Temporal Stability and Practical Relevance of Velocity and Velocity-Loss Perception in Back Squat
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Design
2.3. Familiarization Session and One-Repetition Maximum Test
2.4. PV and PVL Assessment
2.5. Statistical Analysis
3. Results
3.1. Delta Score and Velocity Perception
3.2. Vscore and Velocity-Loss Perception
4. Discussion
4.1. Delta Score and Velocity Perception
4.2. Vscore and Velocity-Loss Perception
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kraemer, W.J.; Ratamess, N.A. Fundamentals of Resistance Training: Progression and Exercise Prescription. Med. Sci. Sports Exerc. 2004, 36, 674–688. [Google Scholar] [CrossRef] [PubMed]
- Ratamess, N.A.; Alvar, B.A.; Evetoch, T.K.; Housh, T.J.; Kibler, W.B.; Kraemer, W.J.; Triplett, N.T. Progression Models in Resistance Training for Healthy Adults. Med. Sci. Sports Exerc. 2009, 41, 687–708. [Google Scholar] [CrossRef]
- Naclerio, F.; Faigenbaum, A.D.; Larumbe-Zabala, E.; Perez-Bibao, T.; Kang, J.; Ratamess, N.A.; Triplett, N.T. Effects of Different Resistance Training Volumes on Strength and Power in Team Sport Athletes. J. Strength Cond. Res. 2013, 27, 1832–1840. [Google Scholar] [CrossRef]
- Banyard, H.G.; Tufano, J.J.; Delgado, J.; Thompson, S.W.; Nosaka, K. Comparison of the Effects of Velocity-Based Training Methods and Traditional 1RM-Percent-Based Training Prescription on Acute Kinetic and Kinematic Variables. Int. J. Sports Physiol. Perform. 2019, 14, 246–255. [Google Scholar] [CrossRef]
- Weakley, J.; Mann, B.; Banyard, H.; McLaren, S.; Scott, T.; Garcia-Ramos, A. Velocity-Based Training: From Theory to Application. Strength Cond. J. 2021, 43, 31–49. [Google Scholar] [CrossRef]
- Fitas, A.; Santos, P.; Gomes, M.; Pezarat-Correia, P.; Schoenfeld, B.J.; Mendonca, G.V. Prediction of One Repetition Maximum in Free-Weight Back Squat Using a Mixed Approach: The Combination of the Individual Load-Velocity Profile and Generalized Equations. J. Strength Cond. Res. 2024, 38, 228–235. [Google Scholar] [CrossRef]
- Torrejón, A.; Balsalobre-Fernández, C.; Haff, G.G.; García-Ramos, A. The Load-Velocity Profile Differs More between Men and Women than between Individuals with Different Strength Levels. Sports Biomech. 2019, 18, 245–255. [Google Scholar] [CrossRef]
- Caven, E.J.G.; Bryan, T.J.E.; Dingley, A.F.; Drury, B.; Garcia-Ramos, A.; Perez-Castilla, A.; Arede, J.; Fernandes, J.F.T. Group versus Individualised Minimum Velocity Thresholds in the Prediction of Maximal Strength in Trained Female Athletes. Int. J. Environ. Res. Public Health 2020, 17, 7811. [Google Scholar] [CrossRef]
- Thompson, S.W.; Rogerson, D.; Ruddock, A.; Greig, L.; Dorrell, H.F.; Barnes, A. A Novel Approach to 1RM Prediction Using the Load-Velocity Profile: A Comparison of Models. Sports 2021, 9, 88. [Google Scholar] [CrossRef]
- Zhang, X.; Feng, S.; Peng, R.; Li, H. The Role of Velocity-Based Training (VBT) in Enhancing Athletic Performance in Trained Individuals: A Meta-Analysis of Controlled Trials. Int. J. Environ. Res. Public Health 2022, 19, 9252. [Google Scholar] [CrossRef]
- Guerriero, A.; Varalda, C.; Piacentini, M.F. The Role of Velocity Based Training in the Strength Periodization for Modern Athletes. J. Funct. Morphol. Kinesiol. 2018, 3, 55. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Cava, A.; Hernández-Belmonte, A.; Courel-Ibáñez, J.; Morán-Navarro, R.; González-Badillo, J.J.; Pallarés, J.G. Reliability of Technologies to Measure the Barbell Velocity: Implications for Monitoring Resistance Training. PLoS ONE 2020, 15, e0232465. [Google Scholar] [CrossRef]
- Nagatani, T.; Guppy, S.N.; Haff, G.G. Selecting Velocity Measurement Devices: Decision-Making Guidelines for Strength and Conditioning Professionals. Strength Cond. J. 2025, 47, 353–363. [Google Scholar] [CrossRef]
- Bautista, I.J.; Chirosa, I.J.; Robinson, J.E.; Chirosa, L.J.; Martínez, I. Concurrent Validity of a Velocity Perception Scale to Monitor Back Squat Exercise Intensity in Young Skiers. J. Strength Cond. Res. 2016, 30, 421–429. [Google Scholar] [CrossRef]
- Bautista, I.J.; Chirosa, I.J.; Chirosa, L.J.; Martín, I.; González, A.; Robertson, R.J. Development and Validity of a Scale of Perception of Velocity in Resistance Exercise. J. Sports Sci. Med. 2014, 13, 542–549. [Google Scholar]
- Romagnoli, R.; Piacentini, M.F. Perception of Velocity during Free-Weight Exercises: Difference between Back Squat and Bench Press. J. Funct. Morphol. Kinesiol. 2022, 7, 34. [Google Scholar] [CrossRef]
- Romagnoli, R.; Piacentini, M.F. Does Fatigue Affect the Perception of Velocity Accuracy During Resistance Training? J. Strength Cond. Res. 2024, 38, 1243–1247. [Google Scholar] [CrossRef]
- Romagnoli, R.; Filipas, L.; Piacentini, M.F. Can Mental Fatigue Affect Perception of Barbell Velocity in Resistance Training? Eur. J. Sport. Sci. 2024, 24, 732–739. [Google Scholar] [CrossRef]
- Romagnoli, R.; Civitella, S.; Minganti, C.; Piacentini, M. Concurrent and Predictive Validity of an Exercise-Specific Scale for the Perception of Velocity in the Back Squat. Int. J. Environ. Res. Public Health 2022, 19, 11440. [Google Scholar] [CrossRef]
- Sindiani, M.; Lazarus, A.; Iacono, A.D.; Halperin, I. Perception of Changes in Bar Velocity in Resistance Training: Accuracy Levels within and between Exercises. Physiol. Behav. 2020, 224, 113025. [Google Scholar] [CrossRef]
- Dello Iacono, A.; Watson, K.; Marinkovic, M.; Halperin, I. Perception of Bar Velocity Loss in Resistance Exercises: Accuracy Across Loads and Velocity Loss Thresholds in the Bench Press. Int. J. Sports Physiol. Perform. 2023, 18, 488–494. [Google Scholar] [CrossRef] [PubMed]
- Lazarus, A.; Halperin, I.; Vaknin, G.J.; Dello Iacono, A. Perception of Changes in Bar Velocity as a Resistance Training Monitoring Tool for Athletes. Physiol. Behav. 2021, 231, 113316. [Google Scholar] [CrossRef] [PubMed]
- Shaw, M.; Thompson, S.; Myranuet, P.A.; Tonheim, H.; Nielsen, J.; Steele, J. Perception of Barbell Velocity: Can. Individuals Accurately Perceive Changes in Velocity? Int. J. Strength Cond. 2023, 3. [Google Scholar] [CrossRef]
- Da Silva, D.G.; da Silva, R.F.B.; Gantois, P.; Nascimento, V.B.; Nakamura, F.Y.; Fonseca, F.D.S. Accuracy and Reliability of Perception of Bar Velocity Loss for Autoregulation in Resistance Exercise. Int. J. Sports Sci. Coach. 2024, 19, 1622–1631. [Google Scholar] [CrossRef]
- Liljequist, D.; Elfving, B.; Skavberg Roaldsen, K. Intraclass Correlation—A Discussion and Demonstration of Basic Features. PLoS ONE 2019, 14, e0219854. [Google Scholar] [CrossRef]
- Munóz-Jiménez, J.; Rojas-Valverde, D.; Leon, K. Future Challenges in the Assessment of Proprioception in Exercise Sciences: Is. Imitation an Alternative? Front. Hum. Neurosci. 2021, 15, 664667. [Google Scholar] [CrossRef]
- Liutsko, L.N. Proprioception as a Basis for Individual Differences. Psychol. Russ. 2013, 6, 107. [Google Scholar] [CrossRef]
- Liutsko, L.; Muiños, R.; Tous-Ral, J.M. Age-Related Differences in Proprioceptive and Visuo-Proprioceptive Function in Relation to Fine Motor Behaviour. Eur. J. Ageing 2014, 11, 221–232. [Google Scholar] [CrossRef]
- Proske, U.; Gandevia, S.C. The Proprioceptive Senses: Their Roles in Signaling Body Shape, Body Position and Movement, and Muscle Force. Physiol. Rev. 2012, 92, 1651–1697. [Google Scholar] [CrossRef]
- Blanchard, C.; Roll, R.; Roll, J.-P.; Kavounoudias, A. Differential Contributions of Vision, Touch and Muscle Proprioception to the Coding of Hand Movements. PLoS ONE 2013, 8, e62475. [Google Scholar] [CrossRef]
- Halperin, I.; Malleron, T.; Har-Nir, I.; Androulakis-Korakakis, P.; Wolf, M.; Fisher, J.; Steele, J. Accuracy in Predicting Repetitions to Task Failure in Resistance Exercise: A Scoping Review and Exploratory Meta-Analysis. Sports Med. 2022, 52, 377–390. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Cava, A.; Morán-Navarro, R.; Sánchez-Medina, L.; González-Badillo, J.J.; Pallarés, J.G. Velocity- and Power-Load Relationships in the Half, Parallel and Full Back Squat. J. Sports Sci. 2019, 37, 1088–1096. [Google Scholar] [CrossRef] [PubMed]
Test | Re-Test | |||
---|---|---|---|---|
ICC | R2 | ICC | R2 | |
Vp − Vr | 0.828 | 0.600 | 0.837 | 0.607 |
Np − Nr | 0.980 | 0.947 | 0.986 | 0.923 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dello Stritto, E.; Gramazio, A.; Romagnoli, R.; Piacentini, M.F. Temporal Stability and Practical Relevance of Velocity and Velocity-Loss Perception in Back Squat. Appl. Sci. 2025, 15, 7252. https://doi.org/10.3390/app15137252
Dello Stritto E, Gramazio A, Romagnoli R, Piacentini MF. Temporal Stability and Practical Relevance of Velocity and Velocity-Loss Perception in Back Squat. Applied Sciences. 2025; 15(13):7252. https://doi.org/10.3390/app15137252
Chicago/Turabian StyleDello Stritto, Emanuele, Antonio Gramazio, Ruggero Romagnoli, and Maria Francesca Piacentini. 2025. "Temporal Stability and Practical Relevance of Velocity and Velocity-Loss Perception in Back Squat" Applied Sciences 15, no. 13: 7252. https://doi.org/10.3390/app15137252
APA StyleDello Stritto, E., Gramazio, A., Romagnoli, R., & Piacentini, M. F. (2025). Temporal Stability and Practical Relevance of Velocity and Velocity-Loss Perception in Back Squat. Applied Sciences, 15(13), 7252. https://doi.org/10.3390/app15137252