Sustainable Shell Structures: A Bibliometric and Critical Review of Buckling Behavior and Material-Efficient Design Strategies
Abstract
1. Introduction
2. Bibliometric Analysis of Sustainable Shell Structures Research
- 14 articles were excluded, as only English articles were considered;
- 6 of the articles were excluded: retracted publications (n = 2), letters (n = 2), and editorial materials (n = 2). Only the following document types were considered: article, proceeding paper, early access, book chapter, review article, and correction;
- 23 documents were manually excluded because neither the title nor the abstract contained the searched terms.
3. Buckling Behavior of Shell Structures
3.1. Classical Theories and Advancements for Composite Materials
3.2. Analytical, Experimental, and Numerical Approaches
3.3. The Critical Role of Imperfections in Buckling
3.4. Advances in Shell Buckling Theories and Sustainability-Oriented Implications
4. Material-Efficient Design Strategies
4.1. Optimization Tools (Topology, Shape, Multi-Objective)
4.2. Advanced Structural Modeling Techniques (FEA, AI/ML, Digital Twins)
5. Integration of Recycled and Bio-Based Materials
5.1. Recycled Materials in Shell Structures
5.2. Bio-Based Materials in Shell Structures
6. Results of Bibliometric Analysis
7. Research Gaps and Future Directions
7.1. Performance-Based Design for Shell Structures
7.2. Advanced Materials and Manufacturing Technologies
7.3. Enhanced Computational Methods and Simulation
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ramm, E.; Bletzinger, K.-U.; Reitinger, R. Shape Optimization of Shell Structures. Rev. Eur. Éléments Finis 1993, 2, 377–398. [Google Scholar] [CrossRef]
- Ochsendorf, J.A. Sustainable Engineering: The Future of Structural Design. In Proceedings of the Structures Congress 2005, American Society of Civil Engineers, New York, NY, USA, 18 April 2005; pp. 1–9. [Google Scholar]
- Tomei, V.; Grande, E.; Imbimbo, M. A Novel Optimization Approach for the Design of Environmentally Efficient Gridshells with Reclaimed Steel Members. Adv. Eng. Softw. 2025, 200, 103825. [Google Scholar] [CrossRef]
- Alam, M.I.; Pandit, M.K.; Pradhan, A.K. In-Plane Load Induced Buckling Behavior of Laminated Doubly Curved Shells Based on a Modified Higher Order Zigzag Theory. Mech. Based Des. Struct. Mach. 2025, 1–25. [Google Scholar] [CrossRef]
- Kim, S.-E.; Kim, C.-S. Buckling Strength of the Cylindrical Shell and Tank Subjected to Axially Compressive Loads. Thin-Walled Struct. 2002, 40, 329–353. [Google Scholar] [CrossRef]
- Teng, J.G.; Rotter, J.M. Buckling of Thin Metal Shells; Taylor&Francis e-Library: Tokyo, Japan, 2005. [Google Scholar]
- Tănase, M. A Comprehensive Synthesis on Analytical Algorithms for Assessing Elastic Buckling Loads of Thin-Walled Isotropic and Laminated Cylindrical Shells. Processes 2024, 12, 2120. [Google Scholar] [CrossRef]
- Khalil, M.; Ruggieri, S.; Uva, G. Assessment of Structural Behavior, Vulnerability, and Risk of Industrial Silos: State-of-the-Art and Recent Research Trends. Appl. Sci. 2022, 12, 3006. [Google Scholar] [CrossRef]
- Fazlalipour, N.; Ghanbari-Ghazijahani, T.; Showkati, H. A Review of Buckling Capacity of Steel Cylindrical Shells under External Pressure: Reinforcements and Imperfections (2005–Present). Thin-Walled Struct. 2025, 217, 113475. [Google Scholar] [CrossRef]
- Kuruşcu, A.O.; Girgin, Z.C. Efficiency of Structural Materials in Sustainable Design. J. Civ. Eng. Archit. 2014, 8, 1260–1265. Available online: https://www.davidpublisher.com/Public/uploads/Contribute/554736cec5198.pdf (accessed on 1 May 2025).
- Rao, P.A.; Rahman, M.M.; Duraman, S.B. Adopting Circular Economy in Construction: A Review. Front. Built Environ. 2025, 11, 1519219. [Google Scholar] [CrossRef]
- Hutchinson, J.W. Plastic Buckling. In Advances in Applied Mechanics; Elsevier: Amsterdam, The Netherlands, 1974; Volume 14, pp. 67–144. ISBN 978-0-12-002014-0. [Google Scholar]
- Abdi, B.; Mozafari, H.; Amran, A.; Kohandel, R.; Alibeigloo, A. Buckling Behavior of Optimal Laminated Composite Cylindrical Shells Subjected to Axial Compression and External Pressure. Appl. Mech. Mater. 2011, 121–126, 48–54. [Google Scholar] [CrossRef]
- Tănase, M.; Lvov, G. Analytical and Numerical Study of the Buckling of Steel Cylindrical Shells Reinforced with Internal and External FRP Layers under Axial Compression. Comput. Model. Eng. Sci. 2025, 144, 717–737. [Google Scholar] [CrossRef]
- Tănase, M. A Multifaceted Analysis and Optimization of FRP-Strengthened Metallic Thin-Walled Cylindrical Shells Subjected to a Uniform External Pressure: Integrating Analytical, Numerical, and Statistical Approaches. Mech. Compos. Mater. 2025, 60, 1043–1058. [Google Scholar] [CrossRef]
- Kreja, I.; Schmidt, R.; Reddy, J.N. Finite Elements Based on a First-Order Shear Deformation Moderate Rotation Shell Theory with Applications to the Analysis of Composite Structures. Int. J. Non-Linear Mech. 1997, 32, 1123–1142. [Google Scholar] [CrossRef]
- Kreja, I.; Schmidt, R. Large Rotations in First-Order Shear Deformation FE Analysis of Laminated Shells. Int. J. Non-Linear Mech. 2006, 41, 101–123. [Google Scholar] [CrossRef]
- Bhaskar, K.; Varadan, T.K. Refinement of Higher-Order Laminated Plate Theories. AIAA J. 1989, 27, 1830–1831. [Google Scholar] [CrossRef]
- Frostig, Y. Buckling of Sandwich Panels with a Flexible Core—High-Order Theory. Int. J. Solids Struct. 1998, 35, 183–204. [Google Scholar] [CrossRef]
- Pandya, B.N.; Kant, T. Finite Element Analysis of Laminated Composite Plates Using a Higher-Order Displacement Model. Compos. Sci. Technol. 1988, 32, 137–155. [Google Scholar] [CrossRef]
- Lo, K.H.; Christensen, R.M.; Wu, E.M. A High-Order Theory of Plate Deformation—Part 2: Laminated Plates. J. Appl. Mech. 1977, 44, 669–676. [Google Scholar] [CrossRef]
- Reddy, J.N.; Liu, C.F. A Higher-Order Shear Deformation Theory of Laminated Elastic Shells. Int. J. Eng. Sci. 1985, 23, 319–330. [Google Scholar] [CrossRef]
- Reddy, J.N. A Simple Higher-Order Theory for Laminated Composite Plates. J. Appl. Mech. 1984, 51, 745–752. [Google Scholar] [CrossRef]
- Whitney, J.M. The Effect of Transverse Shear Deformation on the Bending of Laminated Plates. J. Compos. Mater. 1969, 3, 534–547. [Google Scholar] [CrossRef]
- Reddy, J.N. Mechanics of Laminated Composite Plates and Shells, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2003; ISBN 978-0-429-21069-3. [Google Scholar]
- Di Sciuva, M. Bending, Vibration and Buckling of Simply Supported Thick Multilayered Orthotropic Plates: An Evaluation of a New Displacement Model. J. Sound Vib. 1986, 105, 425–442. [Google Scholar] [CrossRef]
- Murakami, H. Laminated Composite Plate Theory With Improved In-Plane Responses. J. Appl. Mech. 1986, 53, 661–666. [Google Scholar] [CrossRef]
- Robbins, D.H.; Reddy, J.N. Modelling of Thick Composites Using a Layerwise Laminate Theory. Numer. Meth. Eng. 1993, 36, 655–677. [Google Scholar] [CrossRef]
- Carrera, E.; Valvano, S.; Filippi, M. Classical, Higher-Order, Zig-Zag and Variable Kinematic Shell Elements for the Analysis of Composite Multilayered Structures. Eur. J. Mech.—A/Solids 2018, 72, 97–110. [Google Scholar] [CrossRef]
- Carrera, E. Historical Review of Zig-Zag Theories for Multilayered Plates and Shells. Appl. Mech. Rev. 2003, 56, 287–308. [Google Scholar] [CrossRef]
- Carrera, E. Theories and Finite Elements for Multilayered, Anisotropic, Composite Plates and Shells. Arch. Comput. Methods Eng. 2002, 9, 87–140. [Google Scholar] [CrossRef]
- Cho, M.; Kim, K.-O.; Kim, M.-H. Efficient Higher-Order Shell Theory for Laminated Composites. Compos. Struct. 1996, 34, 197–212. [Google Scholar] [CrossRef]
- Alam, M.I.; Pandit, M.K.; Pradhan, A.K. A Modified Higher-Order Zigzag Theory for Predicting Flexural Behavior of Laminated Composite and Sandwich Shell. Mech. Adv. Mater. Struct. 2024, 31, 6434–6449. [Google Scholar] [CrossRef]
- Alam, M.I.; Pandit, M.K.; Pradhan, A.K. Calculation of Natural Frequencies of Doubly Curved Laminated Shells Using a Modified Higher Order Zigzag Theory. Thin-Walled Struct. 2024, 201, 112007. [Google Scholar] [CrossRef]
- Li, Z.; Cao, Y.; Pan, G. Influence of Geometric Imperfections on the Axially Loaded Composite Conical Shells with and without Cutout. AIP Adv. 2020, 10, 095106. [Google Scholar] [CrossRef]
- Xin, R.; Le, V.T.; Goo, N.S. Buckling Identification in Composite Cylindrical Shells with Measured Imperfections Using a Multi-DIC Method and Finite Element Analysis. Thin-Walled Struct. 2022, 177, 109436. [Google Scholar] [CrossRef]
- Wagner, H.N.R.; Hühne, C.; Janssen, M. Buckling of Cylindrical Shells under Axial Compression with Loading Imperfections: An Experimental and Numerical Campaign on Low Knockdown Factors. Thin-Walled Struct. 2020, 151, 106764. [Google Scholar] [CrossRef]
- Lo Frano, R.; Forasassi, G. Experimental Evidence of Imperfection Influence on the Buckling of Thin Cylindrical Shell under Uniform External Pressure. Nucl. Eng. Des. 2009, 239, 193–200. [Google Scholar] [CrossRef]
- Hutchinson, J.W.; Tennyson, R.C.; Muggeridge, D.B. Effect of a Local Axisymmetric Imperfection on the Buckling Behaviorof a Circular Cylindrical Shell under Axial Compression. AIAA J. 1971, 9, 48–52. [Google Scholar] [CrossRef]
- Huy Bich, D.; Van Dung, D.; Nam, V.H.; Thi Phuong, N. Nonlinear Static and Dynamic Buckling Analysis of Imperfect Eccentrically Stiffened Functionally Graded Circular Cylindrical Thin Shells under Axial Compression. Int. J. Mech. Sci. 2013, 74, 190–200. [Google Scholar] [CrossRef]
- White, S.C. Post-Buckling of Variable-Stiffness Shell Structures. Ph.D. Thesis, University of Bristol, Bristol, UK, 2015. [Google Scholar]
- Qatu, M.S. Recent Research Advances in the Dynamic Behavior of Shells: 1989–2000, Part 2: Homogeneous Shells. Appl. Mech. Rev. 2002, 55, 415–434. [Google Scholar] [CrossRef]
- Donnell, L.H. A New Theory for the Buckling of Thin Cylinders Under Axial Compression and Bending; Guggenheim Aeronautical Laboratory: Blvd, CA, USA, 1934. [Google Scholar]
- Flügge, W. Die Stabilität der Kreiszylinderschale. Ing. Arch. 1932, 3, 463–506. [Google Scholar] [CrossRef]
- Stein, M. The Influence of Prebuckling Deformations and Stresses on the Buckling of Perfect Cylinders; National Aeronautics and Space Administration: Washington, DC, USA, 1964. [Google Scholar]
- Hoff, N.J.; Soong, T.-C. Buckling of Circular Cylindrical Shells in Axial Compression. Int. J. Mech. Sci. 1965, 7, 489–520. [Google Scholar] [CrossRef]
- Hoff, N.J.; Rehfield, L.W. Buckling of Axially Compressed Circular Cylindrical Shells at Stresses Smaller Than the Classical Critical Value. J. Appl. Mech. 1965, 32, 542–546. [Google Scholar] [CrossRef]
- Iandiorio, C.; Salvini, P. A Geometrically Nonlinear Shell Theory for Thin-Walled Tubes and Beams Subjected to Large Displacements and Cross-Section Deformation. Thin-Walled Struct. 2025, 216, 113583. [Google Scholar] [CrossRef]
- Chang, H.; Wang, L.; Hu, Y.; Kang, C.; Shen, K.; Zhang, J. Analytical, Experimental, and Numerical Analyses of the Buckling of Composite Ring-Stiffened Steel Cylinders. Thin-Walled Struct. 2025, 212, 113175. [Google Scholar] [CrossRef]
- Azad, A.I.; Burgueño, R. Semi-Analytical Model to Predict the Elastic Post-Buckling Response of Axially Compressed Cylindrical Shells With Tailored Distributed Stiffness. J. Appl. Mech. 2021, 88, 091006. [Google Scholar] [CrossRef]
- Cheremnykh, S.V.; Sokolov, S.A. A Solution to the Problem of Stability of Thin-Walled Steel Cylindrical Shells. Vestn. MGSU 2021, 16, 577–586. [Google Scholar] [CrossRef]
- Carlson, R.L.; Sendelbeck, R.L.; Hoff, N.J. Experimental Studies of the Buckling of Complete Spherical Shells: The Buckling Behavior of Electroformed Spherical Shells under Uniform External Pressure Is Examined in Rigid and Soft Testing Systems. Exp. Mech. 1967, 7, 281–288. [Google Scholar] [CrossRef]
- Homewood, R.H.; Brine, A.C.; Johnson, A.E. Experimental Investigation of the Buckling Instability of Monocoque Shells: Authors Present the Results of Two Investigations Conducted to Determine the Buckling Instability of Basic Structural Shapes Considered for Missile Re-Entry Vehicle Applications. Exp. Mech. 1961, 1, 88–96. [Google Scholar] [CrossRef]
- Tsien, H.-S. A Theory for the Buckling of Thin Shells. J. Aeronaut. Sci. 1942, 9, 373–384. [Google Scholar] [CrossRef]
- Lee, A.; López Jiménez, F.; Marthelot, J.; Hutchinson, J.W.; Reis, P.M. The Geometric Role of Precisely Engineered Imperfections on the Critical Buckling Load of Spherical Elastic Shells. J. Appl. Mech. 2016, 83, 111005. [Google Scholar] [CrossRef]
- Sun, Z.; Lei, Z.; Bai, R.; Zhang, C. Numerical and Experimental Study of Buckling Behavior of a Composite Hat-Stiffened Panel under in-Plane Shear. J. Phys. Conf. Ser. 2020, 1699, 012037. [Google Scholar] [CrossRef]
- Sun, K.; Gao, W.; Zou, X.; Zhang, X.; Liu, G. An Experimental Study on the Buckling Behavior of Composite Stiffened Panel under the Combined Load of Compression and Shear Using the Digital Image Correlation (DIC) Technique. Russ. J. Nondestruct. Test. 2024, 60, 1420–1433. [Google Scholar] [CrossRef]
- Shadmehri, F.; Hoa, S.V. Digital Image Correlation Applications in Composite Automated Manufacturing, Inspection, and Testing. Appl. Sci. 2019, 9, 2719. [Google Scholar] [CrossRef]
- Sun, W.; Zhu, T.; Li, F.; Lin, G. Digital Image Correlation-Aided Non-Destructive Buckling Load Prediction of Cylindrical Shells. Int. J. Solids Struct. 2022, 254–255, 111941. [Google Scholar] [CrossRef]
- Han, H.; Dong, C. Buckling Analysis for Carbon and Glass Fibre Reinforced Hybrid Composite Stiffened Panels. J. Compos. Sci. 2024, 8, 34. [Google Scholar] [CrossRef]
- Bisagni, C. Numerical Analysis and Experimental Correlation of Composite Shell Buckling and Post-Buckling. Compos. Part B Eng. 2000, 31, 655–667. [Google Scholar] [CrossRef]
- Tillotson Rudd, M.; Schultz, M.R.; Gardner, N.W.; Kosztowny, C.J.R.; Bisagni, C. Experimental Validation of the Buckling Behavior of Unreinforced and Reinforced Composite Conical-Cylindrical Shells for Launch-Vehicles. Compos. Struct. 2024, 349–350, 118493. [Google Scholar] [CrossRef]
- Gnanasekar, S.; Rajamohan, V. Numerical and Experimental Investigations on Nonlinear Buckling Response of a Laminated Composite Shell. Int. J. Appl. Mech. 2022, 14, 2250078. [Google Scholar] [CrossRef]
- Krishna, G.V.; Narayanamurthy, V.; Viswanath, C. Buckling Behaviour of FRP Strengthened Cylindrical Metallic Shells with Cut-Outs. Compos. Struct. 2022, 300, 116176. [Google Scholar] [CrossRef]
- Ravulapalli, V.; Raju, G.; Narayanamurthy, V. Experimental and Numerical Studies on the Elasto-Plastic Buckling Response of Cylindrical Shells with Spigot Support under Axial Compression. Thin-Walled Struct. 2023, 191, 111095. [Google Scholar] [CrossRef]
- Rafiee, M.; Amoushahi, H.; Hejazi, M. Experimental and Numerical Buckling Analysis of Thin Stiffened GFRPs with Arbitrarily Located Stiffeners. Mech. Based Des. Struct. Mach. 2023, 51, 2251–2278. [Google Scholar] [CrossRef]
- Riks, E.; Rankin, C.C.; Brogan, F.A. On the Solution of Mode Jumping Phenomena in Thin-Walled Shell Structures. Comput. Methods Appl. Mech. Eng. 1996, 136, 59–92. [Google Scholar] [CrossRef]
- Li, Z.; Pan, G.; Shen, K. Imperfection Sensitivity Analysis for a Composite Bowed-out Shell under Axial Compression. Adv. Mech. Eng. 2019, 11, 1687814019889743. [Google Scholar] [CrossRef]
- Petreli, A.S.; Tsouvalis, N.G. A Parametric Study of the Effect of Geometric Imperfections on the Buckling Behaviour of Composite Laminated Cylinders. Adv. Compos. Lett. 2002, 11, 096369350201100302. [Google Scholar] [CrossRef]
- Tsouvalis, N.G.; Zafeiratou, A.A.; Papazoglou, V.J. The Effect of Geometric Imperfections on the Buckling Behaviour of Composite Laminated Cylinders under External Hydrostatic Pressure. Compos. Part B Eng. 2003, 34, 217–226. [Google Scholar] [CrossRef]
- Montazeri, S.M.; Saber-Samandari, S.; Vanini, S.A.S. Thermal Buckling Analysis of Reinforced Composite Conical Shells in Acidic Environments: Numerical and Experimental Investigation on the Effects of Nanoparticles. Heliyon 2024, 10, e37443. [Google Scholar] [CrossRef]
- Helal, M.; Huang, H.; Wang, D.; Fathallah, E. Numerical Analysis of Sandwich Composite Deep Submarine Pressure Hull Considering Failure Criteria. J. Mar. Sci. Eng. 2019, 7, 377. [Google Scholar] [CrossRef]
- Barathan, V.; Rajamohan, V. Nonlinear Buckling Analysis of a Sandwich Composite Semi-Ellipsoidal Shell under Hydrostatic Pressure: A Numerical and Experimental Investigation. Mech. Adv. Mater. Struct. 2024, 31, 438–452. [Google Scholar] [CrossRef]
- Hilburger, M.W.; Starnes, J.H. Effects of Imperfections on the Buckling Response of Compression-Loaded Composite Shells. Int. J. Non-Linear Mech. 2002, 37, 623–643. [Google Scholar] [CrossRef]
- Ismail, M.S.; Mahmud, J.; Jailani, A. Buckling of an Imperfect Spherical Shell Subjected to External Pressure. Ocean Eng. 2023, 275, 114118. [Google Scholar] [CrossRef]
- Hutchinson, J.W.; Thompson, J.M.T. Imperfections and Energy Barriers in Shell Buckling. Int. J. Solids Struct. 2018, 148–149, 157–168. [Google Scholar] [CrossRef]
- Li, S.; Georgiadis, D.G.; Kim, D.K.; Samuelides, M.S. A Comparison of Geometric Imperfection Models for Collapse Analysis of Ship-Type Stiffened Plated Grillages. Eng. Struct. 2022, 250, 113480. [Google Scholar] [CrossRef]
- Ifayefunmi, O.; Ismail, M.S. An Overview of Buckling and Imperfection of Cone-Cylinder Transition under Various Loading Condition. Lat. Am. J. Solids Struct. 2020, 17, e329. [Google Scholar] [CrossRef]
- Jansseune, A.; De Corte, W.; Belis, J. Imperfection Sensitivity of Locally Supported Cylindrical Silos Subjected to Uniform Axial Compression. Int. J. Solids Struct. 2016, 96, 92–109. [Google Scholar] [CrossRef]
- Ifayefunmi, O. Plastic Buckling of Axially Compressed Thick Unstiffened Steel Cones. Ocean Eng. 2015, 103, 1–9. [Google Scholar] [CrossRef]
- Ifayefunmi, O.; Błachut, J. Instabilities in Imperfect Thick Cones Subjected to Axial Compression and External Pressure. Mar. Struct. 2013, 33, 297–307. [Google Scholar] [CrossRef]
- Singer, J.; Baruch, M.; Harari, O. On the Stability of Eccentrically Stiffened Cylindrical Shells under Axial Compression. Int. J. Solids Struct. 1967, 3, 445–470. [Google Scholar] [CrossRef]
- Hutchinson, J.W. Buckling of Spherical Shells Revisited. Proc. R. Soc. A 2016, 472, 20160577. [Google Scholar] [CrossRef]
- Sitohang, R.D.R.; Grouve, W.J.B.; Warnet, L.L.; Akkerman, R. Effect of In-Plane Fiber Waviness Defects on the Compressive Properties of Quasi-Isotropic Thermoplastic Composites. Compos. Struct. 2021, 272, 114166. [Google Scholar] [CrossRef]
- Drummer, J.; Tafesh, F.; Fiedler, B. Effect of Fiber Misalignment and Environmental Temperature on the Compressive Behavior of Fiber Composites. Polymers 2023, 15, 2833. [Google Scholar] [CrossRef]
- Singer, J.; Arbocz, J.; Weller, T. Buckling Experiments: Experimental Methods in Buckling of Thin-Walled Structures: Shells, Built-Up Structures, Composites and Additional Topics, 1st ed.; Wiley: Hoboken, NJ, USA, 2002; ISBN 978-0-471-97450-5. [Google Scholar]
- Wagner, H.N.R.; Petersen, E.; Khakimova, R.; Hühne, C. Buckling Analysis of an Imperfection-Insensitive Hybrid Composite Cylinder under Axial Compression—Numerical Simulation, Destructive and Non-Destructive Experimental Testing. Compos. Struct. 2019, 225, 111152. [Google Scholar] [CrossRef]
- Iurlaro, L.; Gherlone, M.; Di Sciuva, M.; Tessler, A. Assessment of the Refined Zigzag Theory for Bending, Vibration, and Buckling of Sandwich Plates: A Comparative Study of Different Theories. Compos. Struct. 2013, 106, 777–792. [Google Scholar] [CrossRef]
- Abramian, A.; Virot, E.; Lozano, E.; Rubinstein, S.M.; Schneider, T.M. Nondestructive Prediction of the Buckling Load of Imperfect Shells. Phys. Rev. Lett. 2020, 125, 225504. [Google Scholar] [CrossRef]
- Turvey, G.J.; Marshall, I.H. Buckling and Postbuckling of Composite Plates; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; ISBN 978-94-011-1228-4. [Google Scholar]
- Kepple, J.; Herath, M.; Pearce, G.; Prusty, G.; Thomson, R.; Degenhardt, R. Improved Stochastic Methods for Modelling Imperfections for Buckling Analysis of Composite Cylindrical Shells. Eng. Struct. 2015, 100, 385–398. [Google Scholar] [CrossRef]
- Majumder, R.; Mishra, S.K.; Chakraborty, S. A Reliability-Based Design against Post-Buckling Load Drop in Spherical Shell Cap with Stochastic Imperfections. Int. J. Non-Linear Mech. 2024, 165, 104794. [Google Scholar] [CrossRef]
- Liang, K.; Sun, Q.; Liu, X. Investigation on Imperfection Sensitivity of Composite Cylindrical Shells Using the Nonlinearity Reduction Technique and the Polynomial Chaos Method. Acta Astronaut. 2018, 146, 349–358. [Google Scholar] [CrossRef]
- Baumgarten, L.; Kierfeld, J. Shallow Shell Theory of the Buckling Energy Barrier: From the Pogorelov State to Softening and Imperfection Sensitivity Close to the Buckling Pressure. Phys. Rev. E 2019, 99, 022803. [Google Scholar] [CrossRef]
- Moroni, G.; Forcael, E. Structural Shape Optimization for Reducing Embodied Carbon by Integrating Optimization Processes at the Early Stages of Truss Structural Design. Buildings 2025, 15, 877. [Google Scholar] [CrossRef]
- Luo, Y.-R.; Hewson, R.; Santer, M. Topology Optimisation of Fibre-Reinforced Composites Accounting for Buckling Resistance and Manufacturability. Struct. Multidisc Optim. 2024, 67, 172. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhan, K.; Xia, J.; Zhao, M. Topology Optimization for Minimum Compliance with Material Volume and Buckling Constraints under Design-Dependent Loads. Appl. Sci. 2023, 13, 646. [Google Scholar] [CrossRef]
- Lindgaard, E.; Lund, E.; Rasmussen, K. Nonlinear Buckling Optimization of Composite Structures Considering “Worst” Shape Imperfections. Int. J. Solids Struct. 2010, 47, 3186–3202. [Google Scholar] [CrossRef]
- Mengesha, G. Design Optimization in Structural Engineering: A Systematic Review of Computational Techniques and Real-World Applications. SSRN J. 2025, 9, 1–19. [Google Scholar] [CrossRef]
- Damasevicius, R. Patterns in Heuristic Optimization Algorithms: A Comprehensive Analysis. Comput. Mater. Contin. 2025, 82, 1493–1538. [Google Scholar] [CrossRef]
- Li, P.; Zhao, X.; Ding, D.; Li, X.; Zhao, Y.; Ke, L.; Zhang, X.; Jian, B. Optimization Design for Steel Trusses Based on a Genetic Algorithm. Buildings 2023, 13, 1496. [Google Scholar] [CrossRef]
- Coello, C.A.; Christiansen, A.D. Multiobjective Optimization of Trusses Using Genetic Algorithms. Comput. Struct. 2000, 75, 647–660. [Google Scholar] [CrossRef]
- Liu, J.; Xia, Y. A Hybrid Intelligent Genetic Algorithm for Truss Optimization Based on Deep Neutral Network. Swarm Evol. Comput. 2022, 73, 101120. [Google Scholar] [CrossRef]
- Luh, G.-C.; Lin, C.-Y. Optimal Design of Truss-Structures Using Particle Swarm Optimization. Comput. Struct. 2011, 89, 2221–2232. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, J.; Chen, F.; Sun, M. An Improved Particle Swarm Optimization for Wind Resistance Performance Design of High-Rise Buildings. Adv. Wind. Eng. 2025, 2, 100053. [Google Scholar] [CrossRef]
- Paya-Zaforteza, I.; Yepes, V.; Hospitaler, A.; González-Vidosa, F. CO2-Optimization of Reinforced Concrete Frames by Simulated Annealing. Eng. Struct. 2009, 31, 1501–1508. [Google Scholar] [CrossRef]
- Park, H.S.; Won Sung, C. Optimization of Steel Structures Using Distributed Simulated Annealing Algorithm on a Cluster of Personal Computers. Comput. Struct. 2002, 80, 1305–1316. [Google Scholar] [CrossRef]
- Leite, J.P.B.; Topping, B.H.V. Parallel Simulated Annealing for Structural Optimization. Comput. Struct. 1999, 73, 545–564. [Google Scholar] [CrossRef]
- Tang, T.; Wang, L.; Zhu, M.; Zhang, H.; Dong, J.; Yue, W.; Xia, H. Topology Optimization: A Review for Structural Designs Under Statics Problems. Materials 2024, 17, 5970. [Google Scholar] [CrossRef] [PubMed]
- Yarlagadda, T.; Zhang, Z.; Jiang, L.; Bhargava, P.; Usmani, A. Solid Isotropic Material with Thickness Penalization—A 2.5D Method for Structural Topology Optimization. Comput. Struct. 2022, 270, 106857. [Google Scholar] [CrossRef]
- Briseghella, B.; Fenu, L.; Lan, C.; Mazzarolo, E.; Zordan, T. Application of Topological Optimization to Bridge Design. J. Bridge Eng. 2013, 18, 790–800. [Google Scholar] [CrossRef]
- Ho-Nguyen-Tan, T.; Kim, H.-G. An Efficient Method for Shape and Topology Optimization of Shell Structures. Struct. Multidisc Optim. 2022, 65, 119. [Google Scholar] [CrossRef]
- Cao, Z.; Wang, Z.; Zhao, L.; Fan, F.; Sun, Y. Multi-Constraint and Multi-Objective Optimization of Free-Form Reticulated Shells Using Improved Optimization Algorithm. Eng. Struct. 2022, 250, 113442. [Google Scholar] [CrossRef]
- Vatandoost, M.; Golabchi, M.; Ekhlassi, A.; Rahbar, M. Topology and Thickness Optimization of Concrete Thin Shell Structures Based on Weight, Deflection, and Strain Energy. Int. J. Eng. 2024, 37, 1369–1383. [Google Scholar] [CrossRef]
- Azanaw, G.M. Material Efficiency through Mechanics: A Systematic Review of Advanced Structural Modeling for Load-Optimized Building Design. Int. J. Inven. Eng. Sci. 2025, 12, 8–18. [Google Scholar] [CrossRef]
- Zhang, Z.-J.; Chen, B.-S.; Bai, R.; Liu, Y.-P. Non-Linear Behavior and Design of Steel Structures: Review and Outlook. Buildings 2023, 13, 2111. [Google Scholar] [CrossRef]
- Hutchinson, J.W.; Thompson, J.M.T. Nonlinear Buckling Behaviour of Spherical Shells: Barriers and Symmetry-Breaking Dimples. Phil. Trans. R. Soc. A 2017, 375, 20160154. [Google Scholar] [CrossRef]
- Holmes, D.P.; Lee, J.-H.; Park, H.S.; Pezzulla, M. Nonlinear Buckling Behavior of a Complete Spherical Shell under Uniform External Pressure and Homogenous Natural Curvature. Phys. Rev. E 2020, 102, 023003. [Google Scholar] [CrossRef]
- Alijani, A.; Darvizeh, M.; Darvizeh, A.; Ansari, R. On Nonlinear Thermal Buckling Analysis of Cylindrical Shells. Thin-Walled Struct. 2015, 95, 170–182. [Google Scholar] [CrossRef]
- Nayyeri Amiri, S.; Rasheed, H.A. Nondestructive Method to Predict the Buckling Load in Elastic Spherical Shells. Eng. Struct. 2017, 150, 300–317. [Google Scholar] [CrossRef]
- Barathan, V.; Rajamohan, V. Nonlinear Buckling Analysis of a Semi-Elliptical Dome: Numerical and Experimental Investigations. Thin-Walled Struct. 2022, 171, 108708. [Google Scholar] [CrossRef]
- Zaharia, M.; Pupazescu, A.; Petre, C.M. Comparative Study Concerning the Methods of Calculation of the Critical Axial Buckling Load for Stiffened Cylindrical Shells. Rev. Chim. 2018, 69, 2000–2004. [Google Scholar] [CrossRef]
- Zhan, S.-Z.; Shi, X.; Feng, X.-Q.; Zhao, Z.-L. A One-Time Training Machine Learning Method for General Structural Topology Optimization. Thin-Walled Struct. 2024, 205, 112595. [Google Scholar] [CrossRef]
- Liu, J.; Chang, J.; Yu, J.; Zhang, W.; Huang, S. Machine Learning-Based Optimization Design of Bistable Curved Shell Structures with Variable Thickness. Structures 2023, 52, 175–186. [Google Scholar] [CrossRef]
- Mchirgui, N.; Quadar, N.; Kraiem, H.; Lakhssassi, A. The Applications and Challenges of Digital Twin Technology in Smart Grids: A Comprehensive Review. Appl. Sci. 2024, 14, 10933. [Google Scholar] [CrossRef]
- Anyfantis, K.N. An Abstract Approach toward the Structural Digital Twin of Ship Hulls: A Numerical Study Applied to a Box Girder Geometry. Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ. 2021, 235, 718–736. [Google Scholar] [CrossRef]
- Cao, Y.; Li, J.; Wu, Y.; Wang, F.; Wang, X. Digital Twin Method for the Stress Field of a Deep-Diving Spherical Shell Based on a Simulation Database. Ocean Eng. 2024, 300, 117514. [Google Scholar] [CrossRef]
- Sun, Z.; Xu, L.; Fu, B.; Gao, R.-F. Flexural Behaviors of GFRP-Wood Sandwich Beams with Recycled Wood Formwork Cores. Adv. Struct. Eng. 2025, 28, 1111–1124. [Google Scholar] [CrossRef]
- Dong, J.F.; Wang, Q.Y.; Guan, Z.W. Structural Behaviour of Recycled Aggregate Concrete Filled Steel Tube Columns Strengthened by CFRP. Eng. Struct. 2013, 48, 532–542. [Google Scholar] [CrossRef]
- Wu, K.; Chen, F.; Zhang, H.; Xu, C.; Lin, S.-Q. Experimental Study on the Behavior of Recycled Concrete-Filled Thin-Wall Steel Tube Columns Under Axial Compression. Arab. J. Sci. Eng. 2018, 43, 5225–5242. [Google Scholar] [CrossRef]
- Ricciardi, P.; Belloni, E.; Cotana, F. Innovative Panels with Recycled Materials: Thermal and Acoustic Performance and Life Cycle Assessment. Appl. Energy 2014, 134, 150–162. [Google Scholar] [CrossRef]
- Buratti, C.; Belloni, E.; Lascaro, E.; Lopez, G.A.; Ricciardi, P. Sustainable Panels with Recycled Materials for Building Applications: Environmental and Acoustic Characterization. Energy Procedia 2016, 101, 972–979. [Google Scholar] [CrossRef]
- Liu, C.; Qi, G.; Li, P. Crashworthy Characteristics of Sustainable Thin-Walled Tubes: A Study on Recycled Beverage Cans. Mech. Adv. Mater. Struct. 2022, 29, 3222–3236. [Google Scholar] [CrossRef]
- Barbhuiya, S.; Das, B.B.; Kapoor, K.; Das, A.; Katare, V. Mechanical Performance of Bio-Based Materials in Structural Applications: A Comprehensive Review. Structures 2025, 75, 108726. [Google Scholar] [CrossRef]
- Ahmed, S.; Arocho, I. Analysis of Cost Comparison and Effects of Change Orders during Construction: Study of a Mass Timber and a Concrete Building Project. J. Build. Eng. 2021, 33, 101856. [Google Scholar] [CrossRef]
- Siddika, A.; Mamun, M.A.A.; Aslani, F.; Zhuge, Y.; Alyousef, R.; Hajimohammadi, A. Cross-Laminated Timber–Concrete Composite Structural Floor System: A State-of-the-Art Review. Eng. Fail. Anal. 2021, 130, 105766. [Google Scholar] [CrossRef]
- Fu, Y.; Sadeghian, P. Bio-Based Sandwich Beams Made of Paper Honeycomb Cores and Flax FRP Facings: Flexural and Shear Characteristics. Structures 2023, 54, 446–460. [Google Scholar] [CrossRef]
- Saba, N.; Jawaid, M.; Sultan, M.T.H.; Alothman, O.Y. Green Biocomposites for Structural Applications. In Green Biocomposites; Jawaid, M., Salit, M.S., Alothman, O.Y., Eds.; Green Energy and Technology; Springer International Publishing: Cham, Switzerland, 2017; pp. 1–27. ISBN 978-3-319-49381-7. [Google Scholar]
- Si Salem, A.; Taouche-Kkheloui, F.; Ait Tahar, K. Experimental Investigation on the Bending and Buckling Behavior of Bio-Based Core Innovative Sandwich Panels. Int. J. Struct. Integr. 2020, 12, 226–240. [Google Scholar] [CrossRef]
- Da Silva, R.J.; De Resende, B.L.; Comandini, G.; Lavazza, J.; Camanho, P.P.; Scarpa, F.; Panzera, T.H. Fully Bio-Based Composite and Modular Metastructures. Adv. Compos. Hybrid. Mater. 2025, 8, 288. [Google Scholar] [CrossRef]
- Bio-Based Composite Spatial Shell Structures|Psl. Available online: https://psl.design.upenn.edu/project/bio-based-composite-spatial-shell-structures/ (accessed on 5 August 2025).
- Pielichowska, K.; Nowicka-Dunal, K.; Pielichowski, K. Bio-Based Polymers for Environmentally Friendly Phase Change Materials. Polymers 2024, 16, 328. [Google Scholar] [CrossRef]
- Performance-Based Design Is the Future. Available online: https://www.structuremag.org/article/performance-based-design-is-the-future/ (accessed on 5 August 2025).
- Abate, M.S.; Evangelista, A.C.J.; Tam, V.W.Y. Global Research Trends in Performance-Based Structural Design: A Comprehensive Bibliometric Analysis. Buildings 2025, 15, 363. [Google Scholar] [CrossRef]
- Hassanzadeh, A.; Moradi, S.; Burton, H.V. Performance-Based Design Optimization of Structures: State-of-the-Art Review. J. Struct. Eng. 2024, 150, 03124001. [Google Scholar] [CrossRef]
- Hilburger, M. Developing the Next Generation Shell Buckling Design Factors and Technologies. In Proceedings of the 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 20th AIAA/ASME/AHS Adaptive Structures Conference 14th AIAA, Honolulu, HI, USA, 23–26 April 2012; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2012. [Google Scholar]
- Li, S.; Liu, L.; Peng, C. A Review of Performance-Oriented Architectural Design and Optimization in the Context of Sustainability: Dividends and Challenges. Sustainability 2020, 12, 1427. [Google Scholar] [CrossRef]
- Sbahieh, S.; Rabie, M.; Ebead, U.; Al-Ghamdi, S.G. The Mechanical and Environmental Performance of Fiber-Reinforced Polymers in Concrete Structures: Opportunities, Challenges and Future Directions. Buildings 2022, 12, 1417. [Google Scholar] [CrossRef]
- Klenam, D.E.P.; McBagonluri, F.; Asumadu, T.K.; Osafo, S.A.; Bodunrin, M.O.; Agyepong, L.; Osei, E.D.; Mornah, D.; Soboyejo, W.O. Additive Manufacturing: Shaping the Future of the Manufacturing Industry—Overview of Trends, Challenges and Opportunities. Appl. Eng. Sci. 2025, 22, 100224. [Google Scholar] [CrossRef]
- Daareyni, A.; Pagone, E.; Thayapararajah, S.; Mokhtarian, H.; Tosello, G.; Flores Ituarte, I. Intelligent Manufacturing Paradigms: Linking Design Optimization and Sustainability in Large-Area Additive Manufacturing. Int. J. Adv. Manuf. Technol. 2025. [Google Scholar] [CrossRef]
- Ma, J.; He, Y.; Zhao, Z.-L.; Xie, Y.M. Topology Optimization of Ribbed Slabs and Shells. Eng. Struct. 2023, 277, 115454. [Google Scholar] [CrossRef]
- Shen, K.-C.; Yang, Z.-Q.; Jiang, L.-L.; Pan, G. Buckling and Post-Buckling Behavior of Perfect/Perforated Composite Cylindrical Shells under Hydrostatic Pressure. J. Mar. Sci. Eng. 2022, 10, 278. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Veres, C.; Tănase, M. Sustainable Shell Structures: A Bibliometric and Critical Review of Buckling Behavior and Material-Efficient Design Strategies. Appl. Sci. 2025, 15, 9394. https://doi.org/10.3390/app15179394
Veres C, Tănase M. Sustainable Shell Structures: A Bibliometric and Critical Review of Buckling Behavior and Material-Efficient Design Strategies. Applied Sciences. 2025; 15(17):9394. https://doi.org/10.3390/app15179394
Chicago/Turabian StyleVeres, Cristina, and Maria Tănase. 2025. "Sustainable Shell Structures: A Bibliometric and Critical Review of Buckling Behavior and Material-Efficient Design Strategies" Applied Sciences 15, no. 17: 9394. https://doi.org/10.3390/app15179394
APA StyleVeres, C., & Tănase, M. (2025). Sustainable Shell Structures: A Bibliometric and Critical Review of Buckling Behavior and Material-Efficient Design Strategies. Applied Sciences, 15(17), 9394. https://doi.org/10.3390/app15179394