo, Francesca Chiarini, and Marwan El Ghoch. 2025. "The Association Between Muscle Strength, Body Cell Mass, and Training Session Hours in Young Female Artistic Gymnasts: A Pilot Study" Applied Sciences 15, no. 23: 12412. https://doi.org/10.3390/app152312412
APA StyleSaadeddine, D., Berri, E., Itani, L., Raggi, S., Padoan, A., Paganelli, F., Palumbo, C., Chiarini, F., & El Ghoch, M. (2025). The Association Between Muscle Strength, Body Cell Mass, and Training Session Hours in Young Female Artistic Gymnasts: A Pilot Study. Applied Sciences, 15(23), 12412. https://doi.org/10.3390/app152312412

