Encapsulation of Chokeberry Polyphenols by Ionic Gelation: Impact of Pullulan and Disaccharides Addition to Alginate Beads
Abstract
1. Introduction
2. Materials and Methods
2.1. Ingredients for Encapsulation Mixtures and Chemicals for Analysis
2.2. Preparation of Hydrogel Beads by Ionic Gelation
2.3. Extraction of Polyphenols from Hydrogel Beads
2.4. Determination of Total Polyphenols
2.5. Determination of Proanthocyanidins
2.6. Determination of Individual Polyphenols by High-Performance Liquid Chromatography (HPLC)
2.7. Determination of Antioxidant Potential by Selected Methods
2.8. Statistical Analysis of Results
3. Results
3.1. Total Polyphenols and Proanthocyanidins in Hydrogel Beads
3.2. Concentration of Individual Polyphenols in Hydrogel Beads
3.3. Antioxidant Potential of Hydrogel Beads
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sidor, A.; Drożdżyńska, A.; Gramza-Michałowska, A. Black chokeberry (Aronia melanocarpa) and its products as potential health-promoting factors—An overview. Trends Food Sci. Technol. 2019, 89, 45–60. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, A.; Liu, X.; Chen, X.; Ding, C.; Dong, L.; Zhang, J.; Sun, S.; Ding, Q.; Khatoom, S.; et al. Chokeberry (Aronia melanocarpa) as a new functional food relationship with health: An overview. J. Future Foods 2021, 1, 168–178. [Google Scholar] [CrossRef]
- Jurendić, T.; Ščetar, M. Aronia melanocarpa products and by-products for health and nutrition: A review. Antioxidants 2021, 10, 1052. [Google Scholar] [CrossRef] [PubMed]
- Jakobek, L.; Matić, P.; Ištuk, J.; Barron, A.R. Study of interactions between individual phenolics of aronia with barley beta-glucan. Pol. J. Food Nutr. Sci. 2021, 71, 187–196. [Google Scholar] [CrossRef]
- Ćorković, I.; Rajchl, A.; Škorpilová, T.; Pichler, A.; Šimunović, J.; Kopjar, M. Evaluation of Chokeberry/carboxymethylcellulose hydrogels with the addition of disaccharides: DART-TOF/MS and HPLC-DAD analysis. Int. J. Mol. Sci. 2023, 24, 448. [Google Scholar] [CrossRef]
- Haizhou, W.; Oliveira, G.; Lila, M.A. Protein-binding approaches for improving bioaccessibility and bioavailability of anthocyanins. Compr. Rev. Food Sci. Food Saf. 2023, 22, 333–354. [Google Scholar]
- de Mejia, E.G.; Zhang, Q.; Penta, K.; Eroglu, A.; Lila, M.A. The colors of health: Chemistry, bioactivity, and market demand for colorful foods and natural food sources of colorants. Annu. Rev. Food Sci. Technol. 2020, 11, 145–182. [Google Scholar] [CrossRef]
- Shen, Y.; Zhang, N.; Tian, J.; Xin, G.; Liu, L.; Sun, X.; Li, B. Advanced approaches for improving bioavailability and controlled release of anthocyanins. J. Control. Release 2022, 341, 285–299. [Google Scholar] [CrossRef]
- Fallah, A.A.; Sarmast, E.; Fatehi, P.; Jafari, T. Impact of dietary anthocyanins on systemic and vascular inflammation: Systematic review and meta-analysis on randomised clinical trials. Food Chem. Toxicol. 2020, 135, 110922. [Google Scholar] [CrossRef]
- Kimble, R.; Keane, K.M.; Lodge, J.K.; Howatson, G. Dietary intake of anthocyanins and risk of cardiovascular disease: A systematic review and meta-analysis of prospective cohort studies. Crit. Rev. Food Sci. Nutr. 2019, 59, 3032–3043. [Google Scholar] [CrossRef]
- Krga, I.; Milenkovic, D. Anthocyanins: From sources and bioavailability to cardiovascular-health benefits and molecular mechanisms of action. J. Agric. Food Chem. 2019, 67, 1771–1783. [Google Scholar] [CrossRef] [PubMed]
- Lila, M.A.; Burton-Freeman, B.; Grace, M.; Kalt, W. Unraveling anthocyanin bioavailability for human health. Annu. Rev. Food Sci. Technol. 2016, 7, 375–393. [Google Scholar] [CrossRef] [PubMed]
- Kapci, B.; Neradová, E.; Čížková, H.; Voldřich, M.; Rajchl, A.; Capanoglu, E. Investigating the antioxidant potential of chokeberry (Aronia melanocarpa) products. J. Food Nutr. Res. 2013, 52, 219–229. [Google Scholar]
- McClements, D.J. Delivery by Design (DbD): A standardized approach to the development of efficacious nanoparticle- and microparticle-based delivery systems. Compr. Rev. Food Sci. Food Saf. 2018, 17, 200–219. [Google Scholar] [CrossRef]
- Lee, K.Y.; Mooney, D.J. Alginate: Properties and biomedical applications. Prog. Polym. Sci. 2012, 37, 106–126. [Google Scholar] [CrossRef] [PubMed]
- Rathod, G.; Kairam, N. Preparation of omega 3 rich oral supplement using dairy and non dairy based ingredients. J. Food Sci. Technol. 2018, 55, 760–766. [Google Scholar] [CrossRef]
- Bušić, A.; Belščak-Cvitanović, A.; Vojvodić Cebin, A.; Karlović, S.; Kovač, V.; Špoljarič, I.; Mršič, G.; Komes, D. Structuring new alginate network aimed for delivery of dandelion (Taraxacum officinale L.) polyphenols using ionic gelation and new filler materials. Food Res. Int. 2017, 111, 244–255. [Google Scholar] [CrossRef]
- Belščak-Cvitanović, A.; Komes, D.; Karlović, S.; Djaković, S.; Špoljarić, I.; Mršić, G.; Ježek, D. Improving the controlled delivery formulations of caffeine in alginate hydrogel beads combined with pectin, carrageenan, chitosan and psyllium. Food Chem. 2015, 167, 378–386. [Google Scholar] [CrossRef]
- Guo, J.; Giusti, M.M.; Kaletunç, G. Encapsulation of purple corn and blueberry extracts in alginate-pectin hydrogel particles: Impact of processing and storage parameters on encapsulation efficiency. Food Res. Int. 2017, 107, 414–422. [Google Scholar] [CrossRef]
- Ćorković, I.; Pichler, A.; Ivić, I.; Šimunović, J.; Kopjar, M. Microencapsulation of chokeberry polyphenols and volatiles: Application of alginate and pectin as wall materials. Gels 2021, 7, 231. [Google Scholar] [CrossRef]
- Ghosh, T.; Priyadarshi, R.; Krebs de Souza, C.; Angioletti, B.L.; Rhim, J.-W. Advances in pullulan utilization for sustainable applications in food packaging and preservation: A mini-review. Trends Food Sci. Technol. 2022, 125, 43–53. [Google Scholar] [CrossRef]
- Constantin, M.; Bucatariu, S.; Sacarescu, L.; Daraba, O.M.; Anghelache, M.; Fundueanu, G. Pullulan derivative with cationic and hydrophobic moieties as an appropriate macromolecule in the synthesis of nanoparticles for drug delivery. Int. J. Biol. Macromol. 2020, 164, 4487–4498. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Wang, W.; Chu, Y.; Gao, C.; Liu, Q.; Tang, X. Effect of cinnamon essential oil nanoemulsion emulsified by osa modified starch on the structure and properties of pullulan based films. LWT 2020, 134, 110123. [Google Scholar] [CrossRef]
- Agrawal, S.; Budhwani, D.; Gurjar, P.; Telange, D.; Lambole, V. Pullulan based derivatives: Synthesis, enhanced physicochemical properties, and applications. Drug Deliv. 2022, 29, 3328–3339. [Google Scholar] [CrossRef]
- Thomas, N.; Puluhulawa, L.E.; Mo’o, F.R.C.; Rusdin, A.; Gazzali, A.M.; Budiman, A. Potential of pullulan-based polymeric nanoparticles for improving drug physicochemical properties and effectiveness. Polymers 2024, 16, 2151. [Google Scholar] [CrossRef]
- Rashid, A.; Qayum, A.; Liang, Q.; Kang, L.; Ekumah, J.-N.; Han, X.; Ren, X.; Ma, H. Exploring the potential of pullulan-based films and coatings for effective food preservation: A comprehensive analysis of properties, activation strategies and applications. Int. J. Biol. Macromol. 2024, 260, 129479. [Google Scholar] [CrossRef]
- Kycia, K.; Chlebowska-Śmigiel, A.; Szydłowska, A.; Sokół, E.; Ziarno, M.; Gniewosz, M. Pullulan as a potential enhancer of Lactobacillus and Bifidobacterium viability in synbiotic low fat yoghurt and its sensory quality. LWT 2020, 128, 109414. [Google Scholar] [CrossRef]
- Chen, A.; Gibney, P.A. Dietary Trehalose as a Bioactive Nutrient. Nutrients 2023, 15, 1393. [Google Scholar] [CrossRef] [PubMed]
- Neta, T.; Takada, K.; Hirasawa, M. Low-cariogenicity of trehalose as a substrate. J. Dent. 2000, 28, 571–576. [Google Scholar] [CrossRef]
- Van Can, J.G.P.; Van Loon, L.J.C.; Brouns, F.; Blaak, E.E. Reduced glycaemic and insulinaemic responses following trehalose and isomaltulose ingestion: Implications for postprandial substrate use in impaired glucose-tolerant subjects. Br. J. Nutr. 2012, 108, 1210–1217. [Google Scholar] [CrossRef]
- Yaribeygi, H.; Yaribeygi, A.; Sathyapalan, T.; Sahebkar, A. Molecular mechanisms of trehalose in modulating glucose homeostasis in diabetes. Diabetes Metab. Syndr. Clin. Res. Rev. 2019, 13, 2214–2218. [Google Scholar] [CrossRef]
- Yoshizane, C.; Mizote, A.; Yamada, M.; Arai, N.; Arai, S.; Maruta, K.; Mitsuzumi, H.; Ariyasu, T.; Ushio, S.; Fukuda, S. Glycemic, insulinemic and incretin responses after oral trehalose ingestion in healthy subjects. Nutr. J. 2017, 16, 9. [Google Scholar] [CrossRef] [PubMed]
- Oku, T.; Nakamura, S. Estimation of intestinal trehalase activity from a laxative threshold of trehalose and lactulose on healthy female subjects. Eur. J. Clin. Nutr. 2000, 54, 783–788. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotonutric acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Prior, R.L.; Fan, E.; Ji, H.; Howell, A.; Nio, C.; Payne, M.J.; Reed, J. Multi-laboratory validation of a standard method for quantifying proanthocyanidins in cranberry powders. J. Sci. Food Agric. 2010, 90, 1473–1478. [Google Scholar] [CrossRef] [PubMed]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “Antioxidant Power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Apak, R.; Güçlü, K.; Ozyürek, M.; Karademir, S.E. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J. Sci. Food Agric. 2004, 52, 7970–7981. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Arnao, M.B.; Cano, A.; Acosta, M. The hydrophilic and lipophilic contribution to total antioxidant activity. Food Chem. 2001, 73, 239–244. [Google Scholar] [CrossRef]
- Syamaladevi, R.M.; Sablani, S.S.; Tang, J.; Powers, J.; Swanson, B.G. Stability of anthocyanins in frozen and freeze-dried raspberries during long-term storage: In relation to glass transition. J. Food Sci. 2011, 76, 414–421. [Google Scholar] [CrossRef]
- Xiao, Q.; Tong, Q.; Lim, L.-T. Pullulan-sodium alginate based edible films: Rheological properties of film forming solutions. Carbohydr. Polym. 2012, 87, 1689–1695. [Google Scholar] [CrossRef]
- Kato, T.; Okamoto, T.; Tokuya, T.; Takahashi, A. Solution properties and chain flexibility of pullulan in aqueous solution. Biopolym 1982, 21, 1623–1633. [Google Scholar] [CrossRef]
- Mancini, M.; Moresi, M.; Sappino, F. Rheological behaviour of aqueous dispersions of algal sodium alginates. J. Food Eng. 1996, 28, 283–295. [Google Scholar] [CrossRef]
- Hubbermann, E.M.; Heins, A.; Stöckmann, H.; Schwarz, K. Influence of acids, salt, sugars and hydrocolloids on the colour stability of anthocyanin rich black currant and elderberry concentrates. Eur. Food Res. Technol. 2006, 223, 83–90. [Google Scholar] [CrossRef]
- Padayachee, A.; Netzel, G.; Netzel, M.; Day, L.; Zabaras, D.; Mikkelsen, D.; Gidley, M.J. Binding of polyphenols to plant cell wall analogues—Part 1: Anthocyanins. Food Chem. 2012, 134, 155–161. [Google Scholar] [CrossRef]
- Tonnis, W.F.; Mensink, M.A.; de Jager, A.; van der Voort Maarschalk, K.; Frijlink, H.W.; Hinrichs, W.L.J. Size and molecular flexibility of sugars determine the storage stability of freeze-dried proteins. Mol. Pharm. 2015, 12, 684–694. [Google Scholar] [CrossRef]
- Lerbret, A.; Bordat, P.; Affouard, F.; Descamps, M.; Migliardo, F. How homogeneous are the trehalose, maltose, and sucrose water solutions? An insight from molecular dynamics simulations. J. Phys. Chem. B 2005, 109, 11046–11057. [Google Scholar] [CrossRef]
- Olsson, C.; Swenson, J. Structural comparison between sucrose and trehalose in aqueous solution. J. Phys. Chem. B 2020, 124, 3074–3082. [Google Scholar] [CrossRef]
- Schebor, C.; Burin, L.; del Pilar Bueras, M.; Chirife, J. Stability to hydrolysis and browning of trehalose, sucrose and raffinose in low-moisture systems in relation to their use as protectants of dry biomaterials. LWT 1999, 32, 481–485. [Google Scholar] [CrossRef]
- Oku, K.; Watanabe, H.; Kubota, M.; Fukuda, S.; Kurimoto, M.; Tujisaka, Y.; Komori, M.; Inoue, Y.; Sakurai, M. NMR and quantum chemical study on the OH...pi and CH...O interactions between trehalose and unsaturated fatty acids: Implication for the mechanism of antioxidant function of trehalose. J. Am. Chem. Soc. 2003, 125, 12739–12748. [Google Scholar] [CrossRef]
- Oku, K.; Kurose, M.; Kubota, M.; Fukuda, S.; Kurimoto, M.; Tujisaka, Y.; Okabe, A.; Sakurai, M. Combined NMR and quantum chemical studies on the interaction between trehalose and dienes relevant to the antioxidant function of trehalose. J. Phys. Chem. B 2005, 109, 3032–3040. [Google Scholar] [CrossRef] [PubMed]
- Sakakura, K.; Okabe, A.; Oku, K.; Sakurai, M. Experimental and theoretical study on the intermolecular complex formation between trehalose and benzene compounds in aqueous solution. J. Phys. Chem. B 2011, 115, 9823–9830. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Orcajada, S.; Matencio, A.; Vicente-Herrero, C.; García-Carmona, F.; López-Nicolás, J.M. Study of the fluorescence and interaction between cyclodextrins and neochlorogenic acid, in comparison with chlorogenic acid. Sci. Rep. 2021, 11, 3275. [Google Scholar] [CrossRef] [PubMed]
- Ali, H.M.; Almagribi, W.; Al-Rashidi, M.N. Antiradical and reductant activities of anthocyanidins and anthocyanins, structure–activity relationship and synthesis. Food Chem. 2016, 194, 1275–1282. [Google Scholar] [CrossRef]
- Abirami, A.; Sinsinwar, S.; Rajalakshmi, P.; Brindha, P.; Rajesh, Y.B.R.D.; Vadivel, V. Antioxidant and cytoprotective properties of loganic acid isolated from seeds of Strychnos potatorum L. against heavy metal induced toxicity in PBMC model. Drug Chem. Toxicol. 2022, 45, 239–249. [Google Scholar] [CrossRef]
- Prior, R.L.; Wu, X.; Schaich, K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. 2005, 53, 4290–4302. [Google Scholar] [CrossRef]
- Pinelo, M.; Manzocco, L.; Nunez, M.J.; Nicoli, M.C. Interaction among phenols in food fortification: Negative synergism on antioxidant capacity. J. Agric. Food Chem. 2004, 52, 1177–1180. [Google Scholar] [CrossRef]
- Hang, D.T.N.; Hoa, N.T.; Bich, H.N.; Mechler, A.; Vo, Q.V. The hydroperoxyl radical scavenging activity of natural hydroxybenzoic acids in oil and aqueous environments: Insights into the mechanism and kinetics. Phytochemistry 2022, 201, 113281. [Google Scholar] [CrossRef]
- Biela, M.; Kleinová, A.; Klein, E. Phenolic acids and their carboxylate anions: Thermodynamics of primary antioxidant action. Phytochemistry 2022, 200, 113254. [Google Scholar] [CrossRef]
Samples | Total Polyphenols (g/kg) | Proanthocyanidins (g/kg) |
---|---|---|
CJ | 19.98 ± 0.01 e | 3.15 ± 0.01 g |
ALG_CJ | 5.54 ± 0.17 b | 1.47 ± 0.02 c |
ALG_P_CJ | 8.60 ± 0.19 d | 2.37 ± 0.05 f |
ALG_S_CJ | 8.17 ± 0.58 c,d | 2.27 ± 0.03 e |
ALG_T_CJ | 4.50 ± 0.34 a | 1.16 ± 0.01 a |
ALG_P_S_CJ | 4.78 ± 0.17 a | 1.23 ± 0.02 b |
ALG_P_T_CJ | 7.83 ± 0.21 c | 2.15 ± 0.03 d |
Samples | C-3-G | C-3-A | NcA | CA | Q-3-R |
---|---|---|---|---|---|
CJ | 598.80 ± 0.07 f | 119.90 ± 0.02 f | 967.65 ± 3.25 g | 778.15 ± 2.16 f | 82.15 ± 0.87 e |
ALG_CJ | 404.37 ± 2.48 b | 89.97 ± 0.53 b | 260.14 ± 1.28 f | 162.33 ± 0.30 b | 32.61 ± 0.40 c |
ALG_P_CJ | 477.52 ± 0.59 e | 109.60 ± 0.22 e | 226.07 ± 0.67 d | 180.39 ± 3.89 c | 35.45 ± 0.02 d |
ALG_S_CJ | 410.69 ± 5.36 c | 93.40 ± 1.16 c | 252.38 ± 0.73 e | 132.95 ± 0.70 a | 31.30 ± 0.56 b |
ALG_T_CJ | 434.28 ± 0.01 d | 98.96 ± 0.09 d | 210.57 ± 0.68 c | 181.03 ± 3.00 c | 32.71 ± 0.24 c |
ALG_P_S_CJ | 330.21 ± 1.57 a | 73.39 ± 0.80 a | 125.59 ± 0.04 a | 229.51 ± 0.56 e | 25.95 ± 0.16 a |
ALG_P_T_CJ | 433.30 ± 0.01 d | 98.74 ± 0.09 d | 157.44 ± 0.39 b | 213.03 ± 1.28 d | 26.91 ± 0.66 a |
Samples | FRAP | CUPRAC | DPPH | ABTS |
---|---|---|---|---|
CJ | 15.39 ± 0.03 e | 1052.01 ± 1.47 g | 140.85 ± 0.78 f | 145.85 ± 0.85 g |
ALG_CJ | 3.83 ± 0.05 b | 261.44 ± 1.23 c | 21.93 ± 0.11 b | 42.56 ± 0.21 c |
ALG_P_CJ | 6.48 ± 0.08 d | 438.00 ± 1.93 f | 30.19 ± 0.56 d | 86.99 ± 0.07 f |
ALG_S_CJ | 6.21 ± 0.08 d | 428.34 ± 1.68 e | 38.54 ± 0.64 e | 68.66 ± 0.77 e |
ALG_T_CJ | 3.00 ± 0.08 a | 184.67 ± 1.29 a | 20.17 ± 0.90 a | 17.39 ± 0.48 a |
ALG_P_S_CJ | 3.19 ± 0.10 a | 203.98 ± 1.49 b | 20.31 ± 0.95 a | 21.50 ± 0.72 b |
ALG_P_T_CJ | 5.78 ± 0.25 c | 391.99 ± 1.48 d | 26.87 ± 0.51 c | 66.00 ± 0.23 d |
TP | PAC | FRAP | CUPRAC | DPPH | ABTS | ANT | PA | Q-3-R | |
---|---|---|---|---|---|---|---|---|---|
TP | 1 | ||||||||
PAC | 0.9996 | 1 | |||||||
FRAP | 0.9957 | 0.9951 | 1 | ||||||
CUPRAC | 0.9961 | 0.9976 | 0.9911 | 1 | |||||
DPPH | 0.7878 | 0.8079 | 0.7635 | 0.8131 | 1 | ||||
ABTS | 0.9622 | 0.9586 | 0.9641 | 0.9567 | 0.6426 | 1 | |||
ANT | 0.4130 | 0.4111 | 0.4133 | 0.3711 | 0.3525 | 0.3665 | 1 | ||
PA | −0.4104 | −0.4088 | −0.4171 | −0.3698 | −0.3260 | −0.3719 | −0.9932 | 1 | |
Q-3-R | −0.0531 | −0.0519 | −0.0304 | −0.0437 | −0.2028 | −0.0210 | −0.1306 | 0.0804 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kopjar, M.; Ćorković, I.; Šimunović, J.; Pichler, A. Encapsulation of Chokeberry Polyphenols by Ionic Gelation: Impact of Pullulan and Disaccharides Addition to Alginate Beads. Appl. Sci. 2025, 15, 6320. https://doi.org/10.3390/app15116320
Kopjar M, Ćorković I, Šimunović J, Pichler A. Encapsulation of Chokeberry Polyphenols by Ionic Gelation: Impact of Pullulan and Disaccharides Addition to Alginate Beads. Applied Sciences. 2025; 15(11):6320. https://doi.org/10.3390/app15116320
Chicago/Turabian StyleKopjar, Mirela, Ina Ćorković, Josip Šimunović, and Anita Pichler. 2025. "Encapsulation of Chokeberry Polyphenols by Ionic Gelation: Impact of Pullulan and Disaccharides Addition to Alginate Beads" Applied Sciences 15, no. 11: 6320. https://doi.org/10.3390/app15116320
APA StyleKopjar, M., Ćorković, I., Šimunović, J., & Pichler, A. (2025). Encapsulation of Chokeberry Polyphenols by Ionic Gelation: Impact of Pullulan and Disaccharides Addition to Alginate Beads. Applied Sciences, 15(11), 6320. https://doi.org/10.3390/app15116320