Surface Roughness, Residual Stress, and Optical and Structural Properties of Evaporated VO2 Thin Films Prepared with Different Tungsten Doping Amounts
Abstract
1. Introduction
2. Materials and Methods
2.1. Synthesis of W-Doped VO2 Thin Films with Different Doping Levels
2.2. Structural, Optical, and Stress Characterization of W-Doped VO2 Thin Films
3. Results
3.1. Effect of Tungsten Doping on the Optical Transmittance of VO2 Thin Films
3.2. Residual Stress Measurement
3.3. Surface Roughness Measurement
3.4. Structural Properties of Different W-Doped VO2 Thin Films
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Morin, F.J. Oxides which show a metal-to-insulator transition at the Neel temperature. Phys. Rev. Lett. 1959, 3, 34–36. [Google Scholar] [CrossRef]
- Cao, X.; Chang, T.; Shao, Z.; Xu, F.; Luo, H.; Jin, P. Challenges and Opportunities toward Real Application of VO2-Based Smart Glazing. Matter 2020, 2, 862–881. [Google Scholar] [CrossRef]
- Behera, M.K.; Williams, L.C.; Pradhan, S.K.; Bahoura, M. Reduced transition temperature in Al:Zno/Vo2 based multi-layered device for low powered smart window application. Sci. Rep. 2020, 10, 1824. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Tong, L.; Wang, H.; Liu, G.; Fu, X.; Fan, T. Regulation of phase transition temperature and preparation for doping-VO2 smart thermal control films. J. Appl. Phys. 2022, 131, 085101. [Google Scholar] [CrossRef]
- Okimura, K.; Mian, M.; Yamaguchi, I.; Tsuchiya, T. High luminous transmittance and solar modulation of VO2-based smart windows with SiO2 anti-reflection coatings. Sol. Energy Mater. Sol. Cells 2023, 251, 112162. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, H.; Wan, D. CVD preparation of vertical graphene nanowalls/VO2 (B) composite films with superior thermal sensitivity in uncooled infrared detector. J. Mater. 2020, 6, 280–285. [Google Scholar] [CrossRef]
- Kim, C.Y.; Kim, S.H.; Kim, S.J.; Seok, K. VO2(1 1 0) film formation on TiO2(1 1 0) through post-reduction of ALD grown vanadium oxide. Appl. Surf. Sci. 2014, 313, 368–371. [Google Scholar] [CrossRef]
- Lan, S.D.; Cheng, C.C.; Huang, C.H.; Chen, J.K. Synthesis of sub-10 nm VO2 nanoparticles films with plasma-treated glass slides by aqueous sol–gel method. Appl. Surf. Sci. Part B 2015, 357, 2069–2076. [Google Scholar] [CrossRef]
- Case, F.C. Reactive evaporation of anomalous blue VO2. Appl. Opt. 1987, 26, 1550–1553. [Google Scholar] [CrossRef]
- Gagaoudakis, E.; Michail, G.; Aperathitis, E.; Kortidis, I.; Binas, V.; Panagopoulou, M.; Raptis, Y.S.; Tsoukalas, D.; Kiriakidis, G. Low temperature rf-sputtered thermochromic VO2 films on flexible glass substrates. Adv. Mater. Lett. 2017, 8, 757–761. [Google Scholar] [CrossRef]
- Gagaoudakis, E.; Aperathitis, E.; Michail, G.; Kiriakidis, G.; Binas, V. Sputtered VO2 coatings on commercial glass substrates for smart glazing applications. Sol. Energy Mater. Sol. Cells 2011, 220, 110845. [Google Scholar] [CrossRef]
- Bukhari, S.A.; Kumar, S.; Kumar, P.; Gumfekar, S.P.; Chung, H.J.; Thundat, T.; Goswami, A. The effect of oxygen flow rate on metal–insulator transition (MIT) characteristics of vanadium dioxide (VO2) thin films by pulsed laser deposition (PLD). Appl. Surf. Sci. 2020, 529, 146995. [Google Scholar] [CrossRef]
- Rai, A.; Iacob, N.; Leca, A.; Locovei, C.; Kuncser, V.; Mihailescu, C.N.; Delimitis, A. Microstructural Investigations of VO2 Thermochromic Thin Films Grown by Pulsed Laser Deposition for Smart Windows Applications. Inorganics 2022, 10, 220. [Google Scholar] [CrossRef]
- Vu, T.D.; Chen, Z.; Zeng, X.; Jiang, M.; Liu, S.; Gao, Y.; Long, Y. Physical vapour deposition of vanadium dioxide for thermochromic smart window applications. J. Mater. Chem. C 2019, 7, 2109–2458. [Google Scholar] [CrossRef]
- Ping, J.; Sakae, T. Relationship between Transition Temperature and x in V1-xWxO2 Films Deposited by Dual-Target Magnetron Sputtering. Jpn. J. Appl. Phys. 1995, 34, 2459–2460. [Google Scholar]
- Lee, M.H.; Kim, M.G. RTA and stoichiometry effect on the thermochromism of VO2 thin films. Thin Solid Film. 1996, 286, 219–222. [Google Scholar] [CrossRef]
- Tsai, K.Y.; Chin, T.S.; Shieh, H.P.D.; Ma, C.H. Effect of as-deposited residual stress on transition temperatures of VO2 thin films. J. Mater. Res. 2011, 19, 2306–2314. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.; Yan, X.; Dou, S.; Li, Y.; Wang, L. Effects of Film Thickness on the Residual Stress of Vanadium Dioxide Thin Films Grown by Magnetron Sputtering. Materials 2023, 16, 5093. [Google Scholar] [CrossRef]
- Lu, H.; Li, L.; Tang, Z.; Xu, M.; Zheng, Y.; Becker, M.; Lu, Y.; Li, M.; Li, P.; Zhang, Z.; et al. Correlation of metal-to-insulator transition and strain state of VO2 thin films on TiO2 (110) substrates. Appl. Phys. Lett. 2023, 123, 042103. [Google Scholar] [CrossRef]
- Rajeswaran, B.R.; Umarji, A.M. Effect of W addition on the electrical switching of VO2 thin films. AIP Adv. 2016, 6, 035215. [Google Scholar] [CrossRef]
- Choi, S.; Ahn, G.; Moon, S.J.; Lee, S. Tunable resistivity of correlated VO2(A) and VO2(B) via tungsten doping. Sci. Rep. 2020, 10, 18044. [Google Scholar] [CrossRef]
- Ding, X.; Li, Y. Sol-Gel Derived Tungsten Doped VO2 Thin Films on Si Substrate with Tunable Phase Transition Properties. Molecules 2023, 28, 3778. [Google Scholar] [CrossRef]
- Tien, C.L.; Chiang, C.Y.; Wang, C.C.; Lin, S.C. Optical, electrical, structural and thermo-mechanical properties of undoped and tungsten-doped vanadium dioxide thin films. Materials 2024, 17, 2382. [Google Scholar] [CrossRef] [PubMed]
- Tien, C.L.; Chiang, C.Y.; Wang, C.C.; Lin, S.C. Temperature-dependent Residual Stresses and Thermal Expansion Coefficient of Vanadium Dioxide Thin Films. Inventions 2024, 9, 61. [Google Scholar] [CrossRef]
- Dou, S.; Zhang, W.; Wang, Y.; Tian, Y.; Wang, Y.; Zhang, X.; Zhang, L.; Wang, L.; Zhao, J.; Li, Y. A facile method for the preparation of W-doped VO2 films with lowered phase transition temperature, narrowed hysteresis loops and excellent cycle stability. Mater. Chem. Phys. 2018, 215, 91–98. [Google Scholar] [CrossRef]
- Ji, H.; Liu, D.; Cheng, H. Infrared optical modulation characteristics of W-doped VO2(M) nanoparticles in the MWIR and LWIR regions. Mater. Sci. Semicond. Process. 2020, 119, 105141. [Google Scholar] [CrossRef]
- Bhupathi, S.; Wang, S.; Ke, Y.; Long, Y. Recent progress in vanadium dioxide: The multi-stimuli responsive material and its applications. Mater. Sci. Eng. 2023, 155, 100747. [Google Scholar] [CrossRef]
- Outón, J.; Casas-Acuña, A.; Domínguez, M.; Blanco, E.; Delgado, J.J.; Ramírez-del-Solar, M. Novel laser texturing of W-doped VO2 thin film for the improvement of luminous transmittance in smart windows application. Appl. Surf. Sci. 2023, 608, 155180. [Google Scholar] [CrossRef]
- Tien, C.L.; Yu, K.C.; Tsai, T.Y.; Lin, C.S.; Li, C.Y. Measurement of surface roughness of thin films by a hybrid interference microscope with different phase algorithms. Appl. Opt. 2014, 53, H213–H219. [Google Scholar] [CrossRef]
- Bleu, Y.; Bourquard, F.; Barnier, V.; Loir, A.S.; Garrelie, F.; Donnet, C. Towards Room Temperature Phase Transition of W-Doped VO2 Thin Films Deposited by Pulsed Laser Deposition: Thermochromic, Surface, and Structural Analysis. Materials 2023, 16, 461. [Google Scholar] [CrossRef]
- Begara, F.U.; Crunteanu, A.; Raskina, J.P. Raman and XPS characterization of vanadium oxide thin films with temperature. Appl. Surf. Sci. 2017, 403, 717–727. [Google Scholar] [CrossRef]
- Gomez-Heredia, C.L.; Ramirez-Rincon, J.A.; Bhardwaj, D.; Rajasekar, P.; Tadeo, I.J.; Cervantes-Lopez, J.L.; Ordonez-Miranda, J.; Ares, O.; Umarji, A.M.; Drevillon, J.; et al. Measurement of the hysteretic thermal properties of W-doped and undoped nanocrystalline powders of VO2. Sci. Rep. 2019, 9, 14687. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tien, C.-L.; Chiang, C.-Y.; Wang, Y.-L.; Wang, C.-C.; Lin, S.-C. Surface Roughness, Residual Stress, and Optical and Structural Properties of Evaporated VO2 Thin Films Prepared with Different Tungsten Doping Amounts. Appl. Sci. 2025, 15, 9457. https://doi.org/10.3390/app15179457
Tien C-L, Chiang C-Y, Wang Y-L, Wang C-C, Lin S-C. Surface Roughness, Residual Stress, and Optical and Structural Properties of Evaporated VO2 Thin Films Prepared with Different Tungsten Doping Amounts. Applied Sciences. 2025; 15(17):9457. https://doi.org/10.3390/app15179457
Chicago/Turabian StyleTien, Chuen-Lin, Chun-Yu Chiang, Yi-Lin Wang, Ching-Chiun Wang, and Shih-Chin Lin. 2025. "Surface Roughness, Residual Stress, and Optical and Structural Properties of Evaporated VO2 Thin Films Prepared with Different Tungsten Doping Amounts" Applied Sciences 15, no. 17: 9457. https://doi.org/10.3390/app15179457
APA StyleTien, C.-L., Chiang, C.-Y., Wang, Y.-L., Wang, C.-C., & Lin, S.-C. (2025). Surface Roughness, Residual Stress, and Optical and Structural Properties of Evaporated VO2 Thin Films Prepared with Different Tungsten Doping Amounts. Applied Sciences, 15(17), 9457. https://doi.org/10.3390/app15179457