Life Cycle Analysis of Particleboard Made of Corn Stalk and Citric Acid at Laboratory Scale
Abstract
1. Introduction
2. Materials and Methods
2.1. Goal, Scope, Functional Unit, System Boundary
2.2. Scenario Description: Formulation of Particleboard
- CS particles (moisture content < 5%): 0.364 kg
- CA solution (concentration 59 wt%): 0.147 kg (to obtain 0.147 kg CA solution, CA powder 0.073 kg was dissolved in 0.123 L demineralised water).
2.3. Life Cycle Inventory Analysis
2.4. Environmental Impact Assessment
3. Results
3.1. Life Cycle Inventory
3.2. Environmental Impacts
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Process | Indonesia | Duration (h) | Energy (kWh) | Australia | Duration (h) | Energy (kWh) | ||
---|---|---|---|---|---|---|---|---|
Equipment | Power (W) | Equipment | Power (W) | |||||
Cutting | Hand machete | Hand machete | ||||||
Milling | Hammer mill: Pallman Maschinefabrik GmbH & Co. KG, Zweibrüken, Germany, Type PHM 3 Machine No. 0101.93.027 | 3500 | 0.17 | 0.58 | Cutting mill: Fritsch Pulverisette®, Fritsch GmbH, Idar-Oberstein, Germany, Type 15.302 Machine No. 602 | 1050 | 0.42 | 0.44 |
Sieving | Built-in shaking machine (Bogor, Indonesia) | 1500 | 0.25 | 0.38 | Shaking machine: Vibro veyor (Melbourne, Australia) Pty. Ltd., | 1100 | 0.17 | 0.18 |
Drying | Oven: Memmert GmbH + Co. KG, Schwabach, Germany, Type UF 450-8718.0280 | 5800 | 20.00 | 116.00 | Oven: Thermoline Scientific, Wetherill Park, NSW, Australia, Model TD-500F | 3060 | 20.00 | 61.20 |
Adhesive dissolving | Hotplate stirrer: IKA C-MAG HS (Jakarta, Indonesia) | 1020 | 0.15 | 0.15 | Digital hotplate stirrer: Thermoline Scientific, Wetherill Park, NSW, Australia, Model THS-185 | 1050 | 0.15 | 0.16 |
Mixing | Built-in drum mixer (Bogor, Indonesia) | 1000 | 0.08 | 0.08 | Air compressor: McMillan MC 12 60 L, Melbourne, Australia | 2400 | 0.17 | 0.40 |
Air compressor: Krisbow® air compressor machine type 10029559 (Jakarta, Indonesia) | 2200 | 0.08 | 0.18 | |||||
Pre-drying treatment | Oven: Memmert GmbH + Co. KG, Germany, Type UF 450-8718.0280 | 5800 | 20.00 | 116.00 | Oven: Thermoline Scientific, Wetherill Park, NSW, Australia, Model TD-500F | 3060 | 20.00 | 61.20 |
Hot-pressing | Hot-press machine: Shinto Metal Industri, Ltd., Osaka, Japan, type NF-50HH manufacturing No. 217020, clamping force 50 tons | 6000 | 0.88 | 5.30 | Hot-press machine: Dake®, Grand Haven MI, USA, type 44-226-2, tonnage: 25 tons | 3600 | 0.88 | 3.18 |
Trimming | Wood working machine: Tomita®, Ichinomiya-shi, Japan | 3000 | 0.05 | 0.15 | Table saw machine: DEWALT®, Type DWE7491 -XE, Shanghai, China | 2000 | 0.05 | 0.10 |
Energy total | 238.83 | 126.86 |
References
- AS/NZS 1859.1:2017; Reconstituted Wood-Based Panels—Specifications—Part 1: Particleboard. Joint Technical Committee TM-011: Sydney, NSW, Australia, 2017.
- Rossi, L.; Wechsler, L.; Peltzer, M.A.; Ciannamea, E.M.; Ruseckaite, R.A.; Stefani, P.M. Sustainable particleboards based on brewer’s spent grains. Polymers 2024, 16, 59. [Google Scholar] [CrossRef] [PubMed]
- Baharoğlu, M.; Nemli, G.; Sarı, B.; Bardak, S.; Ayrılmış, N. The influence of moisture content of raw material on the physical and mechanical properties, surface roughness, wettability, and formaldehyde emission of particleboard composite. Compos. Part B-Eng. 2012, 43, 2448–2451. [Google Scholar] [CrossRef]
- Yang, F.; Fei, B.; Wu, Z.; Peng, L.; Yu, Y. Selected properties of corrugated particleboards made from bamboo waste (Phyllostachys edulis) laminated with medium-density fiberboard panels. BioResources 2014, 9, 1085–1096. [Google Scholar] [CrossRef]
- Rochester, I.; Kearly, V.; Boulton, N. Panel Guide; Version 4.1; Wood Panel Industries Federation: Grantham, UK; TRADA Technology Ltd.: High Wycombe, UK; The National Panel Product Division: London, UK, 2014. [Google Scholar]
- Fiorelli, J.; Gomide, C.A.; Lahr, F.A.R.; Nascimento, M.F.; Sartori, D.L.; Ballesteros, J.E.M.; Bueno, S.B.; Belini, U.L. Physico-chemical and anatomical characterization of residual lignocellulosic fibers. Cellulose 2014, 21, 3269–3277. [Google Scholar] [CrossRef]
- Başboğa, İ.H. Particleboard manufacturing with low formaldehyde content for indoor applications. Wood Mater. Sci. Eng. 2023, 18, 1134–1140. [Google Scholar] [CrossRef]
- Lee, M.; Kang, E.-C.; Lee, S.-M.; Yoon, S.-M. Mechanical properties of structural particleboard and termite and decay resistance. BioResources 2023, 18, 6169–6182. [Google Scholar] [CrossRef]
- FAOSTAT. Forestry Production and Trade; Food and Agriculture Organization (FAO): Rome, Italy, 2024; Available online: https://www.fao.org/faostat/en/#data/FO (accessed on 29 January 2025).
- Gontard, N.; Sonesson, U.; Birkved, M.; Majone, M.; Bolzonella, D.; Celli, A.; Angellier-Coussy, H.; Jang, G.-W.; Verniquet, A.; Broeze, J.; et al. A research challenge vision regarding management of agricultural waste in a circular bio-based economy. Crit. Rev. Environ. Sci. Tec. 2018, 48, 614–654. [Google Scholar] [CrossRef]
- Tucker, S.N.; Tharumarajah, A.; May, B.; England, J.; Paul, K.; Hall, M.; Mitchell, P.; Rouwette, R.; Syme, M. Life Cycle Inventory of Australian Forestry and Wood Products; Forest & Wood Products Australia Limited (FWPA): Melbourne, VIC, Australia, 2009; Available online: https://www.jstor.org/stable/26151873 (accessed on 29 January 2025).
- Alwani, M.S.; Khalil, H.P.S.A.; Asniza, M.; Suhaily, S.S.; Amiranajwa, A.S.N.; Jawaid, M. Agricultural Biomass Raw Materials: The Current State and Future Potentialities; Springer International Publishing: Cham, Switzerland, 2014. [Google Scholar] [CrossRef]
- Paridah, M.T.; Juliana, A.H.; Zaidon, A.; Khalil, H.P.S.A. Nonwood-Based composites. Curr. For. Rep. 2015, 1, 221–238. [Google Scholar] [CrossRef]
- Lee, S.H.; Lum, W.C.; Boon, J.G.; Kristak, L.; Antov, P.; Pędzik, M.; Rogoziński, T.; Taghiyari, H.R.; Lubis, M.A.R.; Fatriasari, W.; et al. Particleboard from agricultural biomass and recycled wood waste: A review. J. Mater. Res. Technol. 2022, 20, 4630–4658. [Google Scholar] [CrossRef]
- Zakia, H.; Taha, A.; Mervat, K.; Adel, B.; Samir, A.; Jutta, H.; Azra, K. Rice Straw and Flax Fiber Particleboards as a Product of Agricultural Waste: An Evaluation of Technical Properties. Appl. Sci. 2019, 9, 3878. [Google Scholar] [CrossRef]
- Sujatha, D.; Mamatha, S.; Uday, N. Influence of rice straw and wood fiber combination on physical and mechanical properties of rice straw pulverized composite board. Maderas-Cienc. Technol. 2024, 26, e3724. [Google Scholar] [CrossRef]
- Zhang, L.; Hu, Y. Novel lignocellulosic hybrid particleboard composites made from rice straws and coir fibers. Mater. Des. 2014, 55, 19–26. [Google Scholar] [CrossRef]
- Akinyemi, B.A.; Kolajo, T.E.; Adedolu, O. Blended formaldehyde adhesive bonded particleboards made from groundnut shell and rice husk wastes. Clean Technol. Environ. 2022, 24, 1653–1662. [Google Scholar] [CrossRef]
- Nicolao, E.S.; Leiva, P.; Chalapud, M.C.; Ruseckaite, R.A.; Ciannamea, E.M.; Stefani, P.M. Flexural and tensile properties of biobased rice husk-jute-soybean protein particleboards. J. Build. Eng. 2020, 30, 101261. [Google Scholar] [CrossRef]
- Huang, H.-K.; Hsu, C.-H.; Hsu, P.-K.; Cho, Y.-M.; Chou, T.-H.; Cheng, Y.-S. Preparation and evaluation of particleboard from insect rearing residue and rice husks using starch/citric acid mixture as a natural binder. Biomass Convers. Biorefin. 2022, 12, 633–641. [Google Scholar] [CrossRef]
- Büyüksari, U.; Akkilic, H. Surface Characteristics of particleboard produced from hydro-thermally treated wheat stalks. Bioresources 2020, 15, 7648–7659. [Google Scholar] [CrossRef]
- Domínguez-Robles, J.; Tarrés, Q.; Alcalà, M.; El Mansouri, N.E.; Rodríguez, A.; Mutjé, P. Delgado-Aguilar. Development of high-performance binderless fiberboards from wheat straw residue. Constr. Build. Mater. 2020, 232, 117247. [Google Scholar] [CrossRef]
- Tupciauskas, R.; Rizhikovs, J.; Andzs, M.; Bikovens, O. Influence of manufacturing conditions on binder-less boards from steam-exploded hemp shives and wheat straw. Materials 2022, 15, 3141. [Google Scholar] [CrossRef]
- Hyskova, P.; Hysek, S.; Schonfelder, O.; Sedivka, P.; Lexa, M.; Jarsky, V. Utilization of agricultural rests: Straw-based composite panels made from enzymatic modified wheat and rapeseed straw. Ind. Crop. Prod. 2020, 144, 112067. [Google Scholar] [CrossRef]
- Paiva, A.; Pereira, S.; Sá, A.; Cruz, D.; Varum, H.; Pinto, J. A contribution to the thermal insulation performance characterization of corn cob particleboards. Energy Build. 2012, 45, 274–279. [Google Scholar] [CrossRef]
- Pinto, J.; Vieira, B.; Pereira, H.; Jacinto, C.; Vilela, P.; Paiva, A.; Pereira, S.; Cunha, V.M.C.F.; Varum, H. Corn cob lightweight concrete for non-structural applications. Constr. Build. Mater. 2012, 34, 346–351. [Google Scholar] [CrossRef]
- Faustino, J.; Pereira, L.; Soares, S.; Cruz, D.; Paiva, A.; Varum, H.; Ferreira, J.; Pinto, J. Impact sound insulation technique using corn cob particleboard. Constr. Build. Mater. 2012, 37, 153–159. [Google Scholar] [CrossRef]
- Ramos, A.; Briga-Sá, A.; Pereira, S.; Correia, M.; Pinto, J.; Bentes, I.; Teixeira, C.A. Thermal performance and life cycle assessment of corn cob particleboards. J. Build. Eng. 2021, 44, 102998. [Google Scholar] [CrossRef]
- Ratna, A.S.; Ghosh, A.; Mukhopadhyay, S. Advances and prospects of corn husk as a sustainable material in composites and other technical applications. J. Clean. Prod. 2022, 371, 133563. [Google Scholar] [CrossRef]
- Prasetiyo, K.W.; Hermawan, D.; Hadi, Y.S.; Subyakto, S.; Astari, L.; Amanda, P.; Kusumaningrum, W.B. Manufacturing and characterization of particleboard as partition material made of corn husk bonded using water soluble chitosan adhesive. Eur. Chem. Bull. 2023, 12, 5658. [Google Scholar] [CrossRef]
- Alshahrani, H.; Prakash, V.R.A. Mechanical, fatigue and DMA behaviour of high content cellulosic corn husk fibre and orange peel biochar epoxy biocomposite: A greener material for cleaner production. J. Clean. Prod. 2022, 374, 133931. [Google Scholar] [CrossRef]
- Kup, F.; Vural, C. Determination of physical and mechanical properties of particleboard obtained from cotton and corn stubble with fibreglass plaster net. J. Environ. Prot. Ecol. 2022, 23, 657–667. [Google Scholar]
- Abdulqader, A.A. Efficient utilization of corn stalk and poplar planer shavings in manufacturing particleboard. Maderas-Cienc. Tecnol. 2021, 23, 1–10. [Google Scholar] [CrossRef]
- Li, S.D.; Yuan, Y.; Wang, J.M.; Guo, M.H. Fabrication and characterization of a novel corn straw/modified ammonium lignosulfonate bio-composite strengthened by polyethylenimine pretreatment. RSC Adv. 2019, 9, 34754–34760. [Google Scholar] [CrossRef]
- Astari, L.; Belleville, B.; Ozarska, B.; Umemura, K.; Crawford, R.; Kusumaningrum, W.B.; Ismayati, M. Performance of self-binding engineered panels made from sweet corn stalks (Zea mays L.) for furniture applications. Bioresour. Technol. Rep. 2024, 25, 101802. [Google Scholar] [CrossRef]
- Zhang, Q.Y.; Xu, G.X.; Pizzi, A.; Lei, H.; Xi, X.D.; Du, G.B. A green resin wood adhesive from synthetic polyamide crosslinking with glyoxal. Polymers 2022, 14, 2819. [Google Scholar] [CrossRef]
- Ergun, M.E.; Özlüsoylu, İ.; İstek, A.; Can, A. Analysis and impact of activated carbon incorporation into urea-formaldehyde adhesive on the properties of particleboard. Coatings 2023, 13, 1476. [Google Scholar] [CrossRef]
- Rovira, J.; Roig, N.; Nadal, M.; Schuhmacher, M.; Domingo, J.L. Human health risks of formaldehyde indoor levels: An issue of concern. J. Environ. Sci. Health A 2016, 51, 357–363. [Google Scholar] [CrossRef] [PubMed]
- Bhat, D.; Murugesh, P.; Basavanna, P.N.; Chittoor, H.; Doddaiah, S. Estimation of occupational formaldehyde exposure in cadaver dissection laboratory and its implications. Anat. Cell Biol. 2019, 52, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, D.E.; Pereira, D.D.C.; Nakamura, A.P.D.; Brum, S.S. Adhesivity of bio-based anhydrous citric acid, tannin-citric acid and ricinoleic acid in the properties of formaldehyde free medium density particleboard (MDP). Drvna Ind. 2020, 71, 235–242. [Google Scholar] [CrossRef]
- Widyorini, R.; Nugraha, P.A.; Rahman, M.Z.A.; Prayitno, T.A. bonding ability of a new adhesive composed of citric acid-sucrose for particleboard. BioResources 2016, 11, 4526–4535. [Google Scholar] [CrossRef]
- Sutiawan, J.; Syahfitri, A.; Purnomo, D.; Sudarmanto; Narto; Akbar, F.; Triwibowo, D.; Ismadi; Amanda, P.; Kusumah, S.S.; et al. Characterization and application of non-formaldehyde binder based citric acid, maleic acid, and molasses adhesive for plywood composite. Polymers 2023, 15, 3897. [Google Scholar] [CrossRef]
- Widodo, E.; Kusumah, S.S.; Subyakto; Umemura, K. Development of moulding using sweet sorghum bagasse and citric acid: Effects of application method and citric acid content. For. Prod. J. 2020, 70, 151–157. [Google Scholar] [CrossRef]
- Lee, S.H.; Tahir, P.M.; Lum, W.C.; Tan, L.P.; Bawon, P.; Park, B.-D.; Al Edrus, S.S.O.; Abdullah, U.H. A Review on citric acid as green modifying agent and binder for wood. Polymers 2020, 12, 1692. [Google Scholar] [CrossRef]
- Kusumah, S.S.; Umemura, K.; Yoshioka, K.; Miyafuji, H.; Kanayama, K. Utilization of sweet sorghum bagasse and citric acid for manufacturing of particleboard I: Effects of pre-drying treatment and citric acid content on the board properties. Ind. Crop. Prod. 2016, 84, 34–42. [Google Scholar] [CrossRef]
- Kusumah, S.S.; Umemura, K.; Guswenrivo, I.; Yoshimura, T.; Kanayama, K. Utilization of sweet sorghum bagasse and citric acid for manufacturing of particleboard II: Influences of pressing temperature and time on particleboard properties. J. Wood Sci. 2017, 63, 161–172. [Google Scholar] [CrossRef]
- Ferrandez-Garcia, M.T.; Ferrandez-Garcia, C.E.; Garcia-Ortuño, T.; Ferrandez-Garcia, A.; Ferrandez-Villena, M. Experimental Evaluation of a New Giant Reed (Arundo donax L.) Composite using citric acid as a natural binder. Agronomy 2019, 9, 882. [Google Scholar] [CrossRef]
- Fehrmann, J.; Belleville, B.; Ozarska, B.; Ismayati, M.; Dwianto, W. Effects of mat composition and pressing time on citric acid-bonded ultra-low-density hemp hurd particleboard. Ind. Crop. Prod. 2024, 210, 118070. [Google Scholar] [CrossRef]
- Santoso, M.; Widyorini, R.; Prayitno, T.A.; Sulistyo, J.; Hamidah, N. Effect of pressing temperatures on bonding properties of sucrose-citric acid for nipa palm fronds particleboard. Wood Res.-Slovak. 2020, 65, 747–756. [Google Scholar] [CrossRef]
- Widyorini, R.; Umemura, K.; Septiano, A.; Soraya, D.K.; Dewi, G.K.; Nugroho, W.D. Manufacture and properties of citric acid-bonded composite board made from salacca frond: Effects of maltodextrin addition, pressing temperature, and pressing method. Bioresources 2018, 13, 8662–8676. [Google Scholar] [CrossRef]
- Widyorini, R.; Umemura, K.; Isnan, R.; Putra, D.R.; Awaludin, A.; Prayitno, T.A. Manufacture and properties of citric acid-bonded particleboard made from bamboo materials. Eur. J. Wood Wood Prod. 2015, 74, 57–65. [Google Scholar] [CrossRef]
- Syamani, F.A.; Arifqi, A.Z.; Munawar, S.S.; Sudarmanto, S.; Astari, L.; Prasetiyo, K.W.; Gopar, M.; Ismadi, I.; Kusumah, S.S.; Hussin, M.H.; et al. Utilization Of citric acid as bonding agent in sembilang bamboo (Dendrocalamus giganteus Munro) particleboard production. Indones. J. For. Res. 2022, 9, 99–120. [Google Scholar] [CrossRef]
- JIS A 5908: 2022; Japan Industrial Standard A 5908: Particleboard. Japan Standard Association: Tokyo, Japan, 2022.
- Farjana, S.H.; Tokede, O.; Tao, Z.; Ashraf, M. Life cycle assessment of end-of-life engineered wood. Sci. Total Environ. 2023, 887, 164018. [Google Scholar] [CrossRef]
- ISO 14040: 2006; Technical Committee ISO/TC 207, 206, E.m.S.S., Life Cycle Assessment, Environmental Management: Life Cycle Assessment: Principles and Framework. ISO: Rome, Italy, 2006.
- ISO 14044: 2006; Technical Committee ISO/TC 207, E.m.S.S., Life Cycle Assessment, Environmental Management—Life Cycle Assessment—Requirements and Guidelines. ISO: Rome, Italy, 2006.
- Jahan, I.; Zhang, G.; Bhuiyan, M. Navaratnam. Circular economy of construction and demolition wood waste—A theoretical framework approach. Sustainability 2022, 14, 10478. [Google Scholar] [CrossRef]
- Mata, T.M.; Freitas, C.; Silva, G.V.; Monteiro, S.; Martins, J.M.; de Carvalho, L.H.; Silva, L.M.; Martins, A.A. Life cycle analysis of a particleboard based on cardoon and starch/chitosan. Sustainability 2023, 15, 16179. [Google Scholar] [CrossRef]
- dos Santos, M.F.N.; Battistelle, R.A.G.; Bezerra, B.S.; Varum, H.S.A. Comparative study of the life cycle assessment of particleboards made of residues from sugarcane bagasse (Saccharum spp.) and pine wood shavings (Pinus elliottii). J. Clean. Prod. 2014, 64, 345–355. [Google Scholar] [CrossRef]
- Nara, C.; Luiza, C.V.M.; Lino, M. Environmental analysis of the incorporation of sugarcane bagasse in medium density particleboard panels through life cycle assessment. Recycling 2023, 8, 44. [Google Scholar] [CrossRef]
- Wood Solutions. Environmental Product Declaration: Particleboard. 2020. Available online: https://www.woodsolutions.com.au/resources/publications/environmental-product-declarations (accessed on 20 December 2023).
- Nakano, K.; Ando, K.; Takigawa, M. Hattori. Life cycle assessment of wood-based boards produced in Japan and impact of formaldehyde emissions during the use stage. Int. J. Life Cycle Assess. 2017, 23, 957–969. [Google Scholar] [CrossRef]
- Piekarski, C.M.; de Francisco, A.C.; da Luz, L.M.; Kovaleski, J.L.; Silva, D.A.L. Life cycle assessment of medium-density fiberboard (MDF) manufacturing process in Brazil. Sci. Total Environ. 2017, 575, 103–111. [Google Scholar] [CrossRef] [PubMed]
- González-García, S.; Ferro, F.S.; Silva, D.A.L.; Feijoo, G.; Lahr, F.A.R.; Moreira, M.T. Cross-country comparison on environmental impacts of particleboard production in Brazil and Spain. Resour. Conserv. Recycl. 2019, 150, 104434. [Google Scholar] [CrossRef]
- Hussain, M.; Malik, R.N.; Taylor, A. Environmental profile analysis of particleboard production: A study in a Pakistani technological condition. Int. J. Life Cycle Assess. 2018, 23, 1542–1561. [Google Scholar] [CrossRef]
- Kouchaki-Penchah, H.; Sharifi, M.; Mousazadeh, H.; Zarea-Hosseinabadi, H.; Nabavi-Pelesaraei, A. Gate to gate life cycle assessment of flat pressed particleboard production in Islamic Republic of Iran. J. Clean. Prod. 2016, 112, 343–350. [Google Scholar] [CrossRef]
- Astari, L.; Belleville, B.; Umemura, K.; Filkov, A.; Ozarska, B.; Crawford, R.H. Determination of physical, mechanical and fire retardancy properties of innovative particleboard made from corn stalk (Zea mays L.) particles. J. Renew. Mater. 2024, 12, 1729–1756. [Google Scholar] [CrossRef]
- Umemura, K.; Sugihara, O.; Kawai, S. Investigation of a new natural adhesive composed of citric acid and sucrose for particleboard. J. Wood Sci. 2013, 59, 203–208. [Google Scholar] [CrossRef]
- Azmi, S.; Suprihatin, S.; Indrasti, N.S.; Romli, M. The Assessment of environmental impact of the chicken meat agroindustry in Indonesia: Life cycle assessment (LCA) perspective. Trop. Anim. Sci. J. 2023, 46, 249–260. [Google Scholar] [CrossRef]
- Lao, W.L.; Chang, L. Comparative life cycle assessment of medium density fiberboard and particleboard: A case study in China. Ind. Crop. Prod. 2023, 205, 117443. [Google Scholar] [CrossRef]
- Kocsis, L.; Hudoba, Z.; Vojtela, T. Investigation of the maize stalk gathering for energetic use. In Proceedings of the International Conference of Agricultural Engineering—CIGR-AgEng, Valencia, Spain, 8–12 July 2012; Available online: https://www.cabidigitallibrary.org/doi/pdf/10.5555/20133223039 (accessed on 25 January 2025).
- Huang, H.; Eckhoff, S.R.; Faulkner, D.B.; Berger, L.L. Harvest date influence on dry matter yield and moisture of corn and stover. Trans. ASABE 2012, 55, 593–598. [Google Scholar] [CrossRef]
- Pordesimo, L.O.; Edens, W.C.; Sokhansanj, S. Distribution of aboveground biomass in corn stover. Biomass Bioenerg 2004, 26, 337–343. [Google Scholar] [CrossRef]
- BMKG. Informasi Prakiraan Potensi Energi. Available online: https://iklim.bmkg.go.id/id/ (accessed on 1 June 2024).
- Kementerian Pertanian Republik Indonesia. Technology Info: Corn Cultivation. Available online: https://ppid.pertanian.go.id/doc/1/budidaya%20jagung.pdf (accessed on 1 June 2024).
- Pramudia, A.; Apriyana, Y.; Adi, S.H.; Kartiwa, B.; Suciantini; Misnawati; Firda, D. Cropping calendar analysis for dry season 2020 in Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2021, 648, 012117. [Google Scholar] [CrossRef]
- Khouya, A. Modelling and analysis of a hybrid solar dryer for woody biomass. Energy 2021, 216, 119287. [Google Scholar] [CrossRef]
- Franch, B.; Cintas, J.; Becker-Reshef, I.; Sanchez-Torres, M.J.; Roger, J.; Skakun, S.; Sobrino, J.A.; Van Tricht, K.; Degerickx, J.; Gilliams, S.; et al. Global crop calendars of maize and wheat in the framework of the WorldCereal project. GISci Remote Sens. 2022, 59, 885–913. [Google Scholar] [CrossRef]
Process | Equipment | |
---|---|---|
Indonesia | Australia | |
Stalk cutting | Hand machete | Hand machete |
Stalk milling | Hammer mill: Pallman Maschinefabrik GmbH & Co. KG, Zweibrüken, Germany, Type PHM 3 Model No. 0101.93.027, 3500 W | Cutting mill: Fritsch Pulverisette, Fritsch GmbH, Idar-Oberstein, Germany, Type 15.302 Model No. 602, 1050 W |
Particle sieving | Built-in shaking machine (Bogor, Indonesia), 1500 W | Shaking machine: Vibro veyor (Melbourne, Australia) Pty. Ltd., 1100 W |
Particle drying | Oven: Memmert GmbH + Co. KG, Schwabach, Germany, Type UF 450-8718.0280, 5800 W | Oven: Thermoline Scientific, Wetherill Park, NSW, Australia, Model TD-500F, 3060 W |
Adhesive dissolving | Hotplate stirrer: IKA C-MAG HS 7, Jakarta, Indonesia, 1020 W | Digital hotplate stirrer: Thermoline Scientific, Wetherill Park, NSW, Australia, Model THS-185, 1050 W |
Mixing of particles and adhesive | Built-in drum mixer: Power 1000 W, Bogor, Indonesia. Air compressor: Krisbow® machine type 10029559, 2200 W, Jakarta, Indonesia | Air compressor: McMillan MC 12 60 L, 2400 W, Melbourne, Australia |
Mixture pre-drying treatment | Oven: Memmert GmbH + Co. KG, Germany, Type UF 450-8718.0280, of 5800 W | Oven: Thermoline Scientific, Wetherill Park, NSW, Australia, Model TD-500F, 3060 W |
Mat hot-pressing | Hot-press machine: Shinto Metal Industri, Ltd., Osaka, Japan, type NF-50HH manufacturing No. 217020, clamping force 50 tons, 6000 W | Hot-press machine: Dake®, Grand Haven, Michigan, USA, type 44-226-2, tonnage: 25 tons, 3600 W |
Particleboard trimming | Wood working machine: Tomita®, Ichinomiya-shi, Japan, 3000 W | Table saw machine: DEWALT®, Type DWE7491-XE, 2000 W, Shanghai, China |
Particleboard Properties | Indonesia | Australia | JIS A 5908:2022-(Type 8) [53] |
---|---|---|---|
| |||
| 0.75 | 0.67 | 0.40–0.90 |
| 46.46 | 62.39 | - |
| 10.00 | 19.90 | 12 max. |
| |||
| 14.74 | 7.47 | 8.0 min. |
| 0.18 | 0.11 | 0.15 min. |
| 436.70 | 321.25 | 300 min. |
Materials and Energy Use | Values | ||
---|---|---|---|
Input | Material | CS particles, kg | 3.64 × 10−1 |
CA powder, kg | 7.26 × 10−2 | ||
Demineralised water, L | 1.23 × 10−1 | ||
Energy * | Electricity: Indonesia, kWh | 238.83 | |
Electricity: Australia, kWh | 126.86 | ||
Transport | Distance: Indonesia, km | 28 | |
Distance: Australia, km | 233 |
Equipment | Indonesia (%) | Australia (%) |
---|---|---|
Milling machine | 0.24 | 0.34 |
Siever | 0.16 | 0.14 |
Oven | 97.14 | 96.49 |
Adhesive mixer | 0.06 | 0.12 |
Drum mixer | 0.11 | 0.32 |
Hot-press | 2.22 | 2.51 |
Trimming machine | 0.06 | 0.08 |
Impact Category | Reference Unit | Indonesian Context | Australian Context | Difference (%) |
---|---|---|---|---|
Terrestrial ecotoxicity (TET) | kg 1,4-DCB | 5.50 × 102 | 6.37 × 102 | 13.66 |
Human non-carcinogenic toxicity (HET) | kg 1,4-DCB | 4.65 × 102 | 4.18 × 102 | 10.02 |
Global warming (GW) | kg CO2 eq | 2.72 × 102 | 2.49 × 102 | 8.64 |
Water consumption (WC) | m3 | 2.50 × 102 | 4.62 × 102 | 45.93 |
Fossil resource scarcity (FRS) | kg oil eq | 7.34 × 101 | 6.86 × 101 | 6.54 |
Marine ecotoxicity (MET) | kg 1,4-DCB | 2.17 × 101 | 2.49 × 101 | 14.01 |
Freshwater ecotoxicity (FET) | kg 1,4-DCB | 1.63 × 101 | 1.90 × 101 | 14.21 |
Human carcinogenic toxicity (HCT) | kg 1,4-DCB | 1.59 × 101 | 1.64 × 101 | 3.05 |
Fine particulate matter formation (PMF) | kg PM2.5 eq | 4.50 × 100 | 2.73 × 10−1 | 94.00 |
Ionising radiation (IR) | kBq Co-60 eq | 2.77 × 100 | 4.86 × 100 | 43.00 |
Terrestrial acidification (TA) | kg SO2 eq | 1.32 × 100 | 8.04 × 10−1 | 39.39 |
Ozone formation, Terrestrial ecosystems (ODT) | kg NOx eq | 8.12 × 10−1 | 4.65 × 10−1 | 42.73 |
Ozone formation, Human Health (ODH) | kg NOx eq | 8.05 × 10−1 | 4.52 × 10−1 | 43.85 |
Land use (LU) | m2a crop eq | 4.45 × 10−1 | 1.88 × 100 | 76.33 |
Freshwater eutrophication (FE) | kg P eq | 3.12 × 10−1 | 2.40 × 10−1 | 23.08 |
Mineral resource scarcity (MRS) | kg Cu eq | 2.79 × 10−1 | 7.93 × 10−1 | 64.82 |
Marine eutrophication (ME) | kg N eq | 5.50 × 10−2 | 1.67 × 10−1 | 67.07 |
Stratospheric ozone depletion (SOD) | kg CFC11 eq | 1.18 × 10−4 | 1.68 × 10−4 | 29.76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Astari, L.; Crawford, R.H.; Umemura, K.; Ozarska, B.; Belleville, B. Life Cycle Analysis of Particleboard Made of Corn Stalk and Citric Acid at Laboratory Scale. Appl. Sci. 2025, 15, 9705. https://doi.org/10.3390/app15179705
Astari L, Crawford RH, Umemura K, Ozarska B, Belleville B. Life Cycle Analysis of Particleboard Made of Corn Stalk and Citric Acid at Laboratory Scale. Applied Sciences. 2025; 15(17):9705. https://doi.org/10.3390/app15179705
Chicago/Turabian StyleAstari, Lilik, Robert H. Crawford, Kenji Umemura, Barbara Ozarska, and Benoit Belleville. 2025. "Life Cycle Analysis of Particleboard Made of Corn Stalk and Citric Acid at Laboratory Scale" Applied Sciences 15, no. 17: 9705. https://doi.org/10.3390/app15179705
APA StyleAstari, L., Crawford, R. H., Umemura, K., Ozarska, B., & Belleville, B. (2025). Life Cycle Analysis of Particleboard Made of Corn Stalk and Citric Acid at Laboratory Scale. Applied Sciences, 15(17), 9705. https://doi.org/10.3390/app15179705