Analysis of Meat Juice Leakage from Refrigerated Culinary Pork, Beef, and Chicken Meat into the Unit Packaging: Estimation of Reference Limits for Distribution and Retail in Poland
Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Obtaining, Preparing, and Packaging of Meat Samples
2.2. Methods
2.2.1. Measurement of Proximate Chemical Composition
2.2.2. Determination of Meat Juice Leakage
2.2.3. Measurement of pH Value
2.2.4. Measurement of Color Parameters
2.3. Statistical Analyses
3. Results and Discussion
3.1. Meat Juice Leakage, pH, and Color Parameters of Refrigerated Culinary Pork Packaged Using the MAP and VAC Methods
3.2. Meat Juice Leakage, pH, and Color Parameters of Refrigerated Culinary Beef Packaged Using the MAP and VAC Methods
3.3. Meat Juice Leakage, pH, and Color Parameters of Refrigerated Culinary Chicken Meat Packaged Using the MAP and VAC Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cheng, Q.; Sun, D.-W. Factors Affecting the Water Holding Capacity of Red Meat Products: A Review of Recent Research Advances. Crit. Rev. Food Sci. Nutr. 2008, 48, 137–159. [Google Scholar] [CrossRef]
- Warner, R. Measurement of meat quality. Measurements of Water-Holding Capacity and Color: Objective and Subjective. In Encyclopedia of Meat Sciences; Elsevier: Amsterdam, The Netherlands, 2014; pp. 164–171. ISBN 9780123847348. [Google Scholar]
- Devi, R.; Rasane, P.; Kaur, S.; Singh, J. Meat and Meat Losses: Influence on Meat Quality. Int. J. Res. Anal. Rev. 2019, 6, 762–787. [Google Scholar]
- Sakowska, A.; Guzek, D.; Głąbska, D.; Konarska, M.; Wierzbicka, A. Charakterystyka Wybranych Systemów Pakowania Mięsa w Odniesieniu Do Preferencji Konsumentów i Aspektów Ekonomicznych. Zesz. Nauk. Szkoły Głównej Gospod. Wiej. W Warszawie Probl. Rol. Swiat. 2014, 14, 203–213. [Google Scholar] [CrossRef]
- Cassens, A.M.; Ramanathan, R.; Van Overbeke, D.L.; Mafi, G.G. Effects of Pork Quality Types, Packaging, and Degree of Doneness on Trained Sensory and Instrumental Tenderness, Color, and Consumer Perception. Meat Muscle Biol. (MMB) 2021, 5, 1–12. [Google Scholar] [CrossRef]
- Wojtulewicz, K.; Florowski, T.; Florowska, A. Aktualne problemy jakości rynkowego mięsa kulinarnego w opinii konsumentów. Przem. Spoż. 2021, 75, 25–30. [Google Scholar] [CrossRef]
- Lisiak, P.; Włodawiec, P.; Borzuta, K.; Grześkowiak-Lisiak, E.; Janiszewski, P. Masa mięsa netto—Analiza prawna i metodologiczna. Gosp. Mięsna 2023, 5, 10–16. Available online: https://gospodarkamiesna.pl/gospodarka-miesna-nr-5-2023/ (accessed on 1 September 2025).
- Huff-Lonergan, E. Fresh Meat Water-Holding Capacity. In Improving the Sensory and Nutritional Quality of Fresh Meat; Elsevier: Amsterdam, The Netherlands, 2009; pp. 147–160. ISBN 9781845693435. [Google Scholar]
- Watanabe, G.; Motoyama, M.; Nakajima, I.; Sasaki, K. Relationship between water-holding capacity and intramuscular fat content in Japanese commercial pork loin. Asian-Australas. J. Anim. Sci. 2018, 31, 914–918. [Google Scholar] [CrossRef]
- Honikel, K.O. Water-holding capacity of meat. In Muscle Development of Livestock Animals: Physiology, Genetics and Meat Quality; Pas, M.F., Everts, M.E., Haagsman, H.P., Eds.; CABI Publishing: Cambridge, MA, USA, 2004; pp. 389–400. [Google Scholar]
- Huff-Lonergan, E.; Lonergan, S.M. Mechanisms of water-holding capacity of meat: The role of postmortem biochemical and structural changes. Meat Sci. 2005, 71, 194–204. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Mittal, G.S.; Barbut, S. Effects of Test Conditions on the Water Holding Capacity of Meat by a Centrifugal Method. LWT—Food Sci. Technol. 1995, 28, 50–55. [Google Scholar] [CrossRef]
- Boler, D.D.; Woerner, D.R. What is meat? A perspective from the American Meat Science Association. Anim. Front. 2017, 7, 8–11. [Google Scholar] [CrossRef]
- Puolanne, E.; Halonen, M. Theoretical Aspects of Water-Holding in Meat. Meat Sci. 2010, 86, 151–165. [Google Scholar] [CrossRef]
- Hishida, M.; Kaneko, A.; Yamamura, Y.; Saito, K. Contrasting Changes in Strongly and Weakly Bound Hydration Water of a Protein upon Denaturation. J. Phys. Chem. B 2023, 127, 6296–6305. [Google Scholar] [CrossRef]
- Warriss, P.D. Post-Mortem Changes in Muscle and Its Conversion into Meat. In Meat Science, 2nd ed.; CABI Digital Library: Wallingford, UK, 2010; pp. 65–76. Available online: https://cabidigitallibrary.org (accessed on 1 September 2025).
- Wajdzik, J. Aspekty Jakościowe Pakowanego Mięsa Kulinarnego. Ogólnopolski Informator Masarski. 2018. Available online: https://informatormasarski.pl/maszyny-i-technologie/aspekty-jakosciowe-pakowanego-miesa-kulinarnego/ (accessed on 1 September 2025).
- Warner, R.D. The Eating Quality of Meat: IV—Water Holding Capacity and Juiciness. In Lawrie’s Meat Science; Elsevier: Amsterdam, The Netherlands, 2023; pp. 457–508. ISBN 9780323854085. [Google Scholar]
- Makała, H. Zastosowanie metody komputerowej analizy obrazu do oznaczenia zdolności utrzymania wody własnej przez mięso. Postępy Nauk. I Technol. Przemysłu Rolno-Spożywczego 2015, 70, 57–68. [Google Scholar]
- Mir, N.; Rafiq, A.; Kumar, F.; Singh, V.; Shukla, V. Determinants of Broiler Chicken Meat Quality and Factors Affecting Them: A Review. J. Food Sci. Technol. 2017, 54, 2997–3009. [Google Scholar] [CrossRef]
- Kerry, J.P.; O’Grady, M.N.; Hogan, S.A. Past, Current and Potential Utilisation of Active and Intelligent Packaging Systems for Meat and Muscle-Based Products: A Review. Meat Sci. 2006, 74, 113–130. [Google Scholar] [CrossRef]
- Zalewska, M.; Marcinkowska-Lesiak, M.M.; Półtorak, A.; Wyrwisz, R.; Zaremba, R. Wpływ Sposobu Pakowania Na Zachowanie Barwy Mięsa i Przetworów z Mięsa Wieprzowego. Postępy Tech. Przetwórstwa Spożywczego 2012, 2, 127–132. [Google Scholar]
- Ripoll, G.; Albertí, P.; Casasús, I.; Blanco, M. Instrumental meat quality of veal calves reared under three management systems and color evolution of meat stored in three packaging systems. Meat Sci. 2013, 93, 336–343. [Google Scholar] [CrossRef]
- Chen, X.; Zhao, J.; Zhu, L.; Luo, X.; Mao, Y.; Hopkins, D.L.; Zhang, Y.; Dong, P. Effect of Modified Atmosphere Packaging on Shelf Life and Bacterial Community of Roast Duck Meat. Food Res. Int. 2020, 137, 109645. [Google Scholar] [CrossRef] [PubMed]
- Elbir, Z.; Oz, F. Determination of creatine, creatinine, free amino acid and heterocyclic aromatic amine contents of plain beef and chicken juices. J. Food Sci. Technol. 2021, 58, 3293–3302. [Google Scholar] [CrossRef]
- Liu, J.; Ellies-Oury, M.-P.; Stoyanchev, T.; Hocquette, J.-F. Consumer Perception of Beef Quality and How to Control, Improve and Predict It? Focus on Eating Quality. Foods 2022, 11, 1732. [Google Scholar] [CrossRef] [PubMed]
- Logan, B.G.; Bush, R.D.; Biffin, T.E.; Hopkins, D.L.; Smith, M.A. Measurement of Drip Loss in Alpaca (Vicugna Pacos) Meat Using Different Techniques and Sample Weights. Meat Sci. 2019, 151, 1–3. [Google Scholar] [CrossRef]
- Oswell, N.J.; Gilstrap, O.P.; Pegg, R.B. Variation in the terminology and methodologies applied to the analysis of water holding capacity in meat research. Meat Sci. 2021, 178, 108510. [Google Scholar] [CrossRef]
- Christensen, L.B. Drip loss sampling in porcine m. longissimus dorsi. Meat Sci. 2003, 63, 469–477. [Google Scholar] [CrossRef]
- Otto, G.; Roehe, R.; Looft, H.; Thoelking, L.; Kalm, E. Comparison of different methods for determination of drip loss and their relationships to meat quality and carcass characteristics in pigs. Meat Sci. 2004, 68, 401–409. [Google Scholar] [CrossRef]
- Daszkiewicz, T.; Burczyk, E. The Effect of Meat Sample Preparation on the Results of Drip Loss and Cooking Loss Analysis. Food Biotechnol. Agric. Sci. (FBAS) 2005, 79, 11–15. [Google Scholar]
- NSA Centralna Baza Orzeczeń Sądów Administracyjnych, III SA/Po 181/22- Wyrok WSA w Poznaniu, 181/22. Available online: https://orzeczenia.nsa.gov.pl/doc/8F1459B16D (accessed on 1 September 2025).
- Polish Standard PN-A-82109:2010; Meat and Meat Products—Determination of Fat, Protein and Water Content—Near Infrared Transmission Spectrometry (NIT) Method Using Calibration on Artificial Neural Networks (ANN). Polish Committee for Standardization: Warsaw, Poland, 2010.
- Ślęzak, M.; Czub, G.; Świątek, M.; Niżnikowski, R.; Głowacz, K. The application of the near-infrared spectroscopic (NIRS) technique in assessment of chemical composition of the lamb meat. Sci. Ann. Pol. Soc. Anim. Prod. 2013, 9, 69–76. Available online: https://zootechnical.com/article/153484/pl (accessed on 1 September 2025).
- Wagoner, M.; Reyes, T.; Zorn, V.; Coursen, M.; Corbitt, K.; Wilborn, B.; Starkey, C.; Brandebourg, T.; Belk, A.; Bonner, T.; et al. Vacuum Packaging Maintains Fresh Characteristics of Previously Frozen Beef Steaks during Simulated Retail Display. Foods 2022, 11, 3012. [Google Scholar] [CrossRef]
- International Standard ISO 2917. Meat and Meat Products—Measurement of pH—Reference Method, 1–5. Available online: https://cdn.standards.iteh.ai/samples/24785/9861ea639264453ea88995b72d9c4ba5/ISO-2917-1999.pdf (accessed on 1 September 2025).
- Zduńczyk, W.; Tkacz, K.; Pietrzak-Fiećko, R.; Bottari, B.; Modzelewska-Kapituła, M. Pork as a Source of Nutrients in a Human Diet—Comparison of Meat Obtained from Conventional and Organic Systems Offered in the Polish Market. NFS J. 2024, 37, 100199. [Google Scholar] [CrossRef]
- American Meat Science Association. AMSA Meat Color Measurement Guidelines. 2012. Available online: https://meatscience.org/docs/default-source/publications-resources/hot-topics/2012_12_meat_clr_guide.pdf (accessed on 1 September 2025).
- Mishra, P.; Singh, U.; Pandey, C.M.; Mishra, P.; Pandey, G. Application of Student’s t-Test, Analysis of Variance, and Covariance. Ann. Card. Anaesth. 2019, 22, 407–411. [Google Scholar] [CrossRef] [PubMed]
- Ikhwan, M.F.; Mansor, W.; Khan, Z.I.; Adzhar Mahmood, M.K.; Bujang, A.; Haddadi, K. Pearson Correlation and Multiple Correlation Analyses of the Animal Fat S-Parameter. TEM J. 2024, 13, 155–160. [Google Scholar] [CrossRef]
- Cobos, Á.; Díaz, O. Chemical Composition of Meat and Meat Products. In Handbook of Food Chemistry; Cheung, P.C.K., Ed.; Springer Berlin Heidelberg: Berlin/Heidelberg, Germany, 2014; pp. 1–32. ISBN 9783642416095. [Google Scholar]
- Soren, N.M.; Biswas, A.K. Methods for Nutritional Quality Analysis of Meat. In Meat Quality Analysis; Elsevier: Amsterdam, The Netherlands, 2020; pp. 21–36. ISBN 9780128192337. [Google Scholar]
- Ahmad, R.S.; Imran, A.; Hussain, M.B. Nutritional Composition of Meat. In Meat Science and Nutrition; Arshad, M.S., Ed.; InTech: Houston, TX, USA, 2018; ISBN 9781789842333. [Google Scholar]
- James, S.; James, C. Raw Material Selection: Meat and Poultry. In Woodhead Publishing Series in Food Science, Technology and Nutrition, Chilled Foods. A Comprehensive Guide, 3rd ed.; Martyn Brown; Woodhead Publishing Series in Food Science, Technology and Nutrition, Chilled Foods; Woodhead Publishing: Sawston, UK, 2008; pp. 61–82. ISBN 9781845692438. [Google Scholar]
- Barbut, S. Measuring Water Holding Capacity in Poultry Meat. Poult. Sci. 2024, 103, 103577. [Google Scholar] [CrossRef]
- Przybylski, W.; Jaworska, D.; Boruszewska, K.; Borejko, M.; Podsiadły, W. Jakość technologiczna i tensoryczna tadliwego mięsa wieprzowego. Żywność Nauka Technologia Jakość 2021, 1, 116–127. [Google Scholar]
- Kaić, A.; Janječić, Z.; Žanetić, A.; Kelava Ugarković, N.; Potočnik, K. EZ-DripLoss Assessment in Chicken Breast Meat Using Different Sample Areas, Fiber Orientation, and Measurement Intervals. Animals 2021, 11, 1095. [Google Scholar] [CrossRef]
- Filho, R.D.A.T.; Cazedey, H.P.; Fontes, P.R.; Ramos, A.D.L.S.; Ramos, E.M. Drip loss assessment by different analytical methods and their relationships with pork quality classification. J. Food Qual. 2017, 6, 9170768. [Google Scholar] [CrossRef]
- Nair, M.N.; Mancini, R.A. Packaging—Modified and Controlled Atmosphere. In Encyclopedia of Meat Sciences; Elsevier: Amsterdam, The Netherlands, 2024; pp. 617–623. ISBN 9780323851985. [Google Scholar]
- Świderski, F.; Sadowska, A. Pakowanie mięsa w warunkach zmodykikowanej atmosfery i próżni. (meat packing in modified atmosphere and vacuum conditions). Postępy Tech. Przetwórstwa Spożywczego 2011, 1, 98–102. [Google Scholar]
- Lee, K.T. Shelf-Life Extension of Fresh and Processed Meat Products by Various Packaging Applications. Korean J. Packag. Sci. Technol. 2018, 24, 57–64. [Google Scholar] [CrossRef]
- Łopacka, J.; Półtorak, A.; Wierzbicka, A. Effect of MAP, Vacuum Skin-Pack and Combined Packaging Methods on Physicochemical Properties of Beef Steaks Stored up to 12 Days. Meat Sci. 2016, 119, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Strydom, P.E.; Hope-Jones, M. Evaluation of Three Vacuum Packaging Methods for Retail Beef Loin Cuts. Meat Sci. 2014, 98, 689–694. [Google Scholar] [CrossRef] [PubMed]
- Reyes, T.M.; Wagoner, M.P.; Zorn, V.E.; Coursen, M.M.; Wilborn, B.S.; Bonner, T.; Brandebourg, T.D.; Rodning, S.P.; Sawyer, J.T. Vacuum Packaging Can Extend Fresh Color Characteristics of Beef Steaks during Simulated Display Conditions. Foods 2022, 11, 520. [Google Scholar] [CrossRef]
- Younis, M.; Arab, W.S.; Hamad, A.; Sabike, I.I. Assessing the Variability in Camel and Beef Meat Quality: Implications for Consumer Acceptance. Benha Vet. Med. J. 2025, 48, 74–78. [Google Scholar] [CrossRef]
- Chmiel, M.; Hać-Szymańczuk, E.; Adamczak, L.; Pietrzak, D.; Florowski, T.; Cegiełka, A. Quality Changes of Chicken Breast Meat Packaged in a Normal and in a Modified Atmosphere. J. Appl. Poult. Res. 2018, 27, 349–362. [Google Scholar] [CrossRef]
- Kot Vel Ławecka, K.; Banaszewska, D.; Biesiada-Drzazga, B. The Effect of Packaging Systems on Selected Quality Characteristics of Poultry Meat. Acta Sci. Pol. Zootech. 2019, 18, 3–12. [Google Scholar] [CrossRef]
- Ustawa z Dnia 7 Maja 2009 r. o Towarach Paczkowanych (Act on Prepackaged Goods), Dz.U. 2009 nr 91 poz. 740, pp. 1–32. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20090910740 (accessed on 1 September 2025).
| Cut Type | Water (%) | Fat (%) | Protein (%) | Collagen (%) |
|---|---|---|---|---|
| Pork | ||||
| Ham | 74.91 ± 1.28 | 3.41 ± 2.13 | 21.59 ± 1.29 | 0.86 ± 0.14 |
| Loin in pieces | 73.18 ± 0.99 | 3.88 ± 1.19 | 22.70 ± 0.72 | 0.87 ± 0.09 |
| Loin in slices | 72.98 ± 0.89 | 3.91 ± 1.04 | 22.12 ± 0.43 | 0.85 ± 0.07 |
| Shoulder | 70.61 ± 1.80 | 10.16 ± 2.23 | 19.61 ± 0.99 | 1.20 ± 0.25 |
| Neck | 71.52 ± 1.70 | 8.66 ± 2.08 | 19.15 ± 0.73 | 0.98 ± 0.24 |
| Organic ham | 74.17 ± 0.95 | 2.60 ± 0.95 | 23.36 ± 0.51 | 0.90 ± 0.18 |
| Beef | ||||
| Heel of round | 75.24 ± 1.01 | 2.11 ± 0.75 | 22.53 ± 0.57 | 1.59 ± 0.38 |
| Rump | 73.41 ± 1.81 | 4.79 ± 1.38 | 21.05 ± 1.13 | 1.73 ± 0.32 |
| Chicken | ||||
| Breast fillet | 75.49 ± 0.82 | 2.07 ± 0.24 | 22.38 ± 0.85 | 0.73 ± 0.12 |
| Breast tenderloin | 75.50 ± 0.75 | 2.38 ± 0.42 | 22.24 ± 0.89 | 0.75 ± 0.33 |
| Cut Type | MAP+ | MAP− | VAC+ | VAC− |
|---|---|---|---|---|
| Leakage [%] | ||||
| Ham | 6.86 ± 2.52 (2.52) | 5.66 ± 2.04 (5.33) | 8.53 ± 2.14 (8.25) | 6.51 ± 2.41 (6.21) |
| Loin in pieces | 10.42 ± 1.56 (10.25) | 9.11 ± 1.69 (9.09) | 9.02 ± 1.47 (9.11) | 9.14 ± 6.20 (9.10) |
| Loin in slices | 10.59 ± 1.97 (10.6 | 9.12 ± 2.91 (8.29) | 10.70 ± 1.58 (10.94) | 7.99 ± 1.64 (7.98) |
| Shoulder | 6.28 ± 0.25 (6.25) | 3.23 ± 2.19 (2.87) | 6.21 ± 0.13 (6.20) | 2.10 ± 1.29 (1.97) |
| Neck | 4.98 ± 1.62 (5.00) | 3.01 ± 1.49 (2.87) | 2.56 ± 1.27 (2.39) | 2.39 ± 1.28 (2.16) |
| Organic ham | 6.95 ± 1.98 (6.99) | 4.48 ± 2.47 (4.52) | 6.45 ± 2.58 (6.53) | 5.73 ± 2.01 (5.73) |
| pH | ||||
| Ham | 6.05 ± 0.14 (6.04) | 5.98 ± 0.26 (6.00) | 5.97 ± 0.20 (5.96) | 6.03 ± 0.18 (6.01) |
| Loin in pieces | 5.94 ± 0.09 (5.93) | 5.88 ± 0.08 (5.87) | 5.91 ± 0.14 (5.90) | 5.88 ± 0.14 (5.87) |
| Loin in slices | 5.86 ± 0.15 (5.86) | 5.81 ± 0.22 (5.82) | 5.86 ± 0.15 (5.89) | 5.88 ± 0.12 (5.86) |
| Shoulder | 6.28 ± 0.25 (6.25) | 6.15 ± 0.14 (6.16) | 6.21 ± 0.13 (6.20) | 6.27 ± 0.22 (6.27) |
| Neck | 6.26 ± 0.32 (6.16) | 6.25 ± 0.24 (6.21) | 6.38 ± 0.21 (6.37) | 6.25 ± 0.22 (6.23) |
| Organic ham | 5.92 ± 0.59 (5.94) | 6.01 ± 0.24 (5.89) | 6.08 ± 0.33 (6.05) | 5.89 ± 0.30 (5.85) |
| L* | ||||
| Ham | 42.20 ± 3.77 (42.01) | 43.14 ± 3.85 (43.33) | 45.42 ± 3.00 (45.34) | 46.05 ± 3.15 (46.68) |
| Loin in pieces | 50.91 ± 3.30 (51.40) | 51.91 ± 2.86 (52.11) | 52.67 ± 2.66 (52.94) | 52.94 ± 2.51 (52.89) |
| Loin in slices | 51.88 ± 2.77 (51.35) | 50.69 ± 3.68 (50.15) | 53.68 ± 3.72 (53.08) | 52.69 ±2.77 (52.11) |
| Shoulder | 41.95 ± 1.66 (41.85) | 42.18 ± 2.20 (41.58) | 45.01 ± 2.82 (44.79) | 42.74 ± 2.34 (42.85) |
| Neck | 40.66 ± 2.92 (40.68) | 41.46 ± 2.82 (41.45) | 42.66 ± 3.08 (42.41) | 43.96 ± 3.58 (43.97) |
| Organic ham | 43.19 ± 6.34 (44.71) | 40.85 ± 5.42 (41.75) | 42.18 ± 5.47 (42.69) | 42.58 ± 4.09 (42.72) |
| a* | ||||
| Ham | 10.90 ± 2.93 (10.77) | 10.23 ± 2.16 (10.22) | 11.39 ± 2.93 (11.34) | 9.60 ± 2.38 (9.31) |
| Loin in pieces | 6.03 ± 1.46 (5.79) | 5.94 ± 1.33 (5.79) | 6.12 ± 1.34 (5.87) | 5.60 ± 1.20 (5.47) |
| Loin in slices | 7.30 ± 1.51 (7.06) | 7.51 ± 1.91 (6.89) | 6.85 ± 1.34 (6.63) | 6.99 ± 1.33 (6.89) |
| Shoulder | 13.32 ± 1.61 (13.39) | 13.25 ± 1.71 (13.25) | 14.65 ± 2.05 (14.56) | 14.12 ± 2.23 (14.05) |
| Neck | 14.38 ± 1.89 (14.55) | 14.80 ± 1.88 (14.54) | 15.81 ± 2.06 (16.10) | 15.23 ± 1.62 (15.10) |
| Organic ham | 10.70 ± 1.98 (10.61) | 10.65 ± 1.68 (9.93) | 10.95 ± 1.54 (11.06) | 10.55 ± 2.06 (10.54) |
| b* | ||||
| Ham | 4.78 ± 1.00 (4.82) | 4.95 ± 1.37 (4.99) | 8.45 ± 1.27 (8.45) | 7.54 ± 1.46 (7.45) |
| Loin in pieces | 4.59 ± 0.86 (4.57) | 4.99 ± 0.85 (5.01) | 6.80 ± 0.92 (6.75) | 7.05 ± 1.15 (6.94) |
| Loin in slices | 1.77 ± 2.86 (3.30) | 2.22 ± 2.78 (3.32) | 4.24 ± 3.17 (5.99) | 4.56 ± 3.16 (5.32) |
| Shoulder | 5.62 ± 0.93 (5.61) | 5.75 ± 0.72 (5.77) | 9.77 ± 1.50 (10.09) | 8.52 ± 1.70 (8.41) |
| Neck | 5.30 ± 0.81 (5.42) | 6.09 ± 1.18 (6.06) | 9.60 ± 1.88 (10.08) | 9.24 ± 1.85 (9.45) |
| Organic ham | 5.89 ± 1.96 (6.11) | 5.58 ± 2.29 (5.83) | 5.64 ± 2.21 (5.64) | 6.56 ± 1.83 (6.48) |
| Cut Type | MAP+ | MAP− | VAC+ | VAC− |
|---|---|---|---|---|
| Leakage [%] | ||||
| Heel of round | 5.62 ± 2.41 (5.72) | 5.61 ± 1.96 (5.66) | 8.02 ± 1.46 (8.08) | 5.51 ± 1.79 (6.63) |
| Rump | 4.31 ± 1.43 (4.15) | 2.84 ± 1.37 (2.61) | 5.38 ± 2.07 (4.96) | 2.61 ± 1.41 (2.24) |
| pH | ||||
| Heel of round | 6.09 ± 0.27 (5.95) | 6.00 ± 0.21 (5.94) | 5.97 ± 0.16 (5.97) | 6.02 ± 0.23 (5.95) |
| Rump | 6.05 ± 0.21 (6.03) | 6.07 ± 0.22 (6.06) | 6.04 ± 0.16 (6.03) | 5.95 ± 0.18 (5.96) |
| L* | ||||
| Heel of round | 37.16 ± 3.72 (36.43) | 37.88 ± 3.16 (38.15) | 35.30 ± 4.81 (35.76) | 34.87 ± 4.27 (34.19) |
| Rump | 34.84 ± 3.00 (35.43) | 34.76 ± 3.13 (34.57) | 33.87 ± 3.23 (34.76) | 34.04 ± 3.71 (33.85) |
| a* | ||||
| Heel of round | 19.64 ± 4.20 (20.36) | 20.17 ± 5.65 (20.01) | 18.39 ± 2.43 (17.65) | 16.58 ± 1.60 (16.81) |
| Rump | 21.08 ± 1.97 (20.63) | 22.29 ± 2.06 (22.57) | 17.73 ± 2.19 (17.44) | 19.42 ± 1.78 (19.01) |
| b* | ||||
| Heel of round | 11.51 ± 1.05 (11.35) | 10.84 ± 1.96 (11.12) | 7.26 ± 2.33 (7.99) | 5.72 ± 1.89 (5.89) |
| Rump | 9.80 ± 1.04 (9.88) | 10.57 ± 1.36 (10.55) | 5.39 ± 1.38 (5.14) | 6.50 ± 1.32 (6.38) |
| Cut Type | MAP+ | MAP− | VAC+ | VAC− |
|---|---|---|---|---|
| Leakage [%] | ||||
| Breast fillet | 4.36 ± 1.38 (4.06) | 4.20 ± 1.51 (4.31) | 5.93 ± 2.16 (5.92) | 4.67 ± 1.79 (4.14) |
| Breast tenderloin | 6.13 ± 1.64 (5.91) | 5.77 ± 1.65 (5.35) | 7.61 ± 1.90 (7.42) | 5.28 ± 2.10 (4.93) |
| pH | ||||
| Breast fillet | 5.96 ± 0.25 (5.94) | 5.73 ± 0.20 (5.90) | 5.96 ± 0.20 (5.96) | 5.95 ± 0.16 (5.92) |
| Breast tenderloin | 5.99 ± 0.11 (5.99) | 5.96 ± 0.18 (6.01) | 6.03 ± 0.12 (6.01) | 6.01 ± 0.09 (6.01) |
| L* | ||||
| Breast fillet | 52.34 ± 2.86 (51.86) | 52.25 ± 2.66 (52.07) | 51.35 ± 2.72 (51.09) | 51.44 ± 2.06 (51.59) |
| Breast tenderloin | 50.36 ± 1.71 (50.23) | 50.01 ± 1.41 (50.02) | 49.44 ± 1.82 (49.79) | 48.23 ± 1.39 (48.23) |
| a* | ||||
| Breast fillet | 2.78 ± 1.16 (2.89) | 3.66 ± 1.35 (3.83) | 3.96 ± 0.99 (3.97) | 1.05 ± 1.09 (3.87) |
| Breast tenderloin | 2.55 ± 1.40 (2.76) | 2.97 ± 0.70 (2.98) | 3.27 ± 0.81 (3.17) | 3.71 ± 1.01 (3.23) |
| b* | ||||
| Breast fillet | 3.82 ± 1.72 (3.96) | 2.28 ± 2.29 (2.29) | 0.99 ± 1.63 (0.72) | 1.05 ± 1.35 (0.98) |
| Breast tenderloin | 3.11 ± 1.40 (2.99) | 3.13 ± 1.14 (3.01) | 1.01 ± 0.84 (1.02) | 0.80 ± 1.55 (0.96) |
| Cut Type | MAP+ | MAP− | VAC+ | VAC− |
|---|---|---|---|---|
| Pork | ||||
| Ham | 6% | 7% | 7% | 9% |
| Loin in pieces | 10% | 9% | 9% | 9% |
| Loin in slices | 9% | 11% | 8% | 11% |
| Shoulder | 3% | 5% | 2% | 3% |
| Neck | 3% | 5% | 2% | 3% |
| Organic ham | 4% | 7% | 6% | 6% |
| Beef | ||||
| Heel of round | 6% | 6% | 7% | 8% |
| Rump | 3% | 4% | 3% | 5% |
| Chicken | ||||
| Breast fillet | 4% | 4% | 5% | 5% |
| Breast tenderloin | 6% | 6% | 5% | 7% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dasiewicz, K.; Słowiński, M.; Szymańska, I.; Cegiełka, A. Analysis of Meat Juice Leakage from Refrigerated Culinary Pork, Beef, and Chicken Meat into the Unit Packaging: Estimation of Reference Limits for Distribution and Retail in Poland. Appl. Sci. 2025, 15, 11394. https://doi.org/10.3390/app152111394
Dasiewicz K, Słowiński M, Szymańska I, Cegiełka A. Analysis of Meat Juice Leakage from Refrigerated Culinary Pork, Beef, and Chicken Meat into the Unit Packaging: Estimation of Reference Limits for Distribution and Retail in Poland. Applied Sciences. 2025; 15(21):11394. https://doi.org/10.3390/app152111394
Chicago/Turabian StyleDasiewicz, Krzysztof, Mirosław Słowiński, Iwona Szymańska, and Aneta Cegiełka. 2025. "Analysis of Meat Juice Leakage from Refrigerated Culinary Pork, Beef, and Chicken Meat into the Unit Packaging: Estimation of Reference Limits for Distribution and Retail in Poland" Applied Sciences 15, no. 21: 11394. https://doi.org/10.3390/app152111394
APA StyleDasiewicz, K., Słowiński, M., Szymańska, I., & Cegiełka, A. (2025). Analysis of Meat Juice Leakage from Refrigerated Culinary Pork, Beef, and Chicken Meat into the Unit Packaging: Estimation of Reference Limits for Distribution and Retail in Poland. Applied Sciences, 15(21), 11394. https://doi.org/10.3390/app152111394

