Optimal Placement and Cost Analysis of Electric Vehicle Charging Stations Using Metaheuristic Optimization
Abstract
1. Introduction
2. Materials and Methods
2.1. Problem Formulation
2.1.1. Objective Function
2.1.2. Constraints
2.2. Mathematical Modeling of the P-Median Facility Location Selection Problem
2.3. Genetic Algorithm Modeling
2.3.1. Individual (Solution) Representation
2.3.2. Initial Population
2.3.3. Selection
2.3.4. Crossover
2.3.5. Mutation
2.3.6. Elitism and the New Population
2.4. Modeling Ant Colony Optimization
2.4.1. Pheromone Matrix (τ)
2.4.2. Intuitive Knowledge (ƞ)
2.4.3. Probability Calculation (P)
3. Results & Discussion
3.1. GA and ACO Results for 1035 Demand Points and 40 Station Locations
3.2. GA and ACO Results for 1535 Demand Points and 40 Station Locations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ahmad, F.; Iqbal, A.; Ashraf, I.; Marzband, M.; Khan, I. Optimal location of electric vehicle charging station and its impact on distribution network: A review. In Energy Reports; Elsevier Ltd.: Amsterdam, The Netherlands, 2022; Volume 8, pp. 2314–2333. [Google Scholar] [CrossRef]
- Gan, H.; Ruan, W.; Wang, M.; Pan, Y.; Miu, H.; Yuan, X. Bi-Level Planning of Electric Vehicle Charging Stations Considering Spatial–Temporal Distribution Characteristics of Charging Loads in Uncertain Environments. Energies 2024, 17, 3004. [Google Scholar] [CrossRef]
- Csiszár, C.; Csonka, B.; Földes, D.; Wirth, E.; Lovas, T. Location optimisation method for fast-charging stations along national roads. J. Transp. Geogr. 2020, 88, 102833. [Google Scholar] [CrossRef]
- Janjić, A.; Velimirović, L.; Velimirović, J.; Vranić, P. Estimating the optimal number and locations of electric vehicle charging stations: The application of multi-criteria p-median methodology. Transp. Plan. Technol. 2021, 44, 827–842. [Google Scholar] [CrossRef]
- Jordán, J.; Palanca, J.; Martí, P.; Julian, V. Electric vehicle charging stations emplacement using genetic algorithms and agent-based simulation. Expert Syst. Appl. 2022, 197, 116739. [Google Scholar] [CrossRef]
- Loni, A.; Asadi, S. Data-driven equitable placement for electric vehicle charging stations: Case study San Francisco. Energy 2023, 282, 128796. [Google Scholar] [CrossRef]
- Woo, H.; Son, Y.; Cho, J.; Kim, S.-Y.; Choi, S. Optimal expansion planning of electric vehicle fast charging stations. Appl. Energy 2023, 342, 121116. [Google Scholar] [CrossRef]
- Zhou, G.; Zhu, Z.; Luo, S. Location optimization of electric vehicle charging stations: Based on cost model and genetic algorithm. Energy 2022, 247, 123437. [Google Scholar] [CrossRef]
- Wang, M.; Xie, Q. Logistics Pure Electric Vehicle Routing Based on GA-PSO Algorithm. Mechanika 2023, 29, 235–242. [Google Scholar] [CrossRef]
- Yin, L.; Zhang, Y. Particle swarm optimization based on data driven for EV charging station siting. Energy 2024, 310, 133197. [Google Scholar] [CrossRef]
- Chen, J.; Chen, H. Research on the Planning of Electric Vehicle Fast Charging Stations Considering User Selection Preferences. Energies 2023, 16, 1794. [Google Scholar] [CrossRef]
- Bilsel, M.; Kilic, H.S.; Kalender, Z.T.; Tuzkaya, G. Multi-objective model for electric vehicle charging station location selection problem for a sustainable transportation infrastructure. Comput. Ind. Eng. 2024, 198, 110695. [Google Scholar] [CrossRef]
- Mazza, A.; Russo, A.; Chicco, G.; Di Martino, A.; Colombo, C.G.; Longo, M.; Ciliento, P.; De Donno, M.; Mapelli, F.; Lamberti, F. Categorization of Attributes and Features for the Location of Electric Vehicle Charging Stations. Energies 2024, 17, 3920. [Google Scholar] [CrossRef]
- Lazari, V.; Chassiakos, A. Multi-Objective Optimization of Electric Vehicle Charging Station Deployment Using Genetic Algorithms. Appl. Sci. 2023, 13, 4867. [Google Scholar] [CrossRef]
- Mohammed, A.; Saif, O.; Abo-Adma, M.A.; Elazab, R. Multiobjective optimization for sizing and placing electric vehicle charging stations considering comprehensive uncertainties. Energy Inform. 2024, 7, 131. [Google Scholar] [CrossRef]
- Mladenović, N.; Brimberg, J.; Hansen, P.; Moreno-Pérez, J.A. The p-median problem: A survey of metaheuristic approaches. Eur. J. Oper. Res. 2007, 179, 927–939. [Google Scholar] [CrossRef]
- Wang, L.; Miwa, T.; Jiang, M.; Morikawa, T. Heterogeneous residential distribution changes and spillover effects by railway projects: The case study of Nagoya, Japan. Transp. Res. Part A Policy Pract. 2021, 154, 196–223. [Google Scholar] [CrossRef]
- He, S.Y.; Kuo, Y.-H.; Wu, D. Incorporating institutional and spatial factors in the selection of the optimal locations of public electric vehicle charging facilities: A case study of Beijing, China. Transp. Res. Part C Emerg. Technol. 2016, 67, 131–148. [Google Scholar] [CrossRef]
- Cui, J.; Maghyereh, A.; Goh, M.; Zou, H. Risk spillovers and time-varying links between international oil and China’s commodity futures markets: Fresh evidence from the higher-order moments. Energy 2022, 238, 121751. [Google Scholar] [CrossRef]
- Ponnam, V.K.B.; Swarnasri, K. Multi-Objective Optimal Allocation of Electric Vehicle Charging Stations and Distributed Generators in Radial Distribution Systems using Metaheuristic Optimization Algorithms. Eng. Technol. Appl. Sci. Res. 2020, 10, 5837–5844. [Google Scholar] [CrossRef]
- Tan, A.; Wang, C.; Wang, Y.; Dong, C. Electric Vehicle Charging Route Planning for Shortest Travel Time Based on Improved Ant Colony Optimization. Sensors 2025, 25, 176. [Google Scholar] [CrossRef] [PubMed]
- Revelle, C.S.; Swain, R.W. Central Facilities Location. Geogr. Anal. 1970, 2, 30–42. [Google Scholar] [CrossRef]
- Çelik, S. Genetik Algoritma ve Parçacık Sürü Optimizasyonu Yöntemleriyle Optimum Konumu Belirlenen Elektrikli Araç Şarj İstasyonlarının Simülasyon ile Kapasitesinin Planlaması. Master’s Thesis, Atatürk University, Erzurum, Turkey, 2020; p. 111p. [Google Scholar]
- Ekin, E. Solution Approach To P-Median Facility Location Problem with Integer Programming and Genetic Algorithm. Afyon Kocatepe Univ. J. Soc. Sci. 2024, 26, 547–562. [Google Scholar] [CrossRef]
- Kara, S.S.; Yurdakul, G. Raylı Sistem İstasyon Yeri Belirleme Problemi İçin Küme Kapsama ve Alternatif Servis Seviyeli P-Medyan Modelleriyle Çözüm Arayışı: Gebze-Darıca Metro Hattı Uygulaması. Deu Muhendis. Fak. Fen Ve Muhendis. 2021, 23, 845–856. [Google Scholar] [CrossRef]
- Çelik, S.; Ok, Ş. Electric vehicle charging stations: Model, algorithm, simulation, location, and capacity planning. Heliyon 2024, 10, e29153. [Google Scholar] [CrossRef]
- Cinsdikici, M.G.; Aydın, D. Detection of blood vessels in ophthalmoscope images using MF/ant (matched filter/ant colony) algorithm. Comput. Methods Programs Biomed. 2009, 96, 85–95. [Google Scholar] [CrossRef]
- Dorigo, M.; Maniezzo, V.; Colorni, A. Ant system: Optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. Part B Cybern. 1996, 26, 29–41. [Google Scholar] [CrossRef]
- Gao, W. New Ant Colony Optimization Algorithm for the Traveling Salesman Problem. Int. J. Comput. Intell. Syst. 2020, 13, 44–55. [Google Scholar] [CrossRef]
- Jiang, Q.-J.; Shao, Z.-K.; Jin, T.-L.; Li, J.-Y. Parameter Tuning for Ant Colony Optimization based Multiple Traveling Salesman Problem Optimization. In Proceedings of the 2025 Joint International Conference on Automation-Intelligence-Safety, ICAIS 2025 and International Symposium on Autonomous Systems, ISAS 2025, Xi’an, China, 23–25 May 2025. [Google Scholar] [CrossRef]
- Qi, Z. Application of Improved Ant Colony Algorithm in Optimizing the Charging Path of Electric Vehicles. World Electr. Veh. J. 2024, 15, 230. [Google Scholar] [CrossRef]
- Serin, S. Karınca Kolonisi Yaklaşımıyla Karayolu Üstyapı Rutin Bakım Çalışmalarının Planlanması. Master’s Thesis, Süleyman Demirel University, Isparta, Turkey, 2009; p. 89p. [Google Scholar]
- Taşyürek, M.; Erat, M. Karınca Koloni ve Genetik Algoritma Yöntemleri Kullanarak En iyi Sayaç Okuma Güzergahının Tespit Edilmesi. Dicle Univ. J. Eng. 2022, 13, 405–412. [Google Scholar] [CrossRef]
- Goldberg, D.E. Genetic Algorithms in Search, Optimization and Machine Learning; Addison-Wesley: Reading, MA, USA, 1989. [Google Scholar]
- Mitchell, M. An Introduction to Genetic Algorithms; MIT Press: Cambridge, MA, USA, 1998. [Google Scholar]
- Dorigo, M.; Stützle, T. Ant Colony Optimization; MIT Press: Cambridge, MA, USA, 2004. [Google Scholar]
- Kchaou-Boujelben, M. Charging station location problem: A comprehensive review on models and solution approaches. Transp. Res. Part C Emerg. Technol. 2021, 132, 103376. [Google Scholar] [CrossRef]










| Weights | Method | Number of Stations | Best Cost (Unit) | Time (Sec) |
|---|---|---|---|---|
| w1 = 0.9 w2 = 1.1 | Roulette Wheel Method | 5 | 528,423.8403 | 18.755 |
| 10 | 1,507,898.3917 | 19.3474 | ||
| 15 | 2,600,142.952 | 21.4276 | ||
| 20 | 3,910,835.8669 | 21.7708 | ||
| 25 | 6,095,324.9715 | 20.4426 | ||
| 30 | 9,153,610.4172 | 20.2904 | ||
| Tournament Selection Method | 5 | 528,423.8403 | 18.8981 | |
| 10 | 1,507,898.3917 | 21.0609 | ||
| 15 | 2,600,142.952 | 24.5617 | ||
| 20 | 3,910,835.8669 | 19.8669 | ||
| 25 | 6,095,324.9715 | 21.6699 | ||
| 30 | 9,153,610.4172 | 26.1362 | ||
| Random Solution Method | 5 | 528,423.8403 | 20.7837 | |
| 10 | 1,507,898.3917 | 21.1595 | ||
| 15 | 2,600,142.952 | 22.0567 | ||
| 20 | 3,910,835.8669 | 20.296 | ||
| 25 | 6,095,324.9715 | 19.9503 | ||
| 30 | 9,153,610.4172 | 19.657 | ||
| [13,26] w1 = 1 w2 = 1 | Roulette Wheel Method | 5 | 480,387.6003 | 21.0337 |
| 10 | 1,370,818.2130 | 24.1918 | ||
| 15 | 2,363,767.7244 | 23.8657 | ||
| 20 | 3,555,306.5187 | 25.2528 | ||
| 25 | 5,541,205.5238 | 21.0406 | ||
| 30 | 8,321,464.908 | 22.2517 | ||
| Tournament Selection Method | 5 | 480,387.6003 | 22.0521 | |
| 10 | 1,370,818.2130 | 21.6374 | ||
| 15 | 2,363,767.7244 | 21.0744 | ||
| 20 | 3,555,306.5187 | 20.9676 | ||
| 25 | 5,541,205.5238 | 21.3158 | ||
| 30 | 8,321,464.908 | 21.5167 | ||
| Random Solution Method | 5 | 480,387.6003 | 20.6076 | |
| 10 | 1,370,818.2130 | 20.8197 | ||
| 15 | 2,363,767.7244 | 20.4193 | ||
| 20 | 3,555,306.5187 | 20.6475 | ||
| 25 | 5,541,205.5238 | 20.216 | ||
| 30 | 8,321,464.908 | 21.1915 | ||
| w1 = 1.1 w2 = 0.9 | Roulette Wheel Method | 5 | 432,351.3604 | 20.7088 |
| 10 | 1,233,738.0343 | 25.7194 | ||
| 15 | 2,127,392.4969 | 26.8998 | ||
| 20 | 3,199,777.1706 | 24.7711 | ||
| 25 | 4,987,086.0762 | 24.0061 | ||
| 30 | 7,489,319.3988 | 25.4554 | ||
| Tournament Selection Method | 5 | 432,351.3604 | 21.9336 | |
| 10 | 1,233,738.0343 | 22.3719 | ||
| 15 | 2,127,392.4969 | 28.4227 | ||
| 20 | 3,199,777.1706 | 28.3149 | ||
| 25 | 4,987,086.0762 | 25.8091 | ||
| 30 | 7,489,319.3988 | 22.1446 | ||
| Random Solution Method | 5 | 432,351.3604 | 23.8509 | |
| 10 | 1,233,738.0343 | 21.2729 | ||
| 15 | 2,127,392.4969 | 21.0781 | ||
| 20 | 3,199,777.1706 | 25.4831 | ||
| 25 | 4,987,086.0762 | 24.1565 | ||
| 30 | 7,489,319.3988 | 21.4968 | ||
| w1 = 1.2 w2 = 0.8 | Roulette Wheel Method | 5 | 384,315.1204 | 21.8645 |
| 10 | 1,096,657.8556 | 20.2901 | ||
| 15 | 1,891,017.2693 | 21.8783 | ||
| 20 | 2,844,247.8225 | 23.1534 | ||
| 25 | 4,432,966.6286 | 25.4719 | ||
| 30 | 6,657,173.8895 | 26.0406 | ||
| Tournament Selection Method | 5 | 384,315.1204 | 21.9265 | |
| 10 | 1,096,657.8556 | 25.0044 | ||
| 15 | 1,891,017.2693 | 25.1768 | ||
| 20 | 2,844,247.8225 | 22.6945 | ||
| 25 | 4,432,966.6286 | 22.5757 | ||
| 30 | 6,657,173.8895 | 26.8153 | ||
| Random Solution Method | 5 | 384,315.1204 | 25.1584 | |
| 10 | 1,096,657.8556 | 22.2908 | ||
| 15 | 1,891,017.2693 | 26.7027 | ||
| 20 | 28,44,247.8225 | 21.6301 | ||
| 25 | 4,432,966.6286 | 22.5041 | ||
| 30 | 6,657,173.8895 | 22.3328 |
| Weights | Number of Stations | Best Cost (Unit) | Time (Sec) |
|---|---|---|---|
| w1 = 0.9 w2 = 1.1 | 5 | 406,480.4864 | 10.2387 |
| 10 | 1,333,409.1116 | 10.854 | |
| 15 | 2,590,965.6989 | 11.9365 | |
| 20 | 4,016,561.4344 | 13.1641 | |
| 25 | 5,783,681.077 | 16.5156 | |
| 30 | 7,713,389.9023 | 17.3751 | |
| w1 = 1 w2 = 1 | 5 | 369,528.9233 | 9.6294 |
| 10 | 1,133,334.7828 | 10.0508 | |
| 15 | 2,434,284.3612 | 10.8504 | |
| 20 | 3,651,420.4174 | 11.4383 | |
| 25 | 5,179,035.0467 | 11.5601 | |
| 30 | 6,706,650.1152 | 11.7645 | |
| w1 = 1.1 w2 = 0.9 | 5 | 332,578.141 | 9.853 |
| 10 | 1,020,001.2934 | 10.0143 | |
| 15 | 2,048,911.8862 | 10.3737 | |
| 20 | 3,219,765.9901 | 11.7497 | |
| 25 | 4,661,132.634 | 11.8491 | |
| 30 | 6,310,956.8056 | 11.959 | |
| w1 = 1.2 w2 = 0.8 | 5 | 295,627.0157 | 10.8451 |
| 10 | 906,670.2993 | 11.4015 | |
| 15 | 1,884,342.1174 | 11.7966 | |
| 20 | 3,106,433.4264 | 12.8718 | |
| 25 | 4,021,020.3409 | 12.9210 | |
| 30 | 5,609,740.2526 | 13.8997 |
| Weights | Method | Number of Stations | Best Cost (Unit) | Time (Sec) |
|---|---|---|---|---|
| w1 = 0.9 w2 = 1.1 | Roulette Wheel Method | 5 | 528,435.4063 | 29.5066 |
| 10 | 1,507,905.9205 | 28.0497 | ||
| 15 | 2,600,149.8967 | 28.839 | ||
| 20 | 3,910,842.096 | 29.194 | ||
| 25 | 6,095,330.6585 | 29.2244 | ||
| 30 | 9,153,615.466 | 28.6504 | ||
| Tournament Selection Method | 5 | 528,435.4063 | 29.2393 | |
| 10 | 1,507,905.9205 | 29.2085 | ||
| 15 | 2,600,149.8967 | 29.8672 | ||
| 20 | 3,910,842.096 | 29.2407 | ||
| 25 | 6,095,330.6585 | 29.9993 | ||
| 30 | 9,153,615.466 | 29.9799 | ||
| Random Solution Method | 5 | 528,435.4063 | 29.5284 | |
| 10 | 1,507,905.9205 | 31.9647 | ||
| 15 | 2,600,149.8967 | 31.2996 | ||
| 20 | 3,910,842.096 | 30.0185 | ||
| 25 | 6,095,330.6585 | 30.9585 | ||
| 30 | 9,153,615.466 | 29.8658 | ||
| w1 = 1 w2 = 1 | Roulette Wheel Method | 5 | 480,400.4515 | 29.408 |
| 10 | 1,370,826.5783 | 29.0725 | ||
| 15 | 2,363,775.4407 | 35.4018 | ||
| 20 | 3,555,313.44 | 31.4103 | ||
| 25 | 5,541,211.8428 | 30.1009 | ||
| 30 | 8,321,470.5178 | 35.8789 | ||
| Tournament Selection Method | 5 | 480,400.4515 | 33.5891 | |
| 10 | 1,370,826.5783 | 31.2243 | ||
| 15 | 2,363,775.4407 | 36.3428 | ||
| 20 | 3,555,313.44 | 34.5482 | ||
| 25 | 5,541,211.8428 | 36.9039 | ||
| 30 | 8,321,470.5178 | 30.2614 | ||
| Random Solution Method | 5 | 480,400.4515 | 31.0121 | |
| 10 | 1,370,826.5783 | 32.1508 | ||
| 15 | 2,363,775.4407 | 29.3197 | ||
| 20 | 3,555,313.44 | 30.0639 | ||
| 25 | 5,541,211.8428 | 29.647 | ||
| 30 | 8,321,470.5178 | 29.9319 | ||
| w1 = 1.1 w2 = 0.9 | Roulette Wheel Method | 5 | 432,365.4966 | 37.7539 |
| 10 | 1,233,747.2361 | 38.1092 | ||
| 15 | 2,127,400.9848 | 38.5319 | ||
| 20 | 3,199,784.784 | 37.9094 | ||
| 25 | 4,987,093.0271 | 38.2969 | ||
| 30 | 7,489,325.5696 | 37.9782 | ||
| Tournament Selection Method | 5 | 432,365.4966 | 38.4997 | |
| 10 | 1,233,747.2361 | 39.2898 | ||
| 15 | 2,127,400.9848 | 38.8148 | ||
| 20 | 3,199,784.784 | 39.4417 | ||
| 25 | 4,987,093.0271 | 39.2178 | ||
| 30 | 7,489,325.5696 | 38.8487 | ||
| Random Solution Method | 5 | 432,365.4966 | 37.9232 | |
| 10 | 1,233,747.2361 | 37.6347 | ||
| 15 | 2,127,400.9848 | 38.6011 | ||
| 20 | 3,199,784.784 | 38.6867 | ||
| 25 | 4,987,093.0271 | 38.2548 | ||
| 30 | 7,489,325.5696 | 38.5946 | ||
| w1 = 1.2 w2 = 0.8 | Roulette Wheel Method | 5 | 384,330.5418 | 38.1012 |
| 10 | 1,096,667.894 | 38.7382 | ||
| 15 | 1,891,026.5289 | 39.512 | ||
| 20 | 2,844,256.128 | 37.9886 | ||
| 25 | 4,432,974.2114 | 39.8795 | ||
| 30 | 6,657,180.6214 | 38.2015 | ||
| Tournament Selection Method | 5 | 384,330.5418 | 39.5944 | |
| 10 | 1,096,667.894 | 37.7204 | ||
| 15 | 1,891,026.5289 | 38.8818 | ||
| 20 | 2,844,256.128 | 39.9965 | ||
| 25 | 4,432,974.2114 | 39.7603 | ||
| 30 | 6,657,180.6214 | 38.4045 | ||
| Random Solution Method | 5 | 384,330.5418 | 38.9016 | |
| 10 | 1,096,667.894 | 39.0349 | ||
| 15 | 1,891,026.5289 | 39.6881 | ||
| 20 | 2,844,256.128 | 38.4648 | ||
| 25 | 4,432,974.2114 | 39.4757 | ||
| 30 | 6,657,180.6214 | 38.3501 |
| Weights | Number of Stations | Best Cost (unit) | Time (sec) |
|---|---|---|---|
| w1 = 0.9 w2 = 1.1 | 5 | 406,488.7741 | 20.0761 |
| 10 | 1,333,415.3007 | 14.9639 | |
| 15 | 2,672,268.1518 | 15.1818 | |
| 20 | 4,520,678.9273 | 16.211 | |
| 25 | 6,033,017.8028 | 14.7424 | |
| 30 | 7,968,174.7858 | 15.5618 | |
| w1 = 1 w2 = 1 | 5 | 369,540.5805 | 16.0451 |
| 10 | 1,364,960.011 | 15.4051 | |
| 15 | 2,508,192.4685 | 14.7589 | |
| 20 | 3,651,425.6321 | 15.6658 | |
| 25 | 5,331,801.4459 | 15.1888 | |
| 30 | 6,859,416.1255 | 15.8235 | |
| w1 = 1.1 w2 = 0.9 | 5 | 332,588.9296 | 15.3857 |
| 10 | 1,090,981.566 | 16.7759 | |
| 15 | 2,119,891.1625 | 16.8678 | |
| 20 | 3,494,742.5288 | 18.2357 | |
| 25 | 4,869,595.171 | 17.399 | |
| 30 | 6,310,961.8369 | 15.7726 | |
| w1 = 1.2 w2 = 0.8 | 5 | 295,641.0043 | 15.7086 |
| 10 | 969,768.8204 | 15.8662 | |
| 15 | 1,884,349.0268 | 17.7192 | |
| 20 | 3,106,439.1265 | 14.669 | |
| 25 | 4,328,531.7447 | 17.0717 | |
| 30 | 5,672,831.9384 | 15.7802 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Demiryürek, H.K.; Bozali, B.; Öztürk, A. Optimal Placement and Cost Analysis of Electric Vehicle Charging Stations Using Metaheuristic Optimization. Appl. Sci. 2025, 15, 11729. https://doi.org/10.3390/app152111729
Demiryürek HK, Bozali B, Öztürk A. Optimal Placement and Cost Analysis of Electric Vehicle Charging Stations Using Metaheuristic Optimization. Applied Sciences. 2025; 15(21):11729. https://doi.org/10.3390/app152111729
Chicago/Turabian StyleDemiryürek, Hamit Kürşat, Beytullah Bozali, and Ali Öztürk. 2025. "Optimal Placement and Cost Analysis of Electric Vehicle Charging Stations Using Metaheuristic Optimization" Applied Sciences 15, no. 21: 11729. https://doi.org/10.3390/app152111729
APA StyleDemiryürek, H. K., Bozali, B., & Öztürk, A. (2025). Optimal Placement and Cost Analysis of Electric Vehicle Charging Stations Using Metaheuristic Optimization. Applied Sciences, 15(21), 11729. https://doi.org/10.3390/app152111729

