Skeletal, Dental, and Nasal Changes After Slow Maxillary Expansion Using Quad-Helix
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
- Male and female children between the ages of 10 and 13 years old (late mixed dentition, no race restriction) who had been diagnosed with a narrow maxilla and/or crossbite.
- Patients with dental Class I and II were included.
- Patients with skeletal Class I (ANB 1–3) and skeletal Class II (ANB > 3) were included.
- Children who had Wilson quad-helix phase I expansion treatment without phase II to exclude possible confounding factors that phase II might introduce that would have affected the treatment outcome due to variabilities in patients’ cases/compliances.
- Patients who had CBCTs before the installation of the quad-helix and following the removal of the quad-helix.
- Undergoing the circumpubertal skeletal development stage. Patient selection was based on the cervical vertebrae maturation index (CVMI). CVMI is a tool to estimate a patient’s skeletal age, which is more accurate than chronological age or dental age. CVMI stages 2, 3, and 4, which indicate the circumpubertal development interval, were determined and selected [28].
- Patients with no craniofacial abnormalities or previous orthodontic treatment, and no allergies or inflammation in the nasal airway during CBCT image collection.
2.3. Intervention
2.4. Study Sample
2.5. Measurement Method
2.5.1. Dental and Skeletal Distances
2.5.2. Nasal Airway Segmentation
2.6. Statistical Analysis
3. Results
3.1. Dental and Skeletal Outcomes
3.2. Nasal Airway Outcomes
4. Discussion
4.1. Skeletal and Dental Outcomes
4.2. Nasal Airway Outcomes
Limitations
5. Conclusions
- The Wilson quad-helix caused a significant increase in maxillary inter-molar and inter-premolar widths with the buccal bodily movement of the upper molars and the buccal crown tipping of the upper premolars.
- There was no significant transverse alveolar maxillary expansion with Wilson quad-helix treatment.
- There was a significant difference in nasal airway dimensions between the quad-helix group and their controls.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brunelle, J.A.; Bhat, M.; Lipton, J.A. Prevalence and distribution of selected occlusal characteristics in the US population, 1988–1991. J. Dent. Res. 1996, 75, 706–713. [Google Scholar] [CrossRef]
- McNamara, J.A. Maxillary transverse deficiency. Am. J. Orthod. Dentofac. Orthop. 2000, 117, 567–570. [Google Scholar] [CrossRef]
- Mills, J.R. Principles and Practice of Orthodontics; Churchill Livingstone: London, UK, 1982. [Google Scholar]
- Gungor, K.; Taner, L.; Kaygisiz, E. Prevalence of posterior crossbite for orthodontic treatment timing. J. Clin. Pediatr. Dent. 2016, 40, 422–424. [Google Scholar] [CrossRef] [PubMed]
- Vadiakas, G.P.; Roberts, M.W. Primary posterior crossbite: Diagnosis and treatment. J. Clin. Pediatr. Dent. 1991, 16, 1–4. [Google Scholar]
- Kecik, D.; Kocadereli, I.; Saatci, I. Evaluation of the treatment changes of functional posterior crossbite in the mixed dentition. Am. J. Orthod. Dentofac. Orthop. 2007, 131, 202–215. [Google Scholar] [CrossRef]
- Athanasiou, A.E. Orthodontic Cephalometry; Mosby-Wolfe: London, UK, 1995. [Google Scholar]
- Bjork, A. Sutural growth of the upper face studied by the implant method. Acta Odontol. Scand. 1966, 24, 109–127. [Google Scholar] [CrossRef]
- Thilander, B.; Rubio, G.; Pena, L.; de Mayorga, C. Prevalence of temporomandibular dysfunction and its association with malocclusion in children and adolescents: An epidemiologic study related to specified stages of dental development. Angle Orthod. 2002, 72, 146–154. [Google Scholar] [PubMed]
- Troelstrup, B.; Møller, E. Electromyography of the temporalis and masseter muscles in children with unilateral cross-bite. Eur. J. Oral. Sci. 1970, 78, 425–430. [Google Scholar] [CrossRef]
- Ingervall, B.; Thilander, B. Activity of temporal and masseter muscles in children with a lateral forced bite. Angle Orthod. 1975, 45, 249–258. [Google Scholar]
- Kapoor, D.; Garg, D.; Mahajan, N.; Bansal, S.; Sawhney, A.; Kaur, J.; Tripathi, S.; Malaviya, N. Class II Division 1 in New Dimension: Role of Posterior Transverse Interarch Discrepancy in Class II Division 1 Malocclusion During the Mixed Dentition Period. J. Clin. Diagn. Res. JCDR 2015, 7, 72–75. [Google Scholar] [CrossRef] [PubMed]
- Shoaib, H.; Hafez, A.; Fouda, M. Expansion Changes by Removable Quad Helix Appliance on Constricted Maxilla in Growing Patients. Aust. J. Basic Appl. Sci. 2017, 11, 171–177. [Google Scholar]
- Gidwani, K.S.; Bendgude, V.; Kokkali, V.; Mehta, V. Comparison of effectiveness of quad helix appliance with other slow maxillary expanders in children with posterior crossbite: A systematic review. J. Indian Soc. Pedod. 2018, 36, 225–233. [Google Scholar] [CrossRef] [PubMed]
- Wilson, W.L.; Wilson, R.C. Modular 3D lingual appliances. Part 4. Lingual arch. J. Clin. Orthod. 1984, 18, 124128. [Google Scholar]
- Hicks, E.P. Slow maxillary expansion. Am. J. Orthod. 1978, 73, 121141. [Google Scholar] [CrossRef]
- Piskai, P.; Boquiren, M.; Obrez, A.; Viana, M.; Oppermann, N.; Sanchez, F.; Edgren, B.; Kusnoto, B. Assessment of vertical changes during maxillary expansion using quad helix or bonded rapid maxillary expander. Angle Orthod. 2016, 86, 925–933. [Google Scholar] [CrossRef] [PubMed]
- Boysen, B.; La Cour, K.; Athanasiou, A.E.; Gjessing, P.E. Three-dimensional evaluation of dentoskeletal changes after posterior cross-bite correction by quad-helix or removable appliances. Br. J. Orthod. 1992, 19, 97–107. [Google Scholar] [CrossRef] [PubMed]
- Sandikçioğlu, M.; Hazar, S. Skeletal and dental changes after maxillary expansion in the mixed dentition. Am. J. Orthod. Dentofac. Orthop. 1997, 111, 321–327. [Google Scholar] [CrossRef]
- Major, P.W.; Johnson, D.E.; Hesse, K.L.; Glover, K.E. Landmark identification error in posterior anterior cephalometrics. Angle Orthod. 1994, 64, 447–454. [Google Scholar] [CrossRef]
- Alsufyani, N.A.; Hess, A.; Noga, M.; Ray, N.; Al-Saleh, M.A.; Lagravère, M.O.; Major, P.W. New algorithm for semiautomatic segmentation of nasal cavity and pharyngeal airway in comparison with manual segmentation using cone-beam computed tomography. Am. J. Orthod. Dentofac. Orthop. 2016, 150, 703–712. [Google Scholar] [CrossRef]
- Corbridge, J.K.; Campbell, P.M.; Taylor, R.; Ceen, R.F.; Buschang, P.H. Transverse dentoalveolar changes after slow maxillary expansion. Am. J. Orthod. Dentofac. Orthop. 2011, 140, 317–325. [Google Scholar] [CrossRef]
- Oliveira De Felippe, N.L.; Da Silveira, A.C.; Viana, G.; Kusnoto, B.; Smith, B.; Evans, C.A. Relationship between rapid maxillary expansion and nasal cavity size and airway resistance: Short- and long-term effects. Am. J. Orthod. Dentofac. Orthop. 2008, 134, 370–382. [Google Scholar] [CrossRef] [PubMed]
- Lanteri, V.; Farronato, M.; Ugolini, A.; Cossellu, G.; Gaffuri, F.; Parisi, F.M.R.; Cavagnetto, D.; Abate, A.; Maspero, C. Volumetric changes in the upper airways after rapid and slow maxillary expansion in growing patients: A case-control study. Materials 2020, 13, 2239. [Google Scholar] [CrossRef]
- Cordasco, G.; Nucera, R.; Fastuca, R.; Matarese, G.; Lindauer, S.J.; Leone, P.; Manzo, P.; Martina, R. Effects of orthopedic maxillary expansion on nasal cavity size in growing subjects: A low dose computer tomography clinical trial. Int. J. Pediatr. Otorhinolaryngol. 2012, 76, 1547–1551. [Google Scholar] [CrossRef]
- Yacout, Y.M.; Abdallah, E.M.; El-Harouni, N.M. Nasal cavity width changes following slow and rapid miniscrew-supported maxillary expansion. Egypt. Orthod. J. 2021, 60, 1–9. [Google Scholar] [CrossRef]
- Pan, B.; MacIntosh, D.; Njie, R.; Lui, A.; Westover, L.; El-Bialy, T. The Effect of Upper Arch Expansion by Clear Aligners on Nasal Airway Volume in Children: A Preliminary Study. Appl. Sci. 2025, 15, 2134. [Google Scholar] [CrossRef]
- Baccetti, T.; Franchi, L.; McNamara, J.A. The cervical vertebral maturation (CVM) method for the assessment of optimaltreatment timing in dentofacial orthopedics. Semin. Orthodd. 2005, 11, 119–129. [Google Scholar] [CrossRef]
- Zhou, Y.; Long, H.; Ye, N.; Xue, J.; Yang, X.; Liao, L.; Lai, W. The effectiveness of non-surgical maxillary expansion: A meta-analysis. Eur. J. Orthod. 2013, 36, 233–242. [Google Scholar] [CrossRef]
- Lagravère, M.O.; Gordon, J.M.; Guedes, I.H.; Flores-Mir, C.; Carey, J.P.; Heo, G.; Major, P.W. Reliability of Traditional Cephalometric Landmarks as Seen in Three-Dimensional Analysis in Maxillary Expansion Treatments. Angle Orthod. 2009, 79, 1047–1056. [Google Scholar] [CrossRef] [PubMed]
- de Water, V.R.; Saridin, J.K.; Bouw, F.; Murawska, M.M.; Koudstaal, M.J. Measuring Upper Airway Volume: Accuracy and Reliability of Dolphin 3D Software Compared to Manual Segmentation in Craniosynostosis Patients. J. Oral. Maxillofac. Surg. 2014, 72, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Erdinç, A.E.; Ugur, T.; Erbay, E. A comparison of different treatment techniques for posterior crossbite in mixed dentition. Am. J. Orthod. Dentofac. Orthop. 1999, 116, 287–300. [Google Scholar] [CrossRef]
- Nair, S.; Toshniwal, N.; Mani, S.; Ogale, R.; Karia, R.; Kadam, S. The Evaluation of the Efficacy of Quad Helix vs. Non-Helical Appliance in Growing Patients Having Transverse Maxillary Discrepancy: A Randomized Clinical Trial. Scope 2024, 14, 65–70. [Google Scholar]
- Cevidanes, L.H.C.; Heymann, G.; Cornelis, M.A.; DeClerck, H.J.; Tulloch, J.F.C. Superimposition of 3-dimensional cone-beam computed tomography models of growing patients. Am. J. Orthod. Dentofac. Orthop. 2009, 136, 94–99. [Google Scholar] [CrossRef] [PubMed]
- Cevidanes, L.H.C.; Oliveira, A.E.F.; Grauer, D.; Styner, M.; Proffit, W.R. Clinical Application of 3D Imaging for Assessment of Treatment Outcomes. Semin. Orthod. 2011, 17, 72–80. [Google Scholar] [CrossRef] [PubMed]
Group | T1, T2 CBCT Interval Mean ± SD | T1 Inter-Molar Width (mm) Mean ± SD | T1 Nasal Cavity Volume (cm3) Mean ± SD |
---|---|---|---|
Wilson 12 participants (9 males, 3 females) | 11.4 ± 1.2 | 1.6 ± 0.4 | 47.7± 2.4 |
Control 12 participants (8 males, 4 females) | 11.5 ± 0.6 | 1.6 ± 0.4 | 48.7 ± 1.6 |
Distance Measured | Definition |
---|---|
Dental | |
Inter-molars (pulp chamber) | The distance measured between the pulp chambers of the right and left upper first molars |
Inter-molars (root apex) | The distance measured between the mesiobuccal root apices of the right and left upper first molars |
Inter-premolars (pulp chamber) | The distance measured between the pulp chambers of the right and left upper first premolars |
Inter-premolars (root apex) | The distance measured between the buccal root apices of the right and left upper first premolars |
Alveolar | |
Inter-molars (alveolar bone) | The distance measured between the buccal cortices of the alveolar bone of the upper right and left first molars at the level of the mesiobuccal root apices |
Inter-premolars (alveolar bone) | The distance measured between the buccal cortices of the alveolar bone of the upper right and left first premolars at the vertical level of the buccal root apices |
Skeletal | |
Inter-infraorbital | The distance measured between the right and left infraorbital foramina |
Inter-greater palatine | The distance measured between the right and left greater-palatine foramina |
Distance Measured Dental | Wilson Group | Control Group | p Value (Between Groups) | ||
---|---|---|---|---|---|
Mean ± SD | p | Mean ± SD | p | ||
Inter-molars (pulp chamber) | 3.61 ± 2.41 | <0.01 | 0.7 ± 1.8 | 0.251 | 0.006 |
Inter-molars (root apex) | 3.51 ± 2.29 | <0.01 | 0.86 ± 2.4 | 0.243 | 0.012 |
Inter-premolar (pulp chamber) | 3.01 ± 2.21 | 0.001 | −0.1 ± 2.5 | 0.907 | 0.010 |
Inter-premolars (root apex) | 0.64 ± 3.19 | 0.585 | 0.5 ± 1.5 | 0.272 | 0.270 |
Alveolar | |||||
Inter-molars (alveolar bone) | 0.75 ± 2.64 | 0.346 | −0.5 ± 2.50 | 0.661 | 0.367 |
Inter-premolars (alveolar bone) | 0.41 ± 2.17 | 0.967 | 0.6 ± 1.7 | 0.292 | 0.785 |
Skeletal | |||||
Inter-infraorbital | 1.01 ± 1.01 | 0.004 | −1.14 ± 1.16 | 0.085 | 0.008 |
Inter-greater palatine | 1.48 ± 1.94 | 0.023 | 0.89 ± 0.9 | 0.064 | 0.554 |
Parameter Measured | Wilson Group | Control Group | p Value | ||||
---|---|---|---|---|---|---|---|
Mean ± SD | Min. | Max. | Mean ± SD | Min. | Max. | ||
Average Volume Difference (cm3) % | 2.4 ± 4.1 13 ± 22 | −5.8 | 8.7 | −0.4 ± 1.4 2 ± 7 | −6.5 | 1.3 | 0.02 |
Average Surface Area Difference (cm2) % | 1.9 ± 1.8 12 ± 12 | −2.1 | 4 | 0.3 ± 1.8 2 ± 12 | −2.6 | 3.5 | 0.04 |
Average Mean Part Analysis (mm) | 0.8 ± 0.4 | 0.3 | 1.3 | 0.7 ± 0.3 | 0.04 | 1.3 | 0.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Njie, R.; Major, P.W.; Lagravere, M.; Alsufyani, N.; Lai, H.; El-Bialy, T. Skeletal, Dental, and Nasal Changes After Slow Maxillary Expansion Using Quad-Helix. Appl. Sci. 2025, 15, 11042. https://doi.org/10.3390/app152011042
Njie R, Major PW, Lagravere M, Alsufyani N, Lai H, El-Bialy T. Skeletal, Dental, and Nasal Changes After Slow Maxillary Expansion Using Quad-Helix. Applied Sciences. 2025; 15(20):11042. https://doi.org/10.3390/app152011042
Chicago/Turabian StyleNjie, Rabia, Paul W. Major, Manuel Lagravere, Noura Alsufyani, Hollis Lai, and Tarek El-Bialy. 2025. "Skeletal, Dental, and Nasal Changes After Slow Maxillary Expansion Using Quad-Helix" Applied Sciences 15, no. 20: 11042. https://doi.org/10.3390/app152011042
APA StyleNjie, R., Major, P. W., Lagravere, M., Alsufyani, N., Lai, H., & El-Bialy, T. (2025). Skeletal, Dental, and Nasal Changes After Slow Maxillary Expansion Using Quad-Helix. Applied Sciences, 15(20), 11042. https://doi.org/10.3390/app152011042