Supercritical Fluid Extraction—A Sustainable and Selective Alternative for Tannin Recovery from Biomass Resources
Abstract
:1. Introduction
2. Tannin Application
3. Tannin Classification and Sources
4. Extraction Methods
4.1. Extraction in Supercritical Fluids
4.1.1. Solvent Selection—Efficiency
4.1.2. Influence of Temperature
4.1.3. Selectivity
4.1.4. Reactivity of Supercritical Solvents
4.1.5. Environmental Issues and Perspectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Koopmann, A.K.; Schuster, C.; Torres-Rodríguez, J.; Kain, S.; Pertl-Obermayer, H.; Petutschnigg, A.; Hüsing, N. Tannin-Based Hybrid Materials and Their Applications: A Review. Molecules 2020, 25, 4910. [Google Scholar] [CrossRef] [PubMed]
- Das, A.K.; Islam, M.N.; Faruk, M.O.; Ashaduzzaman, M.; Dungani, R. Review on Tannins: Extraction Processes, Applications and Possibilities. S. Afr. J. Bot. 2020, 135, 58–70. [Google Scholar] [CrossRef]
- Minocha, S.; Kumari, A.; Tiwari, A.; Gupta, A.K. An Overview on Tannins. Int. J. Pharm. Biol. Sci. Arch. 2015, 3, 9–11. [Google Scholar]
- Fraga-Corral, M.; Otero, P.; Cassani, L.; Echave, J.; Garcia-Oliveira, P.; Carpena, M.; Chamorro, F.; Lourenço-Lopes, C.; Prieto, M.A.; Simal-Gandara, J. Traditional Applications of Tannin Rich Extracts Supported by Scientific Data: Chemical Composition, Bioavailability and Bioaccessibility. Foods 2021, 10, 251. [Google Scholar] [CrossRef] [PubMed]
- Das, R.K.; Mizan, A.; Zohra, F.T.; Ahmed, S.; Ahmed, K.S.; Hossain, H. Extraction of a Novel Tanning Agent from Indigenous Plant Bark and Its Application in Leather Processing. J. Leather Sci. Eng. 2022, 4, 18. [Google Scholar] [CrossRef]
- Chowdhury, S.A.; Vijayaraghavan, R.; MacFarlane, D.R. Distillable Ionic Liquid Extraction of Tannins from Plant Materials. Green Chem. 2010, 12, 1023–1028. [Google Scholar] [CrossRef]
- Pereira, C.G.; Meireles, M.A.A. Supercritical Fluid Extraction of Bioactive Compounds: Fundamentals, Applications and Economic Perspectives. Food Bioprocess Technol. 2010, 3, 340–372. [Google Scholar] [CrossRef]
- Fraga-Corral, M.; García-Oliveira, P.; Pereira, A.G.; Lourenço-Lopes, C.; Jimenez-Lopez, C.; Prieto, M.A.; Simal-Gandara, J. Technological Application of Tannin-Based Extracts. Molecules 2020, 25, 614. [Google Scholar] [CrossRef] [PubMed]
- Kardel, M.; Taube, F.; Schulz, H.; Schütze, W.; Gierus, M. Different Approaches to Evaluate Tannin Content and Structure of Selected Plant Extracts—Review and New Aspects. J. Appl. Bot. Food Qual. 2013, 86, 154–166. [Google Scholar] [CrossRef]
- Paaver, U.; Matto, V.; Raal, A. Total Tannin Content in Distinct Quercus robur L. Galls. J. Med. Plants Res. 2010, 4, 702–705. [Google Scholar]
- Ponticelli, M.; Carlucci, V.; Mecca, M.; Todaro, L.; Milella, L.; Russo, D. Extraction Optimization of Quercus cerris L. Wood Chips: A Comparative Study between Full Factorial Design (FFD) and Artificial Neural Network (ANN). Antioxidants 2024, 13, 1115. [Google Scholar] [CrossRef] [PubMed]
- Maimulyanti, A.; Prihadi, A.R.; Mellisani, B.; Nurhidayati, I.; Putri, F.A.R.; Puspita, F.; Widarsih, R.W. Green Extraction Technique To Separate Tannin From Coffee Husk Waste Using Natural Deep Eutectic Solvent (Nades). Rasayan J. Chem. 2023, 16, 2002–2008. [Google Scholar] [CrossRef]
- Murthy, P.S.; Naidu, M.M. Recovery of Phenolic Antioxidants and Functional Compounds from Coffee Industry By-Products. Food Bioprocess Technol. 2012, 5, 897–903. [Google Scholar] [CrossRef]
- Abdeltaif, S.A.; Sirelkhatim, K.A.; Hassan, A.B. Estimation of Phenolic and Flavonoid Compounds and Antioxidant Activity of Spent Coffee and Black Tea (Processing) Waste for Potential Recovery and Reuse in Sudan. Recycling 2018, 3, 27. [Google Scholar] [CrossRef]
- Raghunath, S.; Mallikarjunan, K. Optimization of Ultrasound-Assisted Extraction of Cold-Brewed Black Tea Using Response Surface Methodology. J. Food Process Eng. 2020, 43, e13540. [Google Scholar] [CrossRef]
- Paié-Ribeiro, J.; Baptista, F.; Gomes, M.J.; Teixeira, A.; Pinheiro, V.; Outor-Monteiro, D.; Barros, A.N. Exploring the Variability in Phenolic Compounds and Antioxidant Capacity in Olive Oil By-Products: A Path to Sustainable Valorization. Antioxidants 2024, 13, 1470. [Google Scholar] [CrossRef]
- Khelouf, I.; Karoui, I.J.; Lakoud, A.; Hammami, M.; Abderrabba, M. Comparative Chemical Composition and Antioxidant Activity of Olive Leaves Olea europaea L. of Tunisian and Algerian Varieties. Heliyon 2023, 9, e22217. [Google Scholar] [CrossRef]
- Yáñez Ruiz, D.R.; Martín García, A.I.; Moumen, A.; Molina Alcaide, E. Ruminal Fermentation and Degradation Patterns, Protozoa Population and Urinary Purine Derivatives Excretion in Goats and Wethers Fed Diets Based on Olive Leaves. J. Anim. Sci. 2004, 82, 3006–3014. [Google Scholar] [CrossRef]
- Caballero, A.S.; Romero-García, J.M.; Castro, E.; Cardona, C.A. Supercritical Fluid Extraction for Enhancing Polyphenolic Compounds Production from Olive Waste Extracts. J. Chem. Technol. Biotechnol. 2020, 95, 356–362. [Google Scholar] [CrossRef]
- ONEM, E. Supercritical Fluid Extracted Chestnut Tannin as Natural Biocide for Soaking Deamhouse Process of Leather Production. Leather Footwear J. 2023, 23, 75–82. [Google Scholar] [CrossRef]
- Žitek Makoter, T.; Knez Marevci, M.; Knez, Ž. Ellagitannin Content in Extracts of the Chestnut Wood Aesculus. Molecules 2024, 29, 4015. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, S.; Yazaki, Y. Tannins from Acacia mearnsii De Wild. Bark: Tannin Determination and Biological Activities. Molecules 2018, 23, 837. [Google Scholar] [CrossRef] [PubMed]
- Pansera, M.R.; Iob, G.A.; Atti-Santos, A.C.; Rossato, M.; Atti-Serafini, L.; Cassel, E. Extraction of Tannin by Acacia mearnsii with Supercritical Fluids. Braz. Arch. Biol. Technol. 2004, 47, 995–998. [Google Scholar] [CrossRef]
- Cabrera-Barjas, G.; Butto-Miranda, N.; Nesic, A.; Moncada-Basualto, M.; Segura, R.; Bravo-Arrepol, G.; Escobar-Avello, D.; Moeini, A.; Riquelme, S.; Neira-Carrillo, A. Condensed Tannins from Pinus radiata Bark: Extraction and Their Nanoparticles Preparation in Water by Green Method. Int. J. Biol. Macromol. 2024, 278, 134598. [Google Scholar] [CrossRef]
- Feria-Reyes, R.; Ramírez-Cruz, S.O.; Ruiz-Aquino, F.; Robledo-Taboada, L.H.; Sánchez-Medina, M.A.; Mijangos-Ricárdez, O.F.; Gabriel-Parra, R.; Suárez-Mota, M.E.; Puc-Kauil, R.; Porcallo-Vargas, J. Pine Bark as a Potential Source of Condensed Tannin: Analysis through Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), and Energy Dispersive X-Ray (EDX). Forests 2023, 14, 1433. [Google Scholar] [CrossRef]
- Kraus, T.E.C.; Dahlgren, R.A.; Zasoski, R.J. Tannins in Nutrient Dynamics of Forest Ecosystems—A Review. Plant Soil 2003, 256, 41–66. [Google Scholar] [CrossRef]
- Kilpeläinen, P.; Liski, E.; Saranpää, P. Optimising and Scaling up Hot Water Extraction of Tannins from Norway Spruce and Scots Pine Bark. Ind. Crops Prod. 2023, 192, 116089. [Google Scholar] [CrossRef]
- Zeppetzauer, F.; Süss, R.; Nadányi, R.; Putz, R.F.; Lisý, A.; Paulik, C.; Šurina, I.; Strižincová, P.; Huemer, K.; Kamm, B. Environmentally Friendly Extraction from Picea abies Bark as an Approach to Accessing Valuable Antioxidants in Biorefineries. Processes 2023, 11, 2145. [Google Scholar] [CrossRef]
- Bello, A.; Bergmann, U.; Vepsäläinen, J.; Leiviskä, T. Effects of Tree Harvesting Time and Tannin Cold/Hot-Water Extraction Procedures on the Performance of Spruce Tannin Biocoagulant for Water Treatment. Chem. Eng. J. 2022, 449, 137809. [Google Scholar] [CrossRef]
- Talmaciu, A.I.; Ravber, M.; Volf, I.; Knez, Ž.; Popa, V.I. Isolation of Bioactive Compounds from Spruce Bark Waste Using Sub- and Supercritical Fluids. J. Supercrit. Fluids 2016, 117, 243–251. [Google Scholar] [CrossRef]
- Yang, Y.; Kilmartin, P.A. Advancing Anthocyanin Extraction: Optimising Solvent, Preservation, and Microwave Techniques for Enhanced Recovery from Merlot Grape Marc. Food Chem. 2025, 472, 142648. [Google Scholar] [CrossRef] [PubMed]
- Watrelot, A.A.; Delchier, N. How Does Extended Maceration Affect Tannin and Color of Red Wines from Cold-Hardy Grape Cultivars? Foods 2025, 14, 1187. [Google Scholar] [CrossRef] [PubMed]
- Wimalasiri, P.M.; Harrison, R.; Donaldson, I.; Kemp, B.; Tian, B. Characterisation and Extractability of Tannins in Pinot Noir Grape Skin, Seed, and Stem: Impact of Leaf Removal, Clone, and Rootstock. J. Food Compos. Anal. 2024, 130, 106186. [Google Scholar] [CrossRef]
- Shirmohammadli, Y.; Efhamisisi, D.; Pizzi, A. Tannins as a Sustainable Raw Material for Green Chemistry: A Review. Ind. Crops Prod. 2018, 126, 316–332. [Google Scholar] [CrossRef]
- Pizzi, A. Tannins: Prospectives and Actual Industrial Applications. Biomolecules 2019, 9, 344. [Google Scholar] [CrossRef]
- Santos, S.C.R. Purifying Water with Plant-Based Sustainable Solutions: Tannin Coagulants and Sorbents. Groundw. Sustain. Dev. J. 2023, 23, 101004. [Google Scholar] [CrossRef]
- Ibrahim, A.; Yaser, A.Z.; Lamaming, J. Synthesising Tannin-Based Coagulants for Water and Wastewater Application: A Review. J. Environ. Chem. Eng. 2021, 9, 105007. [Google Scholar] [CrossRef]
- Akhlash, P.S.; Kumar, S. Applications of Tannins in Industry. In Tannins—Structural Properties, Biological Properties and Current Knowledge; IntechOpen: London, UK, 2020. [Google Scholar]
- Cano, A.; Andres, M.; Chiralt, A.; González-Martinez, C. Use of Tannins to Enhance the Functional Properties of Protein Based Films. Food Hydrocoll. 2020, 100, 105443. [Google Scholar] [CrossRef]
- Hosseini, M.; Moghaddam, L.; Barner, L.; Cometta, S.; Hutmacher, D.W.; Medeiros Savi, F. The Multifaceted Role of Tannic Acid: From Its Extraction and Structure to Antibacterial Properties and Applications. Prog. Polym. Sci. 2025, 160, 101908. [Google Scholar] [CrossRef]
- Besharati, M.; Maggiolino, A.; Palangi, V.; Kaya, A.; Jabbar, M.; Eseceli, H.; De Palo, P.; Lorenzo, J.M. Tannin in Ruminant Nutrition: Review. Molecules 2022, 27, 8273. [Google Scholar] [CrossRef]
- Maugeri, A.; Lombardo, G.E.; Cirmi, S.; Süntar, I.; Barreca, D.; Laganà, G.; Navarra, M. Pharmacology and Toxicology of Tannins. Arch. Toxicol. 2022, 96, 1257–1277. [Google Scholar] [CrossRef]
- POLARIS, M.-R. Tannin Market Size, Share, Trends, Industry Analysis Report: By Source (Plant and Brown Algae), Product Type, Application, and Region (North America, Europe, Asia Pacific, Latin America, and Middle East & Africa)—Market Forecast, 2025–2034. Available online: https://www.polarismarketresearch.com/industry-analysis/tannin-market/analysis-type (accessed on 21 March 2025).
- Khanbabaee, K.; van Ree, T. Tannins: Classification and Definition. Nat. Prod. Rep. 2001, 18, 641–649. [Google Scholar] [CrossRef] [PubMed]
- Arbenz, A.; Avérous, L. Chemical Modification of Tannins to Elaborate Aromatic Biobased Macromolecular Architectures. Green Chem. 2015, 17, 2626–2646. [Google Scholar] [CrossRef]
- Molnar, M.; Jakovljević Kovač, M.; Pavić, V. A Comprehensive Analysis of Diversity, Structure, Biosynthesis and Extraction of Biologically Active Tannins from Various Plant-Based Materials Using Deep Eutectic Solvents. Molecules 2024, 29, 2615. [Google Scholar] [CrossRef] [PubMed]
- Veggi, P.C.; Prado, J.M.; Bataglion, G.A.; Eberlin, M.N.; Meireles, M.A.A. Obtaining Phenolic Compounds from Jatoba (Hymenaea courbaril L.) Bark by Supercritical Fluid Extraction. J. Supercrit. Fluids 2014, 89, 68–77. [Google Scholar] [CrossRef]
- Pleszczyńska, M.; Szczodrak, J.; Przemysłowej, Z.M. Taniny i Ich Rozkład Enzymatyczny Tannins and Their Enzymatic Degradation. Biotechnologia 2005, 1, 152–165. [Google Scholar]
- Khoo, H.E.; Azlan, A.; Tang, S.T.; Lim, S.M. Anthocyanidins and Anthocyanins: Colored Pigments as Food, Pharmaceutical Ingredients, and the Potential Health Benefits. Food Nutr. Res. 2017, 61, 1361779. [Google Scholar] [CrossRef]
- de Hoyos-Martínez, P.L.; Merle, J.; Labidi, J.; Charrier-El Bouhtoury, F. Tannins Extraction: A Key Point for Their Valorization and Cleaner Production. J. Clean. Prod. 2019, 206, 1138–1155. [Google Scholar] [CrossRef]
- Khan, F.; Jeong, G.J.; Khan, M.S.A.; Tabassum, N.; Kim, Y.M. Seaweed-Derived Phlorotannins: A Review of Multiple Biological Roles and Action Mechanisms. Mar. Drugs 2022, 20, 384. [Google Scholar] [CrossRef]
- Sharma, K.; Kumar, V.; Kaur, J.; Tanwar, B.; Goyal, A.; Sharma, R.; Gat, Y.; Kumar, A. Health Effects, Sources, Utilization and Safety of Tannins: A Critical Review. Toxin Rev. 2021, 40, 432–444. [Google Scholar] [CrossRef]
- Ben Aziz, M.; Moutaoikil, M.; Zeng, L.; Mouhaddach, A.; Boudboud, A.; Hajji, L.; Hajjaj, H. Review on Oenological Tannins: Conventional and Emergent Extraction Techniques, and Characterization. J. Food Meas. Charact. 2024, 18, 4528–4544. [Google Scholar] [CrossRef]
- Guo, L.; Qiang, T.; Ma, Y.; Ren, L.; Dai, T. Purification and Characterization of Hydrolysable Tannins Extracted from Coriaria nepalensis Bark Using Macroporous Resin and Their Application in Gallic Acid Production. Ind. Crops Prod. 2021, 162, 113302. [Google Scholar] [CrossRef]
- Sepperer, T.; Hernandez-ramos, F.; Labidi, J.; Janneke, G.; Bogner, B.; Petutschnigg, A.; Tondi, G. Purification of Industrial Tannin Extract through Simple Solid-Liquid Extractions. Ind. Crops Prod. 2019, 139, 111502. [Google Scholar] [CrossRef]
- Schmidt, M.A.; Halvorson, J.J.; Gonzalez, J.M.; Hagerman, A. Kinetics and binding capacity of six soils for structurally defined hydrolyzable and condensed tannins and related phenols. J. Soils Sediments 2012, 12, 366–375. [Google Scholar] [CrossRef]
- Downey, M.O.; Hanlin, R.L. Comparison of Ethanol and Acetone Mixtures for Extraction of Condensed Tannin from Grape Skin. S. Afr. J. Enol. Vitic. 2010, 31, 154–159. [Google Scholar] [CrossRef]
- Vo, T.P.; Tran, T.Q.D.; Phan, T.H.; Huynh, H.D.; Vo, T.T.Y.; Vo, N.M.K.; Ha, M.P.; Le, T.N.; Nguyen, D.Q. Ultrasonic-Assisted and Enzymatic-Assisted Extraction to Recover Tannins, Flavonoids, and Terpenoids from Used Tea Leaves Using Natural Deep Eutectic Solvents. Int. J. Food Sci. Technol. 2023, 58, 5855–5864. [Google Scholar] [CrossRef]
- Kyllönen, H.; Borisova, A.S.; Heikkinen, J.; Kilpeläinen, P.; Rahikainen, J.; Laine, C. Enzyme-Assisted Nanofiltration to Enrich Tannins from Softwood Bark Extract. Ind. Crops Prod. 2023, 205, 117441. [Google Scholar] [CrossRef]
- Kenneth, S. Sonochemistry. Science 1990, 247, 1439–1445. [Google Scholar] [CrossRef]
- Chemat, F.; Zill-E-Huma; Khan, M.K. Applications of Ultrasound in Food Technology: Processing, Preservation and Extraction. Ultrason. Sonochem. 2011, 18, 813–835. [Google Scholar] [CrossRef]
- Carrera, C.; Ruiz-Rodríguez, A.; Palma, M.; Barroso, C.G. Ultrasound Assisted Extraction of Phenolic Compounds from Grapes. Anal. Chim. Acta 2012, 732, 100–104. [Google Scholar] [CrossRef]
- Chemat, F.; Vian, M.A.; Cravotto, G. Green Extraction of Natural Products: Concept and Principles. Int. J. Mol. Sci. 2012, 13, 8615–8627. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.F.; Yang, X.H.; Zhao, L.D.; Wang, Y. Ultrasonic-Assisted Extraction of Epimedin C from Fresh Leaves of Epimedium and Extraction Mechanism. Innov. Food Sci. Emerg. Technol. 2009, 10, 54–60. [Google Scholar] [CrossRef]
- Chemat, F.; Rombaut, N.; Meullemiestre, A.; Turk, M.; Perino, S.; Fabiano-Tixier, A.S.; Abert-Vian, M. Review of Green Food Processing Techniques. Preservation, Transformation, and Extraction. Innov. Food Sci. Emerg. Technol. 2017, 41, 357–377. [Google Scholar] [CrossRef]
- Palos-Hernández, A.; González-Paramás, A.M.; Santos-Buelga, C. Latest Advances in Green Extraction of Polyphenols from Plants, Foods and Food By-Products. Molecules 2025, 30, 55. [Google Scholar] [CrossRef] [PubMed]
- Awad, A.M.; Kumar, P.; Ismail-Fitry, M.R.; Jusoh, S.; Ab Aziz, M.F.; Sazili, A.Q. Green Extraction of Bioactive Compounds from Plant Biomass and Their Application in Meat as Natural Antioxidant. Antioxidants 2021, 10, 1465. [Google Scholar] [CrossRef]
- Jakobek, L.; Matić, P. Non-Covalent Dietary Fiber—Polyphenol Interactions and Their Influence on Polyphenol Bioaccessibility. Trends Food Sci. Technol. 2019, 83, 235–247. [Google Scholar] [CrossRef]
- Patra, A.; Abdullah, S.; Pradhan, R.C. Review on the Extraction of Bioactive Compounds and Characterization of Fruit Industry By-Products. Bioresour. Bioprocess. 2022, 9, 14. [Google Scholar] [CrossRef]
- Samuel, H.S.; Nweke-Maraizu, U.; Etim, E.E. Supercritical Fluids: Properties, Formation and Applications. J. Eng. Ind. Res. 2023, 4, 176–188. [Google Scholar]
- Guggilla, M.; Chow, S.C.; Siow, L.F. Supercritical Fluid Extraction of Chebulagic Acid from Terminalia bellirica Fruits (Baheda). J. Food Process. Preserv. 2022, 46, e16455. [Google Scholar] [CrossRef]
- Watanabe, M.; Sato, T.; Inomata, H.; Smith, R.L.; Arai, K.; Kruse, A.; Dinjus, E. Chemical Reactions of C1 Compounds in Near-Critical and Supercritical Water. Chem. Rev. 2004, 104, 5803–5821. [Google Scholar] [CrossRef]
- Smyth, C.P. Table of Dielectric Constants and Electric Dipole Moments of Substances in the Gaseous State. J. Am. Chem. Soc. 1954, 76, 1206. [Google Scholar] [CrossRef]
- Dombro, R.A.; McHugh, M.A.; Prentice, G.A.; Westgate, C.R. Dielectric Constant Behavior of Carbon Dioxide-Methanol Mixtures in the Mixture-Critical and Liquid-Phase Regions. Fluid Phase Equilib. 1991, 61, 227–241. [Google Scholar] [CrossRef]
- Markom, M.; Hasan, M.; Daud, W.R.W.; Singh, H.; Jahim, J.M. Extraction of Hydrolysable Tannins from Phyllanthus niruri Linn.: Effects of Solvents and Extraction Methods. Sep. Purif. Technol. 2007, 52, 487–496. [Google Scholar] [CrossRef]
- Plugatyr, A.; Svishchev, I.M. Accurate Thermodynamic and Dielectric Equations of State for High-Temperature Simulated Water. Fluid Phase Equilib. 2009, 277, 145–151. [Google Scholar] [CrossRef]
- Joshi, D.R.; Adhikari, N. An Overview on Common Organic Solvents and Their Toxicity. J. Pharm. Res. Int. 2019, 28, 1–18. [Google Scholar] [CrossRef]
- Zhu, R.; Han, B.C.; Dong, K.; Wei, G.S. A Review of Carbon Dioxide Disposal Technology in the Converter Steelmaking Process. Int. J. Miner. Metall. Mater. 2020, 27, 1421–1429. [Google Scholar] [CrossRef]
- Franck, E.U.; Deul, R. Dielectric Behaviour of Methanol and Related Polar Fluids at High Pressures and Temperatures. Faraday Discuss. Chem. Soc. 1978, 66, 191–198. [Google Scholar] [CrossRef]
- Newton, P.; Copeland, C.S.; Benson, S.W. Dielectric Constant of Ethanol in the Neighborhood of the Critical Temperature. J. Chem. Phys. 1962, 37, 339–346. [Google Scholar] [CrossRef]
- Pereira, V.J.; Matos, R.L.; Cardoso, S.G.; Soares, R.O.; Santana, G.L.; Costa, G.M.N.; Vieira De Melo, S.A.B. A New Approach to Select Solvents and Operating Conditions for Supercritical Antisolvent Precipitation Processes by Using Solubility Parameter and Group Contribution Methods. J. Supercrit. Fluids 2013, 81, 128–146. [Google Scholar] [CrossRef]
- Campbell, A.N.; Chatterjee, R.M. The Critical Constants and Orthobaric Densities of Acetone, Chloroform, Benzene, and Carbon Tetrachloride. Can. J. Chem. 1969, 47, 3893–3897. [Google Scholar] [CrossRef]
- Manjare, S.D.; Dhingra, K. Supercritical Fluids in Separation and Purification: A Review. Mater. Sci. Energy Technol. 2019, 2, 463–484. [Google Scholar] [CrossRef]
- Uwineza, P.A.; Waśkiewicz, A. Recent Advances in Supercritical Fluid Extraction of Natural Bioactive Compounds from Natural Plant Materials. Molecules 2020, 25, 3847. [Google Scholar] [CrossRef] [PubMed]
- Ameer, K.; Shahbaz, H.M.; Kwon, J.H. Green Extraction Methods for Polyphenols from Plant Matrices and Their Byproducts: A Review. Compr. Rev. Food Sci. Food Saf. 2017, 16, 295–315. [Google Scholar] [CrossRef]
- Palaiogiannis, D.; Chatzimitakos, T.; Athanasiadis, V.; Bozinou, E.; Makris, D.P.; Lalas, S.I. Successive Solvent Extraction of Polyphenols and Flavonoids from Cistus creticus L. Leaves. Oxygen 2023, 3, 274–286. [Google Scholar] [CrossRef]
- Markom, M.; Hasan, M.; Daud, W.R.W.; Anuar, N.; Hassan, O.; Singh, H. Chemical Profiling and Quantification of Tannins in Phyllanthus niruri Linn. Fractionated by SFE Method. Sep. Sci. Technol. 2010, 46, 71–78. [Google Scholar] [CrossRef]
- Putra, N.R.; Rizkiyah, D.N.; Aziz, A.H.A.; Mamat, H.; Jusoh, W.M.S.W.; Idham, Z.; Yunus, M.A.C.; Irianto, I. Influence of Particle Size in Supercritical Carbon Dioxide Extraction of Roselle (Hibiscus sabdariffa) on Bioactive Compound Recovery, Extraction Rate, Diffusivity, and Solubility. Sci. Rep. 2023, 13, 10871. [Google Scholar] [CrossRef]
- Cano, A.; Contreras, C.; Chiralt, A.; González-Martínez, C. Using Tannins as Active Compounds to Develop Antioxidant and Antimicrobial Chitosan and Cellulose Based Films. Carbohydr. Polym. Technol. Appl. 2021, 2, 100156. [Google Scholar] [CrossRef]
- Munteanu, I.G.; Apetrei, C. Analytical Methods Used in Determining Antioxidant Activity: A Review. Int. J. Mol. Sci. 2021, 22, 3380. [Google Scholar] [CrossRef]
- Arumugham, T.; Rambabu, K.; Hasan, S.W.; Show, P.L.; Rinklebe, J.; Banat, F. Supercritical Carbon Dioxide Extraction of Plant Phytochemicals for Biological and Environmental Applications—A Review. Chemosphere 2021, 271, 129525. [Google Scholar] [CrossRef]
- Chen, J.; Yang, J.; Ma, L.; Li, J.; Shahzad, N.; Kim, C.K. Structure-Antioxidant Activity Relationship of Methoxy, Phenolic Hydroxyl, and Carboxylic Acid Groups of Phenolic Acids. Sci. Rep. 2020, 10, 5666. [Google Scholar] [CrossRef]
- Antony, A.; Farid, M. Effect of Temperatures on Polyphenols during Extraction. Appl. Sci. 2022, 12, 2107. [Google Scholar] [CrossRef]
- Essien, S.O.; Young, B.; Baroutian, S. Recent Advances in Subcritical Water and Supercritical Carbon Dioxide Extraction of Bioactive Compounds from Plant Materials. Trends Food Sci. Technol. 2020, 97, 156–169. [Google Scholar] [CrossRef]
- Cavalcanti, R.N.; Navarro-Díaz, H.J.; Santos, D.T.; Rostagno, M.A.; Meireles, M.A.A. Supercritical Carbon Dioxide Extraction of Polyphenols from Pomegranate (Punica granatum L.) Leaves: Chemical Composition, Economic Evaluation and Chemometric Approach. J. Food Res. 2012, 1, 282. [Google Scholar] [CrossRef]
- Radzali, S.A.; Markom, M.; Saleh, N. Parameter Effects and Optimisation in Supercritical Fluid Extraction of Phenolic Compounds from Labisia pumila. Separations 2022, 9, 385. [Google Scholar] [CrossRef]
- Ashraf-Khorassani, M.; Taylor, L.T. Sequential Fractionation of Grape Seeds into Oils, Polyphenols, and Procyanidins via a Single System Employing CO2-Based Fluids. J. Agric. Food Chem. 2004, 52, 2440–2444. [Google Scholar] [CrossRef] [PubMed]
- Conde, E.; Hemming, J.; Smeds, A.; Reinoso, B.D.; Moure, A.; Willför, S.; Domínguez, H.; Parajó, J.C. Extraction of Low-Molar-Mass Phenolics and Lipophilic Compounds from Pinus pinaster Wood with Compressed CO2. J. Supercrit. Fluids 2013, 81, 193–199. [Google Scholar] [CrossRef]
- do Prado, A.C.P.; da Silva, H.S.; da Silveira, S.M.; Barreto, P.L.M.; Vieira, C.R.W.; Maraschin, M.; Ferreira, S.R.S.; Block, J.M. Effect of the Extraction Process on the Phenolic Compounds Profile and the Antioxidant and Antimicrobial Activity of Extracts of Pecan Nut [Carya illinoinensis (Wangenh) C. Koch] Shell. Ind. Crops Prod. 2014, 52, 552–561. [Google Scholar] [CrossRef]
- Maran, J.P.; Manikandan, S.; Priya, B.; Gurumoorthi, P. Box-Behnken Design Based Multi-Response Analysis and Optimization of Supercritical Carbon Dioxide Extraction of Bioactive Flavonoid Compounds from Tea (Camellia sinensis L.) Leaves. J. Food Sci. Technol. 2015, 52, 92–104. [Google Scholar] [CrossRef]
- Adeva-Andany, M.M.; Carneiro-Freire, N.; Donapetry-García, C.; Rañal-Muíño, E.; López-Pereiro, Y. The Importance of the Ionic Product for Water to Understand the Physiology of the Acid-Base Balance in Humans. Biomed Res. Int. 2014, 2014, 695281. [Google Scholar] [CrossRef]
- International Association for the Properties of Water and Steam. Revised Release on the Ionization Constant of H2O; International Association for the Properties of Water and Steam: Banff, AL, Canada, 2019; Volume 35, pp. 1631–1638. [Google Scholar]
- Bandura, A.V.; Lvov, S.N. The Ionization Constant of Water over Wide Ranges of Temperature and Density. J. Phys. Chem. Ref. Data 2006, 35, 15–30. [Google Scholar] [CrossRef]
- Kritzer, P.; Dinjus, E. An Assessment of Supercritical Water Oxidation (SCWO): Existing Problems, Possible Solutions and New Reactor Concepts. Chem. Eng. J. 2001, 83, 207–214. [Google Scholar] [CrossRef]
- Munir, M.T.; Kheirkhah, H.; Baroutian, S.; Quek, S.Y.; Young, B.R. Subcritical Water Extraction of Bioactive Compounds from Waste Onion Skin. J. Clean. Prod. 2018, 183, 487–494. [Google Scholar] [CrossRef]
- Plaza, M.; Turner, C. Pressurized Hot Water Extraction of Bioactives. TrAC Trends Anal. Chem. 2015, 71, 39–54. [Google Scholar] [CrossRef]
- Brand, S.; Susanti, R.F.; Kim, S.K.; Lee, H.-S.; Kim, J.; Sang, B.I. Supercritical Ethanol as an Enhanced Medium for Lignocellulosic Biomass Liquefaction: Influence of Physical Process Parameters. Energy 2013, 59, 173–182. [Google Scholar] [CrossRef]
- De Boer, K.; Bahri, P.A. Supercritical Methanol for Fatty Acid Methyl Ester Production: A Review. Biomass Bioenergy 2011, 35, 983–991. [Google Scholar] [CrossRef]
- De Marco, I.; Riemma, S.; Iannone, R. Life Cycle Assessment of Supercritical CO2 Extraction of Caffeine from Coffee Beans. J. Supercrit. Fluids 2018, 133, 393–400. [Google Scholar] [CrossRef]
- Keglevich, G. Natural Product Extraction: Principles and Applications; Royal Society of Chemistry: London, UK, 2013; Volume 1, ISBN 9780124095472. [Google Scholar]
- Fraguela-Meissimilly, H.; Bastías-Monte, J.M.; Vergara, C.; Ortiz-Viedma, J.; Lemus-Mondaca, R.; Flores, M.; Toledo-Merma, P.; Alcázar-Alay, S.; Gallón-Bedoya, M. New Trends in Supercritical Fluid Technology and Pressurized Liquids for the Extraction and Recovery of Bioactive Compounds from Agro-Industrial and Marine Food Waste. Molecules 2023, 28, 4421. [Google Scholar] [CrossRef]
- Carlqvist, K.; Wallberg, O.; Lidén, G.; Börjesson, P. Life Cycle Assessment for Identification of Critical Aspects in Emerging Technologies for the Extraction of Phenolic Compounds from Spruce Bark. J. Clean. Prod. 2022, 333, 130093. [Google Scholar] [CrossRef]
- Vardanega, R.; Osorio-Tobón, J.F.; Duba, K. Contributions of Supercritical Fluid Extraction to Sustainable Development Goal 9 in South America: Industry, Innovation, and Infrastructure. J. Supercrit. Fluids 2022, 188, 105681. [Google Scholar] [CrossRef]
- Yadav, R.D.; Dhamole, P.B. Techno Economic and Life Cycle Assessment of Lycopene Production from Tomato Peels Using Different Extraction Methods. Biomass Convers. Biorefinery 2023, 14, 25495–25511. [Google Scholar] [CrossRef]
- Aslanbay Guler, B.; Tepe, U.; Imamoglu, E. Sustainable Point of View: Life Cycle Analysis for Green Extraction Technologies. ChemBioEng Rev. 2024, 11, 348–362. [Google Scholar] [CrossRef]
Plant | Extraction Method | Tannin Content (Plant Part) | Type of Tannins | Applications | Ref. |
---|---|---|---|---|---|
Quebracho | C | 164.3 mg/g DM | Condensed | Oil and ceramics industry, anticorrosive for metal, wood preservation, packaging animal food, leather processing | [2,8,9] |
Oak | C | 74.82 CTC mg TAE/g DM 863.07 HTC mg TAE/g DM | Hydrolysable Condensed | Wine quality improvement, wood preservation, antioxidants | [2,10,11] |
MAE | 91 TTC mg/g DM (bark) 472 TTC mg/g DM (gall) | ||||
Coffee | C | 5.45 mg TAE/g (pulp) | Condensed | Antioxidants | [12,13,14] |
CFW | 12.2 mg GAE/g (husk) 13.2 mg GAE/g (skin) | ||||
CFS | 52.07 mg CE/g | ||||
Tea | UAE | 30.63 TTC mg GAE/g DM | Condensed | Antioxidants, antimicrobial | [14,15] |
C | 110.96 TPC mg/g | ||||
CFS | 47.4 mg CE/g | ||||
Olive | C | 3.28 mg EE/g (EOCs) | Condensed | Coagulants, adhesives, colorants, feed | [16,17,18,19] |
M | 41.34–67.99 mg CE/g DE | ||||
C | 11.1 mg/g DM | ||||
SFEFS | 14.01 TPC mg GAE/g | ||||
Chestnut | SE | 299.63 mg/g DM | Hydrolysable | Leather-soaking process, wood adhesives, wine production, anticorrosive primers | [20,21] |
CM | 257.59 mg/g DM | ||||
UAE | 297.24 mg/g DM | ||||
SFE | 132.59 mg/g DM | ||||
Mimosa | C | 108.2 mg/g DM | Condensed | Leather tanning, wood adhesives, feeding | [8,9,22,23] |
SFE | 135 mg/g DM | ||||
Tara | C | 647.5 mg EGE/g DM | Hydrolysable | Leather tanning, wood preservation, | [2,9] |
Gambier | C | 169.5 mg C1E/g DM | Condensed | Leather tanning | [9] |
Pine | C | 35 mg/g (bark) | Condensed | Food and pharmaceutical industry, nutrition, agriculture, food packaging | [24,25,26] |
51.4 mg/g (bark) | |||||
70.4 mg/g | |||||
Spruce | C | 70 mg/g | Condensed Hydrolysable | Antioxidants, food, medicinal, adsorbents, biocoagulants | [27,28,29,30] |
94.82 TTC mg TAE/g DM (bark) | |||||
41.6 TEY mg/g DM (bark) | |||||
SFE | 253.64 TTC mg TAE/g DM (bark) | ||||
Grape | C | 9.93 mg EE/g (marc) | Condensed | Plastic and wood adhesive, | [2,31,32,33] |
MAE | 66.9 mg EE/g (marc) | ||||
C | 25.75 TTC mg GAE/g | ||||
UAE | 20.04 TTC mg GAE/g | ||||
C | 9.9 mg/g (skin) 106 mg/g (seed) 25 mg/g (stem) |
Solvent | Critical Temperature | Critical Pressure | Density (20 °C) [77] | Critical Density | Dielectric Constant [75] | Critical Dielectric Constant | Reference |
---|---|---|---|---|---|---|---|
Tc [°C] | pc [MPa] | ρc [g/cm3] | ρc [g/cm3] | Κ [-] | Kc [-] | ||
Carbon dioxide | 31.1 | 7.38 | 0.00198 | 0.469 | 1.6 | <1.1 | [38,43,45] |
Water | 374.3 | 22.12 | 0.998 | 0.348 | 78.36 | 5.35 | [78] |
Methanol | 239.6 | 8.09 | 0.791 | 0.272 | 32.61 | 8.40 (10 Mpa, 218 °C) | [79] |
Ethanol | 240.9 | 6.14 | 0.789 | 0.276 | 24.85 | 1.90 (244 °C) | [80] |
Chloroform | 319.0 | 5.79 | 1.479 | 0.491 | 4.71 | n.a | [81,82] |
Raw Material | Solvents; Conditions; Efficiency | AA; TPC; TTC; Specific Compounds Content | Analysis Methods | Source |
---|---|---|---|---|
Jatoba bark (Hymenaea courbaril L. var stilbocarpa) | CO2; 50 °C, 35 MPa; 0.28% | 3.58 IC50 mg/cm3; n.a.; n.a.; terpenoids, phenolic carboxylic acids | DPPH, ESI-MS, TLC, Folin–Denis method | [47] |
CO2:H2O(9:1, v/v); 50 °C, 35 MPa; 24% | 0.2 IC50 mg/cm3; 335.00 mg TAE/g extract; 335.00 mg TAE/g extract;terpenoids, alkaloids | |||
CO2:EtOH(9:1, v/v); 50 °C, 35 MPa; 0.58% | 7.08 IC50 mg/cm3; n.a.; n.a.; terpenoid, glycosylated flavonoid canferol, flavonoids | |||
Black wattle bark (Acacia mearnsii) | CO2:EtOH; 60 °C, 25 MPa; n.a. | n.a.; n.a.; 95 mg/g raw material; tannic acid | HPLC | [23] |
CO2:H2O; 60 °C, 25 MPa; n.a. | n.a.; n.a.; 135 mg/g raw material; tannic acid | |||
Grapevine seed (Vitis vitifera) | CO2:MeOH(7:3, v/v); 80 °C, 65.5 MPa; n.a. | n.a.; n.a.; 600 mg/g raw material; catechin, epicatechin | HPLC, MS, SFC-UV | [97] |
CO2:MeOH(65:35, v/v); 80 °C, 65.5 MPa; n.a. | n.a.; n.a.; 720 mg/g raw material; catechin, epicatechin | |||
CO2:MeOH(60:40, v/v); 80 °C, 65.5 MPa; n.a. | n.a.; n.a.; 770 mg/g raw material; catechin, epicatechin | |||
Chestnut shells industrial waste (Castanea Sativa Mill.) | CO2:MeOH(8:2); 70 °C, 7 MPa, 1 h; 35.23% | n.a.; 60.1%; n.a.; no detailed content of the extract provided | Hide-powder method | [20] |
H2O:CO2; 80 °C, 10 MPa, 3 h; 25.65% | n.a.; 55.35%; n.a.; no detailed content of the extract provided | |||
Barro fruit powder (Terminalia bellirica) | CO2:EtOH; 60 °C, 20 MPa, 1 h; n.a. | n.a.; 96.10% (chebulagic acid), 79.92% g/g sample; chebulagic acid | NMR, HPLC, MS | [71] |
SFE dynamic CO2; 60 °C, 20 MPa, 1 h; n.a. | n.a.; 15.79% (chebulagic acid); 48.40% g/g sample; chebulagic acid | |||
SE EtOH 95%; 100 °C, 0.1 MPa, 10 h; n.a. | n.a.; 40% (chebulagic acid); 39.40% g/g sample; chebulagic acid | |||
Pomegranate leaves (Punica granatum L.) | CO2; 40–50 °C, 10/15/20/30 MPa; 0.21–0.67% | 40.20–60.70%; n.a.; 257–389 mg/g; eicosanol, squalene, tocoferol derivatives | MS | [95] |
Pine sapwood and knotwood (Pinus pinaster) | CO2; 50 °C, 25 MPa; 1.60% | n.a.; n.a.; 19.38 mg/g; stilbenes, flavonoids and lignans | Folin-Ciocalteu method TEAC, FID | [98] |
CO2:EtOH(9:1); 50 °C, 25 MPa; 4.1% | n.a.; 7.60%; 75.61 mg/g; stilbenes, flavonoids and lignans | |||
Pecan nut shell (Carya illinoinensis) | CO2:EtOH(9:1); 50 °C, 10 MPa; n.a. | 4.95 µmol TEAC/g 1.91 mg TEAC/g; 0.34 mg GAE/g; 0.48 mg CE g; gallic acid, epigallocatechin, epicatechin gallate | Folin–Ciocalteau method, HPLC, ABTS, DPPH | [99] |
CO2:EtOH(9:1); 50 °C, 20 MPa; n.a. | 100.00 µmol TEAC/g 79.20 mg TEAC/g; 9.30 mg GAE/g; 29.00 mg CE g; gallic acid, epigallocatechin, epicatechin gallate | |||
Tea leaves (Camellia sinensis L.) | CO2:EtOH; 50 °C, 18,8 MPa; n.a. | 2.62 μMol TEAC/cm3; 1.31 mg GAE/cm3; 0.50 mg TAE/cm3;no detail content of extra provided | n.a. | [100] |
Spruce bark (Picea abies) | CO2: 70% EtOHaq; 40 °C, 10 MPa; 0.65% | n.a.; 690.94 mg/g dry extract; 111.47 mg/g dry extract; ferulic acid, p-coumaric acid | HPLC | [30] |
CO2: 70% EtOHaq; 50 °C, 10 MPa; 0.80% | n.a.; 477.16 mg/g dry extract; 71.71 mg/g dry extract; ferulic acid, p-coumaric acid | |||
CO2: 70% EtOHaq; 60 °C, 10 MPa; 0.70% | n.a.; 829.35 mg/g dry extract; 253.64 mg/g dry extract; ferulic acid, p-coumaric acid | |||
CO2: 70% EtOHaq; 50 °C, 15 MPa; 1.81% | n.a.; 525.02 mg/g dry extract; 109.64 mg/g dry extract; ferulic acid, p-coumaric acid | |||
CO2: 70% EtOHaq; 50 °C, 20 MPa; 2.08% | n.a.; 377.44 mg/g dry extract; 86.57 mg/g dry extract; ferulic acid, p-coumaric acid |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Słota, P.; Harasym, J.; Jacukowicz-Sobala, I. Supercritical Fluid Extraction—A Sustainable and Selective Alternative for Tannin Recovery from Biomass Resources. Appl. Sci. 2025, 15, 5914. https://doi.org/10.3390/app15115914
Słota P, Harasym J, Jacukowicz-Sobala I. Supercritical Fluid Extraction—A Sustainable and Selective Alternative for Tannin Recovery from Biomass Resources. Applied Sciences. 2025; 15(11):5914. https://doi.org/10.3390/app15115914
Chicago/Turabian StyleSłota, Patryk, Joanna Harasym, and Irena Jacukowicz-Sobala. 2025. "Supercritical Fluid Extraction—A Sustainable and Selective Alternative for Tannin Recovery from Biomass Resources" Applied Sciences 15, no. 11: 5914. https://doi.org/10.3390/app15115914
APA StyleSłota, P., Harasym, J., & Jacukowicz-Sobala, I. (2025). Supercritical Fluid Extraction—A Sustainable and Selective Alternative for Tannin Recovery from Biomass Resources. Applied Sciences, 15(11), 5914. https://doi.org/10.3390/app15115914