Comparative Analysis of Mineralogical Composition and Radioactivity Levels in Stone Samples from the Archaeological Site of Halaesa (Sicily, Italy)
Abstract
:1. Introduction
2. Archaeological and Geological Context
3. Materials and Methods
3.1. Sampling
3.2. μ-Energy-Dispersive X-Ray Fluorescence (μ-EDXRF) Spectrometry
3.3. µ-Raman Measurements
3.4. X-Ray Diffraction (XRD) Measurements
3.5. Ion Chromatography (IC) Measurements
3.6. High-Purity Germanium (HPGe) Gamma Spectrometry
- (i)
- 226Ra: based on the 295.21 and 351.92 keV (214Pb) and 1120.29 keV (214Bi) gamma-ray lines;
- (ii)
- 232Th: using the 911.21 and 968.97 keV (228Ac) gamma-ray lines;
- (iii)
- 40K: evaluated from its 1460.8 keV gamma-ray line [48].
3.7. Radiological Health Hazards
3.7.1. Absorbed Gamma Dose Rate
3.7.2. Annual Effective Dose Equivalent
3.7.3. Activity Concentration Index
3.7.4. Alpha Index
3.8. 222Rn Exhalation Rate
4. Results and Discussion
4.1. μ-EDXRF Analysis
4.2. Molecular/Mineralogical Characterization
4.3. Ion Chromatography Analysis
4.4. Radioactivity and Radon Exhalation Analysis
4.5. Evaluation of the Radiological Hazard
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carettoni, G. Tusa (Messina). Scavi di Halaesa. Prima relazione. In Notizie Degli Scavi di Antichità; Accademia Nazionale dei Lincei: Roma, Italy, 1959; Volume 16, pp. 293–349. [Google Scholar]
- Carettoni, G. Tusa (Messina). Scavi di Halaesa. Seconda relazione. In Notizie Degli Scavi di Antichità; Accademia Nazionale dei Lincei: Roma, Italy, 1961; Volume 15, pp. 266–321. [Google Scholar]
- Scibona, G.; Tingano, G. Alaisa-Halaesa. In Scavi e Ricerche (1970–2007); Sicania: Messina, Italy, 2009. [Google Scholar]
- Campagna, L.; Prag, J.R.W. La collina settentrionale ed il cd. Santuario di Apollo di Alesa. Le ricerche dell’Università di Messina e di Oxford negli anni 2017–2021. In Supplementi a «Kokalos», in Halaesa, du Site à la Cité, de la Cité au Site, Actes du Colloque International, Amiens; Fabrizio Serra Editore: Roma, Italy, 2023; pp. 19–41. [Google Scholar]
- Burgio, A.; De Domenico, R.; Marino, G.; Modica, F.S.; Polizzi, G.; Randazzo, M.; Schepis, L. Halaesa Arconidea (Tusa, Messina). Primi risultati dagli scavi delle fortificazioni, settore nord-est. FOLD&R 2023, 1–43. [Google Scholar]
- Costanzi, M.; Ferreira, F.; Gerber, F. Les travaux de la Misson Archéologique de l’UPJV à Halaesa (Campagne Juillet 2021): Le Projet Scientifique et les Enjeux de la Fouille du Théâtre. In Supplementi a «Kokalos», in Halaesa, du Site à la Cité, de la Cité au Site; Fabrizio Serra Editore: Roma, Italy, 2023; pp. 97–136. [Google Scholar]
- Spoto, S.E.; Paladini, G.; Caridi, F.; Crupi, V.; D’Amico, S.; Majolino, D.; Venuti, V. Multi-Technique Diagnostic Analysis of Plasters and Mortars from the Church of the Annunciation (Tortorici, Sicily). Materials 2022, 15, 958. [Google Scholar] [CrossRef] [PubMed]
- Raffaelli, G.; Robles Marín, P.; Guerrera, F.; Martín Martín, M.; Alcalá-García, F.J.; Amadori, M.L.; Asebriy, L.; El Amrani, I.-E.; Tejera de León, J. Archaeometric study of a typical medieval fortified granary (Amtoudi Agadir, Anti-Atlas Chain, southern Morocco): A key case for the maintenance and restoration of historical monuments. Ital. J. Geosci. 2016, 135, 280–299. [Google Scholar] [CrossRef]
- Columbu, S.; Antonelli, F.; Sitzia, F. Origin of Roman worked stones from St. Saturno christian Basilica (south Sardinia, Italy). Mediterr. Archaeol. Archaeom. 2018, 18, 17–36. [Google Scholar] [CrossRef]
- Lisci, C.; Sitzia, F.; Pires, V.; Aniceto, M.; Mirão, J. Stone Endurance: A Comparative Analysis of Natural and Artificial Weathering on Stone Longevity. Heritage 2023, 6, 4593–4617. [Google Scholar] [CrossRef]
- Kunz, A.; Groh, M.; Braun, F.; Brüggerhoff, S.; Orlowsky, J. Durability assessment of differently orientated surfaces of treated long-term weathered natural stones. J. Cult. Herit. 2022, 53, 176–183. [Google Scholar] [CrossRef]
- Siegesmund, S.; Wiese, F.; Klein, C.; Huster, U.; Pötzl, C. Weathering phenomena, rock physical properties and long-term restoration intervention: A case study from the St. Johannis Chapel of Lütgenrode (Lower Saxony, Germany). Environ. Earth Sci. 2022, 81, 389. [Google Scholar] [CrossRef]
- Eyssautier-Chuine, S.; Franco-Castillo, I.; Misra, A.; Hubert, J.; Vaillant-Gaveau, N.; Streb, C.; Mitchell, S.G. Evaluating the durability and performance of polyoxometalate-ionic liquid coatings on calcareous stones: Preventing biocolonisation in outdoor environments. Sci. Total Environ. 2023, 884, 163739. [Google Scholar] [CrossRef]
- Gaylarde, C.; Little, B. Biodeterioration of stone and metal—Fundamental microbial cycling processes with spatial and temporal scale differences. Sci. Total Environ. 2022, 823, 153193. [Google Scholar] [CrossRef]
- Fontenele, A.; Campos, V.; Matos, A.M.; Mesquita, E. A vulnerability index formulation for historic facades assessment. J. Build. Eng. 2023, 64, 105552. [Google Scholar] [CrossRef]
- Damas Mollá, L.; Sagarna, M.; Zabaleta, A.; Aranburu, A.; Antiguedad, I.; Uriarte, J.A. Methodology for assessing the vulnerability of built cultural heritage. Sci. Total Environ. 2022, 845, 157314. [Google Scholar] [CrossRef] [PubMed]
- Sangiorgio, V.; Uva, G.; Adam, J.M. Integrated Seismic Vulnerability Assessment of Historical Masonry Churches Including Architectural and Artistic Assets Based on Macro-element Approach. Int. J. Archit. Herit. 2021, 15, 1609–1622. [Google Scholar] [CrossRef]
- Ferrante, A.; Schiavoni, M.; Bianconi, F.; Milani, G.; Clementi, F. Influence of Stereotomy on Discrete Approaches Applied to an Ancient Church in Muccia, Italy. J. Eng. Mech. 2021, 147, 04021103. [Google Scholar] [CrossRef]
- Prieto-Taboada, N.; Ibarrondo, I.; Gómez-Laserna, O.; Martinez-Arkarazo, I.; Olazabal, M.A.; Madariaga, J.M. Buildings as repositories of hazardous pollutants of anthropogenic origin. J. Hazard. Mater. 2013, 248–249, 451–460. [Google Scholar] [CrossRef]
- Liritzis, I.; Laskaris, N.; Vafiadou, A.; Karapanagiotis, I.; Volonakis, P.; Papageorgopoulou, C.; Bratitsi, M. Archaeometry: An Overview. Sci. Cult. 2020, 6, 49. [Google Scholar] [CrossRef]
- Crupi, V.; La Russa, M.F.; Venuti, V.; Ruffolo, S.; Ricca, M.; Paladini, G.; Albini, R.; Macchia, A.; Denaro, L.; Birarda, G.; et al. A combined SR-based Raman and InfraRed investigation of pigmenting matter used in wall paintings: The San Gennaro and San Gaudioso Catacombs (Naples, Italy) case. Eur. Phys. J. Plus 2018, 133, 369. [Google Scholar] [CrossRef]
- Miliani, C.; Rosi, F.; Brunetti, B.G.; Sgamellotti, A. In Situ Noninvasive Study of Artworks: The MOLAB Multitechnique Approach. Acc. Chem. Res. 2010, 43, 728–738. [Google Scholar] [CrossRef]
- Attanasio, D.; Bultrini, G.; Ingo, G.M. The Possibility of Provenancing A Series of Bronze Punic Coins Found At Tharros (Western Sardinia) Using the Literature Lead Isotope Database. Archaeometry 2001, 43, 529–547. [Google Scholar] [CrossRef]
- Alberti, R.; Crupi, V.; Frontoni, R.; Galli, G.; La Russa, M.F.; Licchelli, M.; Majolino, D.; Malagodi, M.; Rossi, B.; Ruffolo, S.A.; et al. Handheld XRF and Raman equipment for the in situ investigation of Roman finds in the Villa dei Quintili (Rome, Italy). J. Anal. At. Spectrom. 2017, 32, 117–129. [Google Scholar] [CrossRef]
- Gheris, A. New dating approach based on the petrographical, mineralogical and chemical characterization of ancient lime mortar: Case study of the archaeological site of Hippo, Annaba city, Algeria. Herit. Sci. 2023, 11, 103. [Google Scholar] [CrossRef]
- Singh, M.; Vinodh Kumar, S. Mineralogical, Chemical, and Thermal Characterizations of Historic Lime Plasters of Thirteenth–Sixteenth-century Daulatabad Fort, India. Stud. Conserv. 2018, 63, 482–496. [Google Scholar] [CrossRef]
- Ion, R.-M.; Fierascu, R.-C.; Fierascu, I.; Senin, R.-M.; Ion, M.-L.; Leahu, M.; Turcanu-Carutiu, D. Influence of Fântâniṭa Lake (Chalk Lake) Water on the Degradation of Basarabi–Murfatlar Churches. In Engineering Geology for Society and Territory—Volume 8; Springer International Publishing: Cham, Switzerland, 2015; pp. 543–546. ISBN 9783319094083. [Google Scholar]
- Ben Chobba, M.; Weththimuni, M.; Messaoud, M.; Urzi, C.; Licchelli, M. Recent Advances in the Application of Metal Oxide Nanomaterials for the Conservation of Stone Artefacts, Ecotoxicological Impact and Preventive Measures. Coatings 2024, 14, 203. [Google Scholar] [CrossRef]
- Crupi, V.; D’Amico, S.; Denaro, L.; Donato, P.; Majolino, D.; Paladini, G.; Persico, R.; Saccone, M.; Sansotta, C.; Spagnolo, G.V.; et al. Mobile spectroscopy in archaeometry: Some case study. J. Spectrosc. 2018, 2018, 8295291. [Google Scholar] [CrossRef]
- Bottari, C.; Crisci, G.M.; Crupi, V.; Ignazzitto, V.; La Russa, M.F.; Majolino, D.; Ricca, M.; Rossi, B.; Ruffolo, S.A.; Teixeira, J.; et al. SANS investigation of the salt-crystallization- and surface-treatment-induced degradation on limestones of historic–artistic interest. Appl. Phys. A 2016, 122, 721. [Google Scholar] [CrossRef]
- Bendavid, J.; Modesto, A. Radiation therapy and antiangiogenic therapy: Opportunities and challenges. Cancer/Radiothérapie 2022, 26, 962–967. [Google Scholar] [CrossRef]
- Caridi, F.; Paladini, G.; Gregorio, F.; Lanza, F.; Lando, G.; Sfacteria, M.; Tuccinardi, S.; Venuti, M.; Cardiano, P.; Majolino, D.; et al. Natural Radioactivity Content and Radon Exhalation Rate Assessment for Building Materials from the Archaeological Park of Tindari, Sicily, Southern Italy: A Case Study. Int. J. Environ. Res. Public Health 2025, 22, 379. [Google Scholar] [CrossRef]
- Caridi, F.; Paladini, G.; Marguccio, S.; D’Agostino, M.; Belvedere, A.; Crupi, V.; Majolino, D.; Venuti, V. Radioactivity content in construction materials of assets of particular historical-artistic interest. In Proceedings of the 2023 IMEKO TC4 International Conference on Metrology for Archaeology and Cultural Heritage, Rome, Italy, 19–21 October 2023; pp. 877–881. [Google Scholar]
- Siculo, D. Biblioteca Storica; libro XIV, Chapter 16; Sellerio: Palermo, Italy, 1986; pp. 1–4. [Google Scholar]
- Facella, A. Alesa Arconidea. In Ricerche su Un’antica Città Della Sicilia Tirrenica; Edizioni Della Normale: Pisa, Italy, 2006. [Google Scholar]
- Cicerone. Verrine; libro III, Chapter 6; Carlo Signorelli: Milano, Italy, 1942; p. 13. [Google Scholar]
- Campagna, L.; Prag, J.R.W.; Miano, M.; Dalglish, D. Il Santuario di Apollo ad Alesa Arconidea: Gli scavi della Missione delle Università di Messina e di Oxford (2022–2023). In L’Isola dei Tesori. Ricerca Archeologica e Nuove Acquisizioni, Atti del Convegno Internazionale (Agrigento, Museo Archeologico Regionale “P. Griffo”, December 14-17, 2023); Ante Quem: Pianoro, Italy, 2024; pp. 135–242. [Google Scholar]
- Campagna, L.; Dalglish, D.; Giuliano, F.; Miano, M.; Prag, J.R.W. La missione congiunta delle università di Messina e Oxford. Il Santuario di Apollo: Ricerche topografiche e archeologiche nel triennio 2022–2024. In Halaesa Archonidea Dallo Scavo Della Città All’Analisi dei Contesti, A. Burgio (a Cura di), Atti del Convegno di Studi (Palermo, Tusa, Castel di Lucio, December 5–7, 2024); in press; 2024; Available online: https://www.unipa.it/dipartimenti/cultureesocieta/.content/documenti/Programma-Convegno-HALAESA-ARCHONIDEA.pdf (accessed on 13 March 2025).
- Lentini, F.; Carbone, S. Geology of Sicily. Mem. Descr. Cart. Geol. Ital. 2014, 95, 7–30. [Google Scholar]
- Servizio Geologico d’Italia. Carta Geologica d’Italia Alla Scala 1:50.000, Fogli 597 e 610 Cefalù-Castelbuono; ISPRA: Roma, Italy, 2012.
- Carbone, S.; Grasso, M.; Lentini, F.; Maniscalco, R. Note Illustrative Della Carta Geologica D’italia Alla Scala 1:50.000, F. 597-610 Cefalù-Castelbuono, Servizio Geologico d’Italia—ISPRA; ISPRA: Roma, Italy, 2023. [CrossRef]
- Lafuente, B.; Downs, R.T.; Yang, H.; Stone, N. The power of databases: The RRUFF project. In Highlights in Mineralogical Crystallography; Armbruster, T., Danisi, R.M., Eds.; W. De Gruyter: Berlin, Germany, 2015; pp. 1–30. ISBN 9783110417104. [Google Scholar]
- Gates-Rector, S.; Blanton, T. The Powder Diffraction File: A quality materials characterization database. Powder Diffr. 2019, 34, 352–360. [Google Scholar] [CrossRef]
- Prieto-Taboada, N.; Gómez-Laserna, O.; Martinez-Arkarazo, I.; Olazabal, M.A.; Madariaga, J.M. Optimization of two methods based on ultrasound energy as alternative to European standards for soluble salts extraction from building materials. Ultrason. Sonochem. 2012, 19, 1260–1265. [Google Scholar] [CrossRef]
- EN 16455/2014; Conservation of Cultural Heritage—Extraction and Determination of Soluble Salts in Natural Stone and Related Materials Used in and from Cultural Heritage. Slovenski inštitut za standardizacijo: Ljubljana, Slovenia. Available online: https://standards.iteh.ai/catalog/standards/cen/183d6740-886c-42fb-a619-87e47b0173e6/en-16455-2014 (accessed on 21 May 2025).
- United Nations Scientific Committee on the Effects of Atomic Radiation. Sources and Effects of Ionizing Radiation: Report to the General Assembly, with Scientific Annexes; UNSCEAR: New York, NY, USA, 2000; Volume I, ISBN 92-1-142238-8. [Google Scholar]
- Caridi, F.; Marguccio, S.; Durante, G.; Trozzo, R.; Fullone, F.; Belvedere, A.; D’Agostino, M.; Belmusto, G. Natural radioactivity measurements and dosimetric evaluations in soil samples with a high content of NORM. Eur. Phys. J. Plus 2017, 132, 56. [Google Scholar] [CrossRef]
- Agarwal, C.; Chaudhury, S.; Goswami, A.; Gathibandhe, M. True coincidence summing corrections in point and extended sources. J. Radioanal. Nucl. Chem. 2011, 289, 773–780. [Google Scholar] [CrossRef]
- Eckert-Ziegler Calibration Sources. 2020. Available online: https://www.ezag.com/products/isotope-products/ (accessed on 21 March 2025).
- Fabri, P.J. Measurement and Uncertainty. In Measurement and Analysis in Transforming Healthcare Delivery; Springer International Publishing: Cham, Switzerland, 2016; pp. 63–77. [Google Scholar]
- Ortec Gamma Vision Software User Manual. Available online: https://www.ortec-online.com/products/software/gammavision (accessed on 13 March 2025).
- ACCREDIA. Available online: https://www.accredia.it/ (accessed on 13 March 2025).
- European Commission. Radiation Protection 112: Radiological protection principles concerning the natural radioactivity of building materials. Office for official publications of the European Communities. 1999. Available online: https://op.europa.eu/en/publication-detail/-/publication/988f3243-5259-43a5-b621-fbff662deeb0/language-en (accessed on 21 February 2025).
- Italian Legislation D.Lgs. 101/20. Available online: https://www.gazzettaufficiale.it/eli/gu/2020/08/12/201/so/29/sg/pdf (accessed on 18 March 2025).
- Righi, S.; Bruzzi, L. Natural radioactivity and radon exhalation in building materials used in Italian dwellings. J. Environ. Radioact. 2006, 88, 158–170. [Google Scholar] [CrossRef]
- Nazaroff, W.W. Radon and Its Decay Products in Indoor Air; John Wiley and Sons, Incorporated: Hoboken, NJ, USA, 1988; ISBN 0-471-62810-7. [Google Scholar]
- Kotrappa, P.; Stieff, L. Application of NIST 222Rn Emanation Standards for Calibrating 222Rn Monitors. Radiat. Prot. Dosimetry 1994, 55, 211–218. [Google Scholar] [CrossRef]
- Rabiee, S.; Sohrabi, M.; Afarideh, H. Electret ion chamber parametric studies for high sensitivity radon monitoring. Radiat. Phys. Chem. 2025, 229, 112498. [Google Scholar] [CrossRef]
- Verrecchia, E.P. Litho-diagenetic implications of the calcium oxalate-carbonate biogeochemical cycle in semiarid calcretes, nazareth, israel. Geomicrobiol. J. 1990, 8, 87–99. [Google Scholar] [CrossRef]
- Bradbury, H.J.; Halloran, K.H.; Lin, C.Y.; Turchyn, A.V. Calcium isotope fractionation during microbially induced carbonate mineral precipitation. Geochim. Cosmochim. Acta 2020, 277, 37–51. [Google Scholar] [CrossRef]
- Gomez-Laserna, O.; Irto, A.; Irizar, P.; Lando, G.; Bretti, C.; Martinez-Arkarazo, I.; Campagna, L.; Cardiano, P. Non-Invasive Approach to Investigate the Mineralogy and Production Technology of the Mosaic Tesserae from the Roman Domus of Villa San Pancrazio (Taormina, Italy). Crystals 2021, 11, 1423. [Google Scholar] [CrossRef]
- Meinhold, G. Rutile and its applications in earth sciences. Earth-Sci. Rev. 2010, 102, 1–28. [Google Scholar] [CrossRef]
- Crupi, V.; Fazio, B.; Gessini, A.; Kis, Z.; La Russa, M.F.; Majolino, D.; Masciovecchio, C.; Ricca, M.; Rossi, B.; Ruffolo, S.A.; et al. TiO2–SiO2–PDMS nanocomposite coating with self-cleaning effect for stone material: Finding the optimal amount of TiO2. Constr. Build. Mater. 2018, 166, 464–471. [Google Scholar] [CrossRef]
- Bergamo, M.; de Ferri, L.; Cianciosi, A.; Gelichi, S.; Pojana, G. Spectroscopic investigation of early medieval tiles and bedding mortars from Nonantola (Modena, Italy) excavations. Eur. Phys. J. Plus 2019, 134, 209. [Google Scholar] [CrossRef]
- Kelloway, S.J.; Kononenko, N.; Torrence, R.; Carter, E.A. Assessing the viability of portable Raman spectroscopy for determining the geological source of obsidian. Vib. Spectrosc. 2010, 53, 88–96. [Google Scholar] [CrossRef]
- Gómez-Laserna, O.; Cardiano, P.; Diez-Garcia, M.; Prieto-Taboada, N.; Kortazar, L.; Olazabal, M.Á.; Madariaga, J.M. Multi-analytical methodology to diagnose the environmental impact suffered by building materials in coastal areas. Environ. Sci. Pollut. Res. 2018, 25, 4371–4386. [Google Scholar] [CrossRef] [PubMed]
- Pintér, F. The Combined Use of Ion Chromatography and Scanning Electron Microscopy to Assess Salt-affected Mineral Materials in Cultural Heritage. J. Am. Inst. Conserv. 2022, 61, 85–99. [Google Scholar] [CrossRef]
- Alves, C.; Figueiredo, C.A.M.; Sanjurjo-Sánchez, J.; Hernández, A.C. Salt Weathering of Natural Stone: A Review of Comparative Laboratory Studies. Heritage 2021, 4, 1554–1565. [Google Scholar] [CrossRef]
- Andreotti, S.; Franzoni, E.; Ruiz-Agudo, E.; Scherer, G.W.; Fabbri, P.; Sassoni, E.; Rodriguez-Navarro, C. New polymer-based treatments for the prevention of damage by salt crystallization in stone. Mater. Struct. 2019, 52, 17. [Google Scholar] [CrossRef]
- Nasraoui, M.; Nowik, W.; Lubelli, B. A comparative study of hygroscopic moisture content, electrical conductivity and ion chromatography for salt assessment in plasters of historical buildings. Constr. Build. Mater. 2009, 23, 1731–1735. [Google Scholar] [CrossRef]
- Munz, I.A.; Brandvoll, Ø.; Haug, T.A.; Iden, K.; Smeets, R.; Kihle, J.; Johansen, H. Mechanisms and rates of plagioclase carbonation reactions. Geochim. Cosmochim. Acta 2012, 77, 27–51. [Google Scholar] [CrossRef]
- Nuccetelli, C.; Risica, S.; D’Alessandro, M.; Trevisi, R. Natural radioactivity in building material in the European Union: Robustness of the activity concentration index I and comparison with a room model. J. Radiol. Prot. 2012, 32, 349. [Google Scholar] [CrossRef]
- Ravisankar, R.; Vanasundari, K.; Chandrasekaran, A.; Rajalakshmi, A.; Suganya, M.; Vijayagopal, P.; Meenakshisundaram, V. Measurement of natural radioactivity in building materials of Namakkal, Tamil Nadu, India using gamma-ray spectrometry. Appl. Radiat. Isot. 2012, 70, 699–704. [Google Scholar] [CrossRef]
- Guerrero, J.L.; Barba-Lobo, A.; Romero-Forte, C.; Bolívar, J.P. Assessment of metal(loid) and natural radionuclide pollution in surface sediments of an estuary affected by mining and phosphogypsum releases. Environ. Sci. Pollut. Res. 2024, 31, 51489–51503. [Google Scholar] [CrossRef]
- Shahrokhi, A.; Adelikhah, M.; Chalupnik, S.; Kovács, T. Multivariate statistical approach on distribution of natural and anthropogenic radionuclides and associated radiation indices along the north-western coastline of Aegean Sea, Greece. Mar. Pollut. Bull. 2021, 163, 112009. [Google Scholar] [CrossRef] [PubMed]
- Gruber, V.; Bossew, P.; De Cort, M.; Tollefsen, T. The European map of the geogenic radon potential. J. Radiol. Prot. 2013, 33, 51. [Google Scholar] [CrossRef] [PubMed]
- Montana, G.; Randazzo, L.; Ventura-Bordenca, C.; Giarrusso, R.; Baldassari, R.; Polito, A.M. The production cycle of lime-based plasters in the Late Roman settlement of Scauri, on the island of Pantelleria, Italy. Geoarchaeology 2019, 34, 631–647. [Google Scholar] [CrossRef]
- Belfiore, C.M.; La Russa, M.F.; Mazzoleni, P.; Pezzino, A.; Viccaro, M. Technological study of “ghiara” mortars from the historical city centre of Catania (Eastern Sicily, Italy) and petro-chemical characterisation of raw materials. Environ. Earth Sci. 2010, 61, 995–1003. [Google Scholar] [CrossRef]
- Janotka, I.; Martauz, P.; Bačuvčík, M. Design of Concrete Made with Recycled Brick Waste and Its Environmental Performance. Minerals 2021, 11, 463. [Google Scholar] [CrossRef]
- Akuo-ko, E.O.; Otoo, F.; Glover, E.T.; Amponsem, E.; Shahrokhi, A.; Csordás, A.; Kovács, T. Statistical assessment of natural radioactivity, radon activity, and associated radiological exposure due to artisanal mining in Atiwa West district of the Eastern region, Ghana. Heliyon 2024, 10, e34705. [Google Scholar] [CrossRef]
- Bulut, H.A.; Şahin, R. Radon, Concrete, Buildings and Human Health—A Review Study. Buildings 2024, 14, 510. [Google Scholar] [CrossRef]
Sample ID | Si | Ti | Al | Fe | Mn | Mg | Ca | K | P | Cr | Ni | Rb | Sr | S | Cu | Zn |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SP1/bulk | 10.80 ± 0.04 | 0.53 ± 0.01 | 2.98 ± 0.04 | 3.90 ± 0.01 | 0.45 ± 0.01 | 0.28 ± 0.01 | 79.77 ± 0.17 | 0.58 ± 0.01 | N.D. | 0.01 ± 0.01 | 0.02 ± 0.01 | 0.01 ± 0.01 | 0.58 ± 0.01 | 0.06 ± 0.01 | 0.01 ± 0.01 | 0.03 ± 0.01 |
SP2/bulk | 13.16 ± 0.09 | 0.58 ± 0.03 | 4.47 ± 0.04 | 6.68 ± 0.04 | 0.54 ± 0.01 | 0.39 ± 0.04 | 71.74 ± 0.09 | 1.78 ± 0.03 | N.D. | 0.03 ± 0.01 | 0.02 ± 0.01 | 0.03 ± 0.01 | 0.52 ± 0.01 | 0.04 ± 0.01 | 0.01 ± 0.01 | 0.03 ± 0.01 |
SP1/surf | 19.17 ± 3.22 | 1.46 ± 0.23 | 8.17 ± 1.16 | 10.91 ± 2.59 | 0.81 ± 0.14 | 0.39 ± 0.01 | 55.67 ± 6.62 | 2.57 ± 0.72 | 0.14 ± 0.01 | 0.04 ± 0.01 | 0.03 ± 0.01 | 0.02 ± 0.01 | 0.49 ± 0.01 | 0.07 ± 0.01 | 0.02 ± 0.01 | 0.05 ± 0.01 |
SP2/surf | 14.07 ± 0.38 | 0.54 ± 0.03 | 4.91 ± 0.06 | 6.25 ± 0.03 | 0.44 ± 0.01 | 0.44 ± 0.01 | 70.94 ± 0.49 | 1.79 ± 0.04 | N.D. | 0.03 ± 0.01 | N.D. | 0.02 ± 0.01 | 0.50 ± 0.01 | 0.03 ± 0.01 | 0.01 ± 0.01 | 0.04 ± 0.01 |
Sample ID | pH | CO32− | HCO3− | F− | Cl− | NO2− | NO3− | PO43− | SO42− | Na+ | NH4+ | K+ | Ca2+ | Mg2+ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SP1 | 7.8 ± 0.1 | 0 | 179.6 ± 3.2 | <LD | 150.2 ± 2.8 | <LD | 76.6 ± 1.9 | 24.7 ± 0.7 | <LD | 156.3 ± 3.0 | 7.9 ± 0.2 | 223.4 ± 4.5 | 3610.9 ± 54.2 | 106.6 ± 2.4 |
SP2 | 9.4 ± 0.1 | 72.6 ± 1.9 | 125.1 ± 2.3 | <LD | 208.3 ± 3.9 | <LD | 75.4 ± 2.1 | 38.3 ± 1.1 | <LD | 213.8 ± 3.6 | 10.0 ± 0.3 | 915.5 ± 12.7 | 5763.5 ± 84.6 | 105.2 ± 2.6 |
Occasional Tourists | Archaeologists | Caretakers | Administrators | |
---|---|---|---|---|
2021 | 1695 | 30 | 16 + 4 extra | 2 |
2022 | 3324 | 42 | 16 + 4 extra | 2 |
2023 | 3527 | 62 | 16 + 4 extra | 2 |
2024 | 3203 1 | 71 | 16 + 4 extra | 2 |
Sample ID | Specific Activity | E (Bq h−1 kg−1) | ||
---|---|---|---|---|
CRa (Bq kg−1 d.w.) | CTh (Bq kg−1 d.w.) | CK (Bq kg−1 d.w.) | ||
SP1 | 17.4 ± 2.2 | 10.9 ± 1.6 | 101 ± 13 | 0.0020 ± 0.0001 |
SP2 | 13.4 ± 1.8 | 12.1 ± 1.7 | 233 ± 28 | 0.0010 ± 0.0001 |
Sample ID | D (nGy h−1) | AEDE (mSv y−1) | ACI | Iα |
---|---|---|---|---|
SP1 | 18.8 | - | 0.15 | 0.09 |
SP2 | 23.2 | - | 0.18 | 0.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paladini, G.; Cardiano, P.; Caridi, F.; Pistorino, L.; Majolino, D.; Gregorio, F.; Lanza, S.; Lando, G.; Mottese, A.F.; Miano, M.; et al. Comparative Analysis of Mineralogical Composition and Radioactivity Levels in Stone Samples from the Archaeological Site of Halaesa (Sicily, Italy). Appl. Sci. 2025, 15, 5915. https://doi.org/10.3390/app15115915
Paladini G, Cardiano P, Caridi F, Pistorino L, Majolino D, Gregorio F, Lanza S, Lando G, Mottese AF, Miano M, et al. Comparative Analysis of Mineralogical Composition and Radioactivity Levels in Stone Samples from the Archaeological Site of Halaesa (Sicily, Italy). Applied Sciences. 2025; 15(11):5915. https://doi.org/10.3390/app15115915
Chicago/Turabian StylePaladini, Giuseppe, Paola Cardiano, Francesco Caridi, Lorenzo Pistorino, Domenico Majolino, Francesco Gregorio, Stefania Lanza, Gabriele Lando, Antonio Francesco Mottese, Marco Miano, and et al. 2025. "Comparative Analysis of Mineralogical Composition and Radioactivity Levels in Stone Samples from the Archaeological Site of Halaesa (Sicily, Italy)" Applied Sciences 15, no. 11: 5915. https://doi.org/10.3390/app15115915
APA StylePaladini, G., Cardiano, P., Caridi, F., Pistorino, L., Majolino, D., Gregorio, F., Lanza, S., Lando, G., Mottese, A. F., Miano, M., Gómez-Laserna, O., & Venuti, V. (2025). Comparative Analysis of Mineralogical Composition and Radioactivity Levels in Stone Samples from the Archaeological Site of Halaesa (Sicily, Italy). Applied Sciences, 15(11), 5915. https://doi.org/10.3390/app15115915