Effect of Different Oxygen Atmospheres on Color Stability of Modified Atmosphere Packaged Beef Using Non-Invasive Measurement
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Sample Measurement
2.3. Data Evaluation
2.4. Statistical Analysis
3. Results and Discussion
3.1. Color Values and Color Difference
3.2. Relative Levels of the Redox Forms of Myoglobin
3.3. Principal Component Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
L* | |||
---|---|---|---|
Atmosphere | |||
Time (d) | 1% O2 (-) | 20% O2 (-) | 70% O2 (-) |
0 | 34.15 Aa ± 2.046 | 35.40 Aab ± 3.505 | 37.82 Ab ± 5.202 |
1 | 33.14 Aa ± 4.295 | 36.16 Bb ± 4.014 | 39.24 Ab ± 3.825 |
2 | 34.87 Aa ± 2.548 | 37.75 Bb ± 3.846 | 39.36 Ab ± 4.355 |
6 | 33.75 Aa ± 4.931 | 35.79 Ba ± 2.929 | 37.96 Ab ± 2.951 |
8 | 34.62 Aa ± 2.938 | 35.86 Ba ± 3.723 | 39.59 Ab ± 3.973 |
10 | 34.95 Aa ± 3.507 | 37.09 Bb ± 2.797 | 39.94 Ac ± 3.603 |
13 | 32.38 Aa ± 4.695 | 33.82 Ca ± 4.379 | 37.51 Ab ± 5.211 |
14 | 35.16 Aa ± 3.194 | 36.29 Bab ± 3.624 | 39.91 Ac ± 4.962 |
a* | |||
---|---|---|---|
Atmosphere | |||
Time (d) | 1% O2 (-) | 20% O2 (-) | 70% O2 (-) |
0 | 5.142 ADa ± 1.016 | 9.515 AEb ± 2.233 | 13.03 Ac ± 2.492 |
1 | 8.566 BCa ± 1.707 | 16.04 Bb ± 1.727 | 17.07 Bc ± 1.791 |
2 | 7.322 BCa ± 0.822 | 14.59 BCb ± 2.065 | 16.34 BCb ± 1.559 |
6 | 5.963 ACa ± 0.867 | 13.51 BCDb ± 0.876 | 15.36 Cc ± 1.341 |
8 | 6.056 ACa ± 0.929 | 12.66 ACDb ± 1.656 | 14.01 Ab ± 1.926 |
10 | 6.628 Ca ± 0.731 | 11.07 ADb ± 1.445 | 13.05 Ac ± 1.643 |
13 | 4.663 Da ± 0.985 | 6.212 Ea ± 2.336 | 9.965 Db ± 2.450 |
14 | 4.371 Da ± 0.828 | 5.284 Ea ± 1.766 | 8.394 Eb ± 1.792 |
b* | |||
---|---|---|---|
Atmosphere | |||
Time (d) | 1% O2 (-) | 20% O2 (-) | 70% O2 (-) |
0 | 5.587 Aa ± 0.727 | 8.858 Ab ± 2.274 | 11.54 Ac ± 2.881 |
1 | 8.923 Ba ± 1.865 | 13.86 Bb ± 2.318 | 13.29 Bb ± 1.795 |
2 | 8.321 Ba ± 1.398 | 13.42 Cb ± 2.878 | 14.29 Cb ± 2.437 |
6 | 8.887 Ba ± 1.996 | 12.29 Db ± 1.321 | 14.16 Cc ± 1.348 |
8 | 9.233 Ba ± 2.041 | 13.00 Eb ± 2.426 | 13.37 Bb ± 3.099 |
10 | 8.667 Ba ± 0.846 | 11.01 Fb ± 1.401 | 12.71 Bc ± 1.551 |
13 | 9.972 Ca ± 2.582 | 12.55 Gb ± 3.517 | 12.29 Bb ± 3.302 |
14 | 8.895 Ba ± 2.181 | 11.07 Fb ± 1.970 | 11.44 Ab ± 2.211 |
ΔE2000 | |||
---|---|---|---|
Atmosphere | |||
Time (d) | 1% O2 (-) | 20% O2 (-) | 70% O2 (-) |
0 | 0.000 Aa ± 0.000 | 0.000 Aa ± 0.000 | 0.000 Aa ± 0.000 |
1 | 5.543 Ba ± 1.952 | 6.788 Bb ± 1.980 | 4.267 Bc ± 2.088 |
2 | 3.971 BCa ± 1.898 | 6.123 BCb ± 2.587 | 4.676 Ba ± 2.353 |
6 | 4.769 BCa ± 2.135 | 4.653 BCa ± 1.880 | 3.859 Ba ± 1.632 |
8 | 4.300 BCa ± 1.746 | 4.957 BCa ± 2.451 | 4.528 Ba ± 2.532 |
10 | 3.602 Ca ± 1.186 | 4.390 Ca ± 2.226 | 3.809 Ba ± 2.359 |
13 | 4.953 BCa ± 2.172 | 7.146 BCb ± 3.288 | 5.714 Bab ± 2.156 |
14 | 4.613 BCa ± 1.639 | 6.625 BCb ± 1.845 | 5.691 Bab ± 2.670 |
DMb | |||
---|---|---|---|
Atmosphere | |||
Time (d) | 1% O2 (-) | 20% O2 (-) | 70% O2 (-) |
0 | 1.590 Aa ± 0.071 | 1.231 Ab ± 0.099 | 1.123 ABDc ± 0.034 |
1 | 1.379 Ba ± 0.129 | 1.137 Bb ± 0.036 | 1.118 ABb ± 0.034 |
2 | 1.251 Ca ± 0.058 | 1.087 Cb ± 0.026 | 1.095 Ab ± 0.034 |
6 | 1.263 Ca ± 0.119 | 1.171 Db ± 0.046 | 1.147 BDb ± 0.031 |
8 | 1.219 Da ± 0.050 | 1.173 Db ± 0.038 | 1.144 BCDb ± 0.034 |
10 | 1.189 Ea ± 0.068 | 1.150 Ea ± 0.032 | 1.115 ACb ± 0.034 |
13 | 1.221 Da ± 0.091 | 1.192 Dab ± 0.087 | 1.167 Db ± 0.050 |
14 | 1.155 Fa ± 0.047 | 1.174 Eab ± 0.125 | 1.117 ABb ± 0.034 |
OMb | |||
---|---|---|---|
Atmosphere | |||
Time (d) | 1% O2 (-) | 20% O2 (-) | 70% O2 (-) |
0 | 1.817 Aa ± 0.133 | 2.273 Ab ± 0.280 | 2.725 Ac ± 0.473 |
1 | 2.445 Ba ± 0.511 | 3.480 Bb ± 0.692 | 3.328 Bb ± 0.425 |
2 | 2.035 Ca ± 0.182 | 3.154 BCb ± 0.686 | 3.245 Bb ± 0.474 |
6 | 2.004 Da ± 0.499 | 3.139 Bb ± 0.345 | 3.254 Bb ± 0.414 |
8 | 1.929 Da ± 0.225 | 3.143 BCb ± 0.899 | 2.989 Cb ± 0.686 |
10 | 1.955 Da ± 0.212 | 2.636 ACb ± 0.352 | 2.759 Ab ± 0.441 |
13 | 1.987 Da ± 0.482 | 2.395 Aab ± 0.844 | 2.651 Ab ± 0.725 |
14 | 1.706 Ea ± 0.179 | 1.896 Aa ± 0.487 | 2.221 Db ± 0.461 |
MMb | |||
---|---|---|---|
Atmosphere | |||
Time (d) | 1% O2 (-) | 20% O2 (-) | 70% O2 (-) |
0 | 0.627 Aa ± 0.032 | 0.645 Aab ± 0.061 | 0.654 Ab ± 0.101 |
1 | 0.654 Ba ± 0.125 | 0.687 Bab ± 0.171 | 0.769 Bb ± 0.042 |
2 | 0.848 Ca ± 0.071 | 0.736 Bb ± 0.087 | 0.727 Cb ± 0.089 |
6 | 1.160 Da ± 0.056 | 0.715 Bb ± 0.086 | 0.701 Db ± 0.066 |
8 | 1.271 Ea ± 0.096 | 0.801 Cb ± 0.145 | 0.794 Eb ± 0.108 |
10 | 1.303 Ea ± 0.072 | 0.924 Db ± 0.066 | 0.827 Fc ± 0.075 |
13 | 1.401 Fa ± 0.200 | 1.248 Ea ± 0.323 | 0.819 Eb ± 0.157 |
14 | 1.282 Ea ± 0.110 | 1.326 Ea ± 0.307 | 0.914 Gb ± 0.144 |
Linear Fit Equation y = a + b × x | |||
---|---|---|---|
Atmosphere | |||
1% O2 (-) | 20% O2 (-) | 70% O2 (-) | |
L* | |||
a | 34.23 ± 0.408 | 36.32 ± 0.700 | 38.68 ± 0.629 |
b | 0.026 ± 0.056 | −0.026 ± 0.084 | 0.038 ± 0.080 |
rP | 0.188 | −0.127 | 0.189 |
a* | * | * | |
a | 6.974 ± 0.690 | 15.85 ± 1.619 | 17.26 ± 1.011 |
b | −0.136 ± 0.077 | −0.570 ± 0.205 | −0.508 ± 0.126 |
rP | −0.586 | −0.750 | −0.855 |
b* | * | ||
a | 6.338 ± 0.541 | 12.06 ± 1.028 | 13.81 ± 0.632 |
b | 0.254 ± 0.079 | −0.038 ± 0.122 | −0.099 ± 0.079 |
rP | 0.797 | −0.126 | −0.455 |
ΔE00 | |||
a | 4.631 ± 0.593 | 5.723 ± 0.870 | 3.856 ± 0.501 |
b | −0.035 ± 0.063 | 0.002 ± 0.097 | 0.094 ± 0.059 |
rP | −0.240 | 0.010 | 0.578 |
OMb | |||
a | 1.930 ± 0.078 | 2.693 ± 0.280 | 3.248 ± 0.172 |
b | −0.007 ± 0.010 | −0.012 ± 0.037 | −0.052 ± 0.022 |
rP | −0.292 | −0.130 | −0.700 |
DMb | * | ||
a | 1.404 ± 0.062 | 1.107 ± 0.021 | 1.118 ± 0.012 |
b | −0.019 ± 0.007 | 0.006 ± 0.003 | 0.001 ± 0.002 |
rP | −0.768 | 0.590 | 0.314 |
MMb | * | * | |
a | 0.661 ± 0.044 | 0.637 ± 0.036 | 0.728 ± 0.026 |
b | 0.064 ± 0.008 | 0.028 ± 0.006 | 0.008 ± 0.004 |
rP | 0.956 | 0.899 | 0.581 |
PCA Loadings | |||||||||
---|---|---|---|---|---|---|---|---|---|
Day 0 | Day 6 | Day 14 | |||||||
PC1 61.8% | PC2 29.8% | PC3 5.5% | PC1 58.8% | PC2 23.4% | PC3 11.8% | PC1 38.1% | PC2 26.2% | PC3 17.3% | |
L* | 1.139 | 4.669 | 3.292 | 0.886 | −2.646 | 1.009 | −0.338 | 2.690 | −2.570 |
a* | 2.014 | −0.363 | −0.983 | 2.088 | 0.498 | −0.195 | 2.961 | 0.691 | −0.262 |
b* | 1.940 | −1.054 | 2.947 | 1.930 | 0.191 | 0.182 | 1.352 | 1.526 | 3.190 |
ΔE00 | −1.456 × 10−19 | 1.212 × 10−18 | 3.925 × 10−17 | −0.231 | 1.829 | 2.819 | −1.107 | 2.079 | 0.904 |
OMb | 1.722 | −3.249 | −0.636 | 1.873 | 1.400 | −0.551 | 3.019 | −0.130 | 0.970 |
DMb | −1.906 | −0.303 | 2.801 | −1.546 | 1.807 | −0.822 | 0.403 | −2.642 | −0.428 |
MMb | 0.433 | 5.721 | −2.418 | −1.983 | −0.771 | 0.215 | −2.292 | −0.244 | 2.689 |
References
- OECD-FAO. Agricultural Outlook 2023–2032; The Organization for Economic Cooperation and Development: Paris, France; Food and Agriculture Organization of the United Nations: Rome, Italy, 2023. [Google Scholar]
- King, D.A.; Hunt, M.C.; Barbut, S.; Claus, J.R.; Cornforth, D.P.; Joseph, P.; Kim, Y.H.B.; Lindahl, G.; Mancini, R.A.; Nair, M.N. American meat science association guidelines for meat color measurement. Meat Muscle Biol. 2023, 6, 12473. [Google Scholar] [CrossRef]
- Ruedt, C.; Gibis, M.; Weiss, J. Meat color and iridescence: Origin, analysis, and approaches to modulation. Compr. Rev. Food Sci. Food Saf. 2023, 22, 3366–3394. [Google Scholar] [CrossRef]
- Krell, J.; Poveda-Arteaga, A.; Weiss, J.; Witte, F.; Terjung, N.; Gibis, M. Influence of different storage atmospheres in packaging on color stability of beef. J. Food Sci. 2024, 89, 5774–5787. [Google Scholar] [CrossRef]
- Reyes, T.M.; Wagoner, M.P.; Zorn, V.E.; Coursen, M.M.; Wilborn, B.S.; Bonner, T.; Brandebourg, T.D.; Rodning, S.P.; Sawyer, J.T. Vacuum packaging can extend fresh color characteristics of beef steaks during simulated display conditions. Foods 2022, 11, 520. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Lindahl, G.; Zamaratskaia, G.; Lundström, K. Influence of Vacuum Skin Packaging on Color Stability of Beef Longissimus Lumborum Compared with Vacuum and High-Oxygen Modified Atmosphere Packaging. Meat Sci. 2012, 92, 604–609. [Google Scholar] [CrossRef] [PubMed]
- Insausti, K.; Beriain, M.; Purroy, A.; Alberti, P.; Lizaso, L.; Hernandez, B. Colour stability of beef from different Spanish native cattle breeds stored under vacuum and modified atmosphere. Meat Sci. 1999, 53, 241–249. [Google Scholar] [CrossRef] [PubMed]
- Mancini, R. Meat color. In The Science of Meat Quality; Kerth, C.R., Ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2013; pp. 177–198. [Google Scholar]
- Mitacek, R.M.; Ke, Y.; Prenni, J.E.; Jadeja, R.; VanOverbeke, D.L.; Mafi, G.G.; Ramanathan, R. Mitochondrial degeneration, depletion of NADH, and oxidative stress decrease color stability of wet-aged beef Longissimus steaks. J. Food Sci. 2019, 84, 38–50. [Google Scholar] [CrossRef]
- Ramanathan, R.; Suman, S.P.; Faustman, C. Biomolecular interactions governing fresh meat color in post-mortem skeletal muscle: A review. J. Agric. Food Chem. 2020, 68, 12779–12787. [Google Scholar] [CrossRef]
- Ramanathan, R.; Lambert, L.H.; Nair, M.N.; Morgan, B.; Feuz, R.; Mafi, G.; Pfeiffer, M. Economic Loss, Amount of Beef Discarded, Natural Resources Wastage, and Environmental Impact Due to Beef Discoloration. Meat Muscle Biol. 2022, 6, 13218. [Google Scholar] [CrossRef]
- Mancini, R.; Hunt, M. Current research in meat color. Meat Sci. 2005, 71, 100–121. [Google Scholar] [CrossRef]
- Wang, Y.; Li, S.; Rentfrow, G.; Chen, J.; Zhu, H.; Suman, S.P. Myoglobin post-translational modifications influence color stability of beef longissimus lumborum. Meat Muscle Biol. 2021, 5, 15. [Google Scholar] [CrossRef]
- Suman, S.P.; Joseph, P. Myoglobin chemistry and meat color. Annu. Rev. Food Sci. Technol. 2013, 4, 79–99. [Google Scholar] [CrossRef]
- Tushar, Z.; Rahman, M.; Hashem, M. Metmyoglobin reducing activity and meat color: A review. Meat Res. 2023, 3, 1–8. [Google Scholar] [CrossRef]
- Kropf, D. Enhancing meat color stability. In Proceedings of the 56th Reciprocal Meat Conference, Columbia, MO, USA, 15–18 June 2003; National Live Stock and Meat Board: Chicago, IL, USA, 2003; pp. 73–75. [Google Scholar]
- Gill, C.; McGinnis, J. The use of oxygen scavengers to prevent the transient discolouration of ground beef packaged under controlled, oxygen-depleted atmospheres. Meat Sci. 1995, 41, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Jeremiah, L. Packaging Alternatives to Deliver Fresh Meats Using Short-or Long-Term Distribution. Food Res. Int. 2001, 34, 749–772. [Google Scholar] [CrossRef]
- Seideman, S.; Durland, P. Vacuum packaging of fresh beef: A review. J. Food Qual. 1983, 6, 29–47. [Google Scholar] [CrossRef]
- Tewari, G.; Jayas, D.; Jeremiah, L.; Holley, R. Prevention of transient discoloration of beef. J. Food Sci. 2001, 66, 506–510. [Google Scholar] [CrossRef]
- Denzer, M.L.; Pfeiffer, M.; Mafi, G.; Ramanathan, R. The importance of including metmyoglobin levels in reflectance-based oxygen consumption measurements. Meat Sci. 2025, 219, 109651. [Google Scholar] [CrossRef] [PubMed]
- Wright, T.J.; Davis, R.W. Myoglobin extraction from mammalian skeletal muscle and oxygen affinity determination under physiological conditions. Protein Expr. Purif. 2015, 107, 50–55. [Google Scholar] [CrossRef]
- Denzer, M.L.; Mafi, G.G.; Pfeiffer, M.; Ramanathan, R.; Denzer, M. Characterizing the Biochemical Attributes of Oxygen-and Non–Oxygen-Exposed Surfaces to Understand the Features That Influence Color Stability of Beef Longissimus Lumborum Steaks. Meat Muscle Biol. 2025, 9, 18940. [Google Scholar] [CrossRef]
- Denzer, M.L.; Piao, D.; Pfeiffer, M.; Mafi, G.; Ramanathan, R. Novel needle-probe single-fiber reflectance spectroscopy to quantify sub-surface myoglobin forms in beef psoas major steaks during retail display. Meat Sci. 2024, 210, 109439. [Google Scholar] [CrossRef]
- Esmer, O.K.; Irkin, R.; Degirmencioglu, N.; Degirmencioglu, A. The effects of modified atmosphere gas composition on microbiological criteria, color and oxidation values of minced beef meat. Meat Sci. 2011, 88, 221–226. [Google Scholar] [CrossRef]
- Feng, C.; Sun, K.; Zhang, Y.; Liang, R.; Mao, Y.; Hopkins, D.L.; Zhu, L.; Luo, X.; Yang, X. Differentiated application of oxygen levels for the preservation of high-oxygen packaged beef based on initial microbial contamination. Meat Sci. 2025, 225, 109803. [Google Scholar] [CrossRef]
- Ruedt, C.; Gibis, M.; Weiss, J. Quantification of surface iridescence in meat products by digital image analysis. Meat Sci. 2020, 163, 108064. [Google Scholar] [CrossRef] [PubMed]
- ISO/CIE 11664-6:2022-08; Colorimetry—Part 6. International Organization for Standardization: Geneva, Switzerland, 2022.
- Hernández, B.; Sáenz, C.; Alberdi, C.; Diñeiro, J. CIELAB color coordinates versus relative proportions of myoglobin redox forms in the description of fresh meat appearance. J. Food Sci. Technol. 2016, 53, 4159–4167. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Li, X.; Xin, J.; Li, Z.; Li, G.; Zhang, Y.; Du, M.; Shen, Q.W.; Zhang, D. Effects of protein phosphorylation on color stability of ground meat. Food Chem. 2017, 219, 304–310. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.; Apple, J.; Yancey, J.; Sawyer, J.; Johnson, Z. Influence of wet-aging on bloom development in the longissimus thoracis. Meat Sci. 2008, 80, 703–707. [Google Scholar] [CrossRef]
- Wyrwisz, J.; Moczkowska, M.; Kurek, M.; Stelmasiak, A.; Półtorak, A.; Wierzbicka, A. Influence of 21days of vacuum-aging on color, bloom development, and WBSF of beef semimembranosus. Meat Sci. 2016, 122, 48–54. [Google Scholar] [CrossRef]
- Beggan, M.; Allen, P.; Butler, F. Effect of oxygen concentrations on blooming ability of aged beef longissimus lumborum steaks following ultralow oxygen and vacuum storage. J. Muscle Foods 2006, 17, 267–276. [Google Scholar] [CrossRef]
- Wieser, M.-L.S. Vergleichende Physikalische Farbmessung und Sensorische Farbbeurteilung Unter Verschiedenen Beleuchtungssystemen an Ausgewählten Brühwurstprodukten im Hinblick auf eine Objektive Qualitätskontrolle in der Lebensmittelüberwachung. Ph.D. Thesis, Ludwig Maximilian University of Munich, München, Germany, 2010. [Google Scholar]
- Lavieri, N.; Williams, S. Effects of packaging systems and fat concentrations on microbiology, sensory and physical properties of ground beef stored at 4 ± 1 C for 25 days. Meat Sci. 2014, 97, 534–541. [Google Scholar] [CrossRef] [PubMed]
- Mancini, R.A.; Ramanathan, R.; Hunt, M.C.; Kropf, D.H.; Mafi, G.G. Interrelationships Between Visual and Instrumental Measures of Ground Beef Color. Meat Muscle Biol. 2022, 6, 1–8. [Google Scholar] [CrossRef]
- Taylor, A.; MacDougall, D. Fresh beef packed in mixtures of oxygen and carbon dioxide. Int. J. Food Sci. Technol. 1973, 8, 453–461. [Google Scholar] [CrossRef]
- Kim, Y.H.B.; Frandsen, M.; Rosenvold, K. Effect of ageing prior to freezing on colour stability of ovine longissimus muscle. Meat Sci. 2011, 88, 332–337. [Google Scholar] [CrossRef]
- Greenacre, M.; Groenen, P.J.; Hastie, T.; d’Enza, A.I.; Markos, A.; Tuzhilina, E. Principal component analysis. Nat. Rev. Methods Primers 2022, 2, 100. [Google Scholar] [CrossRef]
- Schumacher, T.; Steinmacher, T.; Köster, E.; Wagemans, A.; Weiss, J.; Gibis, M. Physico-chemical characterization of ten commercial pea protein isolates. Food Hydrocoll. 2025, 162, 110996. [Google Scholar] [CrossRef]
- Mwove, J.K.; Gogo, L.A.; Chikamai, B.N.; Omwamba, M.; Mahungu, S.M. Principal component analysis of physicochemical and sensory characteristics of beef rounds extended with gum arabic from Acacia senegal var. kerensis. Food Sci. Nutr. 2018, 6, 474–482. [Google Scholar] [CrossRef] [PubMed]
- Boligon, A.; Vicente, I.; Vaz, R.; Campos, G.; Souza, F.; Carvalheiro, R.; Albuquerque, L. Principal component analysis of breeding values for growth and reproductive traits and genetic association with adult size in beef cattle. J. Anim. Sci. 2016, 94, 5014–5022. [Google Scholar] [CrossRef] [PubMed]
Photographs | |||
---|---|---|---|
Atmosphere | |||
Time (d) | 1% O2 (-) | 20% O2 (-) | 70% O2 (-) |
0 | |||
7 | |||
14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krell, J.; Müller, T.; Poveda-Arteaga, A.; Weiss, J.; Terjung, N.; Gibis, M. Effect of Different Oxygen Atmospheres on Color Stability of Modified Atmosphere Packaged Beef Using Non-Invasive Measurement. Appl. Sci. 2025, 15, 8987. https://doi.org/10.3390/app15168987
Krell J, Müller T, Poveda-Arteaga A, Weiss J, Terjung N, Gibis M. Effect of Different Oxygen Atmospheres on Color Stability of Modified Atmosphere Packaged Beef Using Non-Invasive Measurement. Applied Sciences. 2025; 15(16):8987. https://doi.org/10.3390/app15168987
Chicago/Turabian StyleKrell, Johannes, Theresa Müller, Alejandro Poveda-Arteaga, Jochen Weiss, Nino Terjung, and Monika Gibis. 2025. "Effect of Different Oxygen Atmospheres on Color Stability of Modified Atmosphere Packaged Beef Using Non-Invasive Measurement" Applied Sciences 15, no. 16: 8987. https://doi.org/10.3390/app15168987
APA StyleKrell, J., Müller, T., Poveda-Arteaga, A., Weiss, J., Terjung, N., & Gibis, M. (2025). Effect of Different Oxygen Atmospheres on Color Stability of Modified Atmosphere Packaged Beef Using Non-Invasive Measurement. Applied Sciences, 15(16), 8987. https://doi.org/10.3390/app15168987