Generative Implicit Steganography via Message Mapping
Abstract
1. Introduction
- 1.
- This is the first time a function generator is used in message mapping-based generative steganography. It addresses the issue where the generator model size increases with data size, enables the representation of different types of multimedia data, and breaks through the resolution limitations of traditional gridded data.
- 2.
- Single-bit and multi-bit message mapping schemes are designed in the noise space of the function generator, with message embedding completed at the noise level of the generator.
- 3.
- A dedicated message extractor for point cloud data is designed, which avoids the strong coupling between extractor size and data size and improves the universality of the extractor.
2. Related Work
2.1. Generative Steganography
2.2. Steganography Based on Implicit Neural Network
3. The Proposed Generative Implicit Steganography via Message Mapping
3.1. Data Representation
3.2. Message Mapping
3.2.1. Single-Bit Message Mapping
3.2.2. Multi-Bit Message Mapping
3.3. Function Generator
3.4. Point Cloud Message Extractor
3.4.1. Network Structure
3.4.2. Training
3.4.3. Loss Function
4. Experiments and Analysis
4.1. Evaluation Metrics
4.2. Settings
4.3. Visual Safety
4.4. Message Extractor Accuracy
4.5. Undetectability
4.6. Robustness
4.7. Efficiency
4.8. Super-Resolution
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
GS | Generative Steganography |
GAN | Generative Adversarial Network |
INR | Implicit Neural Representation |
GIS | Generative Implicit Steganography |
References
- Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.C.; Bengio, Y. Generative adversarial networks. In Proceedings of the 14th International Conference on Computing Communication and Networking Technologies (ICCCNT), Kharagpur, India, 6–8 July 2021; pp. 1–7. [Google Scholar]
- Hayes, J.; Danezis, G. Generating steganographic images via adversarial training. In Proceedings of the Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 1954–1963. [Google Scholar]
- Kim, D.; Shin, C.; Choi, J.; Jung, D.; Yoon, S. Diffusion-Stego: Training-free Diffusion Generative Steganography via Message Projection. arXiv 2023, arXiv:2305.18726. [Google Scholar]
- Ho, J.; Jain, A.; Abbeel, P. Denoising diffusion probabilistic models. arXiv 2020, arXiv:2006.11239. [Google Scholar] [CrossRef]
- Wei, P.; Zhou, Q.; Wang, Z.; Qian, Z.; Zhang, X.; Li, S. Generative Steganography Diffusion. arXiv 2023, arXiv:2305.03472. [Google Scholar] [CrossRef]
- Kingma, D.P.; Dhariwal, P. Glow: Generative Flow with Invertible 1 × 1 Convolutions. arXiv 2018, arXiv:1807.03039. [Google Scholar]
- Kingma, D.P.; Welling, M. Auto-Encoding Variational Bayes. arXiv 2013, arXiv:1312.6114. [Google Scholar]
- Yang, K.; Chen, K.; Zhang, W.; Yu, N. Provably secure generative steganography based on autoregressive model. In Proceedings of the Digital Forensics and Watermarking, Jeju Island, Republic of Korea, 22–24 October 2018; Lecture Notes in Computer Science. Springer: Berlin/Heidelberg, Germany, 2019; Volume 11378, pp. 55–68. [Google Scholar]
- Chen, K.; Zhou, H.; Zhao, H.; Chen, D.; Zhang, W.; Yu, N. When Provably Secure Steganography Meets Generative Models. arXiv 2018, arXiv:1811.03732v2. [Google Scholar]
- Hu, D.; Wang, L.; Jiang, W.; Zheng, S.; Li, B. A novel image steganography method via deep convolutional generative adversarial networks. IEEE Access 2018, 6, 38303–38314. [Google Scholar] [CrossRef]
- Zhou, Z.; Sun, H.; Harit, R.; Chen, X.; Sun, X. Coverless image steganography without embedding. In Proceedings of the International Conference on Cloud Computing and Security, Geneva, Switzerland, 22–27 March 2015; pp. 123–132. [Google Scholar]
- Zhou, Z.L.; Yi, C.; Xiao, M.S. Coverless information hiding based on bag-of-words model of image. J. Appl. Sci. 2016, 34, 527–536. [Google Scholar]
- Liu, J.; Zhou, T.; Zhang, Z.; Ke, Y.; Lei, Y.-Z.; Zhang, M.; Yang, X. Digital cardan grille: A modern approach for information hiding. In Proceedings of the International Conference on Computer Science and Artificial Intelligence, Shanghai, China, 13–15 July 2018. [Google Scholar]
- Kishore, V.; Chen, X.; Wang, Y.; Li, B.; Weinberger, K.Q.; Weinberger. Fixed neural network steganography: Train the images, not the network. In Proceedings of the International Conference on Learning Representations, Virtually, 25–29 April 2022. [Google Scholar]
- Zhong, Y.; Liu, J.; Luo, P.; Ke, Y.; Cai, S. INR-Based Generative Steganography by Point Cloud Representation. arXiv 2025, arXiv:2410.11673. [Google Scholar]
- Dong, W.; Liu, J.; Chen, L.; Sun, W.; Pan, X.; Ke, Y. Implicit neural representation steganography by neuron pruning. Multim. Syst. 2024, 30, 266. [Google Scholar]
- Dong, W.; Liu, J.; Chen, L.; Sun, W.; Pan, X.; Ke, Y. StegaINR4MIH: Steganography by implicit neural representation for multi-image hiding. J. Electron. Imaging 2024, 33, 063017. [Google Scholar] [CrossRef]
- Liu, M.; Ming, Z.; Jun, L.; Zhang, Y.; Ke, Y. Coverless information hiding based on generative adversarial networks. arXiv 2017, arXiv:1712.06951. [Google Scholar] [CrossRef]
- Liu, X.; Ma, Z.; Ma, J.; Zhang, J.; Schaefer, G.; Fang, H. Image Disentanglement Autoencoder for Steganography Without Embedding. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 19–24 June 2022; pp. 2303–2312. [Google Scholar]
- Volkhonskiy, D.; Nazarov, I.; Borisenko, B.; Burnaev, E. Steganographic Generative Adversarial Networks. In Proceedings of the International Conference on Machine Vision, Dubai, United Arab Emirates, 26–28 April 2017. [Google Scholar]
- Shi, H.; Dong, J.; Wang, W.; Qian, Y.; Zhang, X. SSGAN: Secure Steganography Based on Generative Adversarial Networks. arXiv 2017, arXiv:1707.01613. [Google Scholar]
- Cui, Q.; Zhou, Z.; Fu, Z. Image steganography based on foreground object generation by generative adversarial networks in mobile edge computing with internet of things. IEEE Access 2019, 7, 90815–90824. [Google Scholar] [CrossRef]
- Park, H.; Yoo, Y.J.; Kwak, N. MC-GAN: Multi-conditional generative adversarial network for image synthesis. arXiv 2018, arXiv:1805.01123. [Google Scholar]
- Mielikainen, J. LSB Matching revisited. IEEE Signal Process. Lett. 2006, 13, 285–287. [Google Scholar] [CrossRef]
- Yang, Z.; Chen, K.; Zeng, K.; Zhang, W.; Yu, N. Provably Secure Robust Image Steganography. IEEE Trans. Multim. 2024, 26, 5040–5053. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, S.; Hu, Y.; Hu, Z.; Huang, Y. VAE-Stega: Linguistic Steganography Based on Variational Auto-Encoder. IEEE Trans. Inf. Forensics Secur. 2021, 16, 880–895. [Google Scholar] [CrossRef]
- Zhu, J.; Chen, Z.; Yang, L.; Xie, X.; Zhou, Y. Plug-and-Hide: Provable and Adjustable Diffusion Generative Steganography. arXiv 2024, arXiv:2409.04878. [Google Scholar]
- Luo, Z.; Li, S.; Li, G.; Qian, Z.; Zhang, X. Securing Fixed Neural Network Steganography. In Proceedings of the 31st ACM International Conference on Multimedia, Ottawa, ON, Canada, 29 October–3 November 2023. [Google Scholar]
- Li, G.; Li, S.; Qian, Z.; Zhang, X. Cover-separable Fixed Neural Network Steganography via Deep Generative Models. In Proceedings of the 32nd ACM International Conference on Multimedia (MM’24), Melbourne, Australia, 28 October–1 November 2024. [Google Scholar]
- Cheng, Y.; Zhou, J.; Chen, J.; Yin, Z.; Zhang, X. RFNNS: Robust Fixed Neural Network Steganography with Popular Deep Generative Models. arXiv 2025, arXiv:2505.04116. [Google Scholar] [CrossRef]
- Han, S.; Mao, H.; Dally, W.J. Deep Compression: Compressing Deep Neural Network with Pruning, Trained Quantization and Huffman Coding. arXiv 2015, arXiv:1510.00149. [Google Scholar]
- Liu, Z.; Sun, M.; Zhou, T.; Huang, G.; Darrell, T. Rethinking the Value of Network Pruning. arXiv 2018, arXiv:1810.05270. [Google Scholar]
- Frankle, J.; Dziugaite, G.K.; Roy, D.M.; Carbin, M. Pruning Neural Networks at Initialization: Why are We Missing the Mark? arXiv 2020, arXiv:2009.08576. [Google Scholar]
- Park, D.; Kim, S.H.; Lee, S.; Kim, H.J. DDMI: Domain-Agnostic Latent Diffusion Models for Synthesizing High-Quality Implicit Neural Representations. arXiv 2024, arXiv:2401.12517. [Google Scholar]
- Liu, J.; Luo, P.; Ke, Y. Hiding Functions within Functions: Steganography by Implicit Neural Representations. arXiv 2023, arXiv:2312.04743. [Google Scholar] [CrossRef]
- Song, S.; Yang, S.; Yoo, C.D.; Kim, J. Implicit Steganography Beyond the Constraints of Modality. In Proceedings of the European Conference on Computer Vision, Krakow, Poland, 30 September–5 October 2023; pp. 289–304. [Google Scholar]
- Zhong, Y.; Liu, J.; Ke, Y.; Liu, M. Image steganography based on generative implicit neural representation. J. Electron. Imaging 2024, 33, 063043. [Google Scholar] [CrossRef]
- Dupont, E.; Teh, Y.W.; Doucet, A. Generative Models as Distributions of Functions. In Proceedings of the 24th International Conference on Artificial Intelligence and Statistics, Virtually, 13–15 April 2021. [Google Scholar]
- Wei, P.; Li, S.; Zhang, X.; Luo, G.; Qian, Z.; Zhou, Q. Generative Steganography Network. In Proceedings of the 30th ACM International Conference on Multimedia (MM’22), Lisbon, Portugal, 10–14 October 2022; pp. 1621–1629. [Google Scholar]
- Zhuang, P.; Abnar, S.; Gu, J.; Schwing, A.; Susskind, J.M.; Bautista, M.A. Diffusion Probabilistic Fields. arXiv 2023, arXiv:2303.00165. [Google Scholar]
- Du, Y.; Collins, K.M.; Tenenbaum, J.B.; Sitzmann, V. Learning Signal-Agnostic Manifolds of Neural Fields. In Proceedings of the Neural Information Processing Systems, Online, 6–14 December 2021; pp. 8320–8331. [Google Scholar]
- Mescheder, L.; Geiger, A.; Nowozin, S. Which Training Methods for GANs do actually Converge? In Proceedings of the International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; pp. 3481–3490. [Google Scholar]
- Wu, W.; Qi, Z.A.; Li, F. PointConv: Deep Convolutional Networks on 3D Point Clouds. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–20 June 2019; pp. 9621–9630. [Google Scholar]
- Karras, T.; Aila, T.; Laine, S.; Lehtinen, J. Progressive Growing of GANs for Improved Quality, Stability, and Variation. In Proceedings of the International Conference on Learning Representations (ICLR), Vancouver Convention Center, Vancouver, BC, Canada, 30 April–3 May 2018. [Google Scholar]
- Karras, T.; Laine, S.; Aittala, M.; Hellsten, J.; Lehtinen, J.; Aila, T. Analyzing and Improving the Image Quality of StyleGAN. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Online, 14–19 June 2020; pp. 8110–8119. [Google Scholar]
- Luo, Z.; Guo, Q.; Cheung, K.C.; See, S.; Wan, R. CopyRNeRF: Protecting the CopyRight of Neural Radiance Fields. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Paris, France, 2–6 October 2023. [Google Scholar]
- Song, Q.; Luo, Z.; Cheung, K.C.; See, S.; Wan, R. Protecting NeRFs’ Copyright via Plug-and-Play Watermarking Base Model. In Proceedings of the European Conference on Computer Vision, Milan, Italy, 29 September–4 October 2024. [Google Scholar]
- Boehm, B. StegExpose—A Tool for Detecting LSB Steganography. arXiv 2014, arXiv:1410.6656. [Google Scholar]
Methods | Image Size | Capacity (bpp) | Acc |
---|---|---|---|
DCGANs [10] | 1 | 95.8% | |
DCGANs [10] | 2 | 94% | |
Diffusion-Stego [3] | 1 | 98.12% | |
GSN [39] | 1 | 97% | |
CopyRNeRF [46] | / | 1 | 88.31% |
NeRFProtector [47] | / | 1 | 92.69% |
Ours | 1 | 96.88% | |
Ours | 2 | 89.84% |
Detection Rate | Sample Pairs | RS Analysis | Fusion (Mean) |
---|---|---|---|
6.24% | 0.0839 | 0.0940 | 0.1025 |
L1 unstruncted ratio | 0 | 0.01 | 0.05 | 0.1 | 0.3 | 0.5 | 0.8 |
Acc | 96.88% | 92.19% | 90.62% | 87.50% | 82.21% | 65.62% | 54.06% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, Y.; Liu, J.; Luo, P.; Ke, Y.; Zhang, M. Generative Implicit Steganography via Message Mapping. Appl. Sci. 2025, 15, 11041. https://doi.org/10.3390/app152011041
Zhong Y, Liu J, Luo P, Ke Y, Zhang M. Generative Implicit Steganography via Message Mapping. Applied Sciences. 2025; 15(20):11041. https://doi.org/10.3390/app152011041
Chicago/Turabian StyleZhong, Yangjie, Jia Liu, Peng Luo, Yan Ke, and Mingshu Zhang. 2025. "Generative Implicit Steganography via Message Mapping" Applied Sciences 15, no. 20: 11041. https://doi.org/10.3390/app152011041
APA StyleZhong, Y., Liu, J., Luo, P., Ke, Y., & Zhang, M. (2025). Generative Implicit Steganography via Message Mapping. Applied Sciences, 15(20), 11041. https://doi.org/10.3390/app152011041