Evaluation of Moraine Sediment Dam Stability Under Permafrost Thawing in Glacial Environments: A Case Study of Gurudongmar Lake, Sikkim Himalayas
Abstract
:1. Introduction
2. Study Background
3. Research Approach
3.1. Study Area
3.2. Geology of the Study Area
4. Methodology
4.1. Geotechnical and Geological Investigations
4.2. Numerical Stability Analysis of Natural Dams
4.3. Climate Profiling of the Study Area
5. Results and Discussions
5.1. Laboratory Geotechnical Investigation
5.2. Numerical Stability Analysis for Increased Lake Water Level
5.3. Climatic Factor and Permafrost Thawing
5.4. Numerical Stability Analysis of AB Cross-Section Under Permafrost Thawing
6. Conclusions
- The findings from the finite element analysis emphasise the need to evaluate the structural responses of moraine sediment dams to changing water levels. The study reveals that, in the absence of permafrost thawing effects, the AB dam currently exhibits lower displacement values, indicating a strong design that can withstand significant water level fluctuations. In contrast, dams CD and EF may necessitate additional stability enhancements to ensure their performance under similar conditions.
- The upstream slope of the CD and EF dam sections exhibits significant deformation, signalling a potential failure that could result in debris collapsing into the lake. This collapse may elevate the water table, leading to an overflow scenario for the AB section, ultimately threatening its stability and increasing the risk of downstream flooding.
- The stability of the AB section of the downstream natural dam surrounding Gurudongmar Lake faces significant risks from a potential 10-metre rise in water levels and increased pore pressure resulting from permafrost melting. This situation underscores the urgent need for monitoring and risk mitigation strategies in light of climate change. As temperatures rise and permafrost thaws, future conditions could further compromise the stability of the downstream slope of the AB dam. Under steady-state seepage conditions, the factor of safety is likely to decrease, heightening the risk of structural failure.
- To enhance safety and reduce risks associated with glacial lake outburst floods, it is recommended to install an early warning system and restrict tourism activities on the downstream side of the AB section. Additionally, implementing geotechnical measures to improve the stability of the downstream slope of the AB section will be crucial for future protection.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thompson, L.G. Past, present, and future of glacier archives from the world’s highest mountains. Proc. Am. Philos. Soc. 2017, 161, 226–243. [Google Scholar]
- Kaser, G.; Großhauser, M.; Marzeion, B. Contribution potential of glaciers to water availability in different climate regimes. Proc. Natl. Acad. Sci. USA 2010, 107, 20223–20227. [Google Scholar] [CrossRef] [PubMed]
- Bolch, T.; Kulkarni, A.; Kääb, A.; Huggel, C.; Paul, F.; Cogley, J.G.; Frey, H.; Kargel, J.S.; Fujita, K.; Scheel, M.; et al. The state and fate of Himalayan glaciers. Science 2012, 336, 310–314. [Google Scholar] [CrossRef]
- Emmer, A.; Vilímek, V. Review Article: Lake and breach hazard assessment for moraine-dammed lakes: An example from the Cordillera Blanca (Peru). Nat. Hazards Earth Syst. Sci. 2013, 13, 1551–1565. [Google Scholar] [CrossRef]
- Emmer, A.; Vilímek, V.; Klimeš, J. Glacial lake outburst floods (GLOFs) database project. In Landslide Science for a Safer Geoenvironment; The International Programme on Landslides (IPL); Springer International Publishing: Berlin/Heidelberg, Germany, 2014; Volume 1, pp. 107–111. [Google Scholar]
- Lliboutry, L.; Arnao, B.M.; Schneider, B. Glaciological problems set by the control of dangerous lakes in Cordillera Blanca, Peru. III. Study of moraines and mass balances at Safuna. J. Glaciol. 1977, 18, 275–290. [Google Scholar] [CrossRef]
- Dubey, S.; Goyal, M.K. Glacial Lake Outburst Flood Hazard, Downstream Impact, and Risk Over the Indian Himalayas. Water Resour. Res. 2020, 56, e2019WR026533. [Google Scholar] [CrossRef]
- Sattar, A.; Haritashya, U.K.; Kargel, J.S.; Karki, A. Transition of a small Himalayan glacier lake outburst flood to a giant transborder flood and debris flow. Sci. Rep. 2022, 12, 12421. [Google Scholar] [CrossRef]
- Richardson, S.D.; Reynolds, J.M. An overview of glacial hazards in the Himalayas. Quat. Int. 2000, 65–66, 31–47. [Google Scholar] [CrossRef]
- Veh, G.; Korup, O.; von Specht, S.; Roessner, S.; Walz, A. Unchanged frequency of moraine-dammed glacial lake outburst floodsin the Himalaya. Nat. Clim. Change 2019, 9, 379–383. [Google Scholar] [CrossRef]
- Worni, R.; Huggel, C.; Clague, J.J.; Schaub, Y.; Stoffel, M. Coupling glacial lake impact, dambreach, and flood processes: A modeling perspective. Geomorphology 2014, 224, 161–176. [Google Scholar] [CrossRef]
- Maskey, S.; Kayastha, R.B.; Kayastha, R. Glacial lakes outburst floods (GLOFs) modelling of Thulagi and lower Barun glacial lakes of Nepalese Himalaya. Prog. Disaster Sci. 2020, 7, 100106. [Google Scholar] [CrossRef]
- Vilca, O.; Mergili, M.; Emmer, A.; Frey, H.; Huggel, C. The 2020 glacial lake outburst flood process chain at Lake Salkantaycocha (Cordillera Vilcabamba, Peru). Landslides 2021, 18, 2211–2223. [Google Scholar] [CrossRef]
- Vuichard, D.; Zimmermann, M. The 1985 catastrophic drainage of a moraine-dammed lake, Khumbu Himal, Nepal: Cause and consequences. Mt. Res. Dev. 1987, 7, 91–110. [Google Scholar] [CrossRef]
- Linsbauer, A.; Frey, H.; Haeberli, W.; Machguth, H.; Azam, M.F.; Allen, S. Modelling glacier-bed overdeepenings and possible future lakes for the glaciers in the Himalaya—Karakoram region. Ann. Glaciol. 2016, 57, 119–130. [Google Scholar] [CrossRef]
- Taylor, C.; Robinson, T.R.; Dunning, S.; Rachel Carr, J.; Westoby, M. Glacial lake outburst floods threaten millions globally. Nat. Commun. 2023, 14, 487. [Google Scholar] [CrossRef]
- Haritashya, U.K.; Kargel, J.S.; Shugar, D.H.; Leonard, G.J.; Strattman, K.; Watson, C.S.; Shean, D.; Harrison, S.; Mandli, K.T.; Regmi, D. Evolution and Controls of Large Glacial Lakes in the Nepal Himalaya. Remote Sens. 2018, 10, 798. [Google Scholar] [CrossRef]
- Harrison, S.; Kargel, J.S.; Huggel, C.; Reynolds, J.; Shugar, D.H.; Betts, R.A.; Emmer, A.; Glasser, N.; Haritashya, U.K.; Klimeš, J.; et al. Climate change and the global pattern of moraine-dammed glacial lake outburst floods. Cryosphere 2018, 12, 1195–1209. [Google Scholar] [CrossRef]
- Zheng, G.; Allen, S.K.; Bao, A.; Ballesteros-Cánovas, J.A.; Huss, M.; Zhang, G.; Li, J.; Yuan, Y.; Jiang, L.; Yu, T.; et al. Increasing risk of glacial lake outburst floods from future Third Pole deglaciation. Nat. Clim. Change 2021, 11, 411–417. [Google Scholar] [CrossRef]
- King, O.; Dehecq, A.; Quincey, D.; Carrivick, J. Contrasting geometric and dynamic evolution of lake and land-terminating glaciers in the central Himalaya. Glob. Planet. Change 2018, 167, 46–60. [Google Scholar] [CrossRef]
- Yu, Y.; Li, B.; Li, Y.; Jiang, W. Retrospective Analysis of Glacial Lake Outburst Flood (GLOF) Using AI Earth InSAR and Optical Images: A Case Study of South Lhonak Lake, Sikkim. Remote Sens. 2024, 16, 2307. [Google Scholar] [CrossRef]
- Rivas, D.S.; Somos-Valenzuela, M.A.; Hodges, B.R.; McKinney, D.C. Predicting outflow induced by moraine failure in glacial lakes: The Lake Palcacocha case from an uncertainty perspective. Nat. Hazards Earth Syst. Sci. 2015, 15, 1163–1179. [Google Scholar] [CrossRef]
- Kalvoda, J.; Rosenfeld, C.L. (Eds.) Geomorphological Hazards in High Mountain Areas; Springer Science Business Media: Berlin/Heidelberg, Germany, 2012; Volume 46. [Google Scholar]
- Wang, L.Y.; Chen, W.Z.; Tan, X.Y.; Tan, X.J.; Yuan, J.Q.; Liu, Q. Evaluation of mountain slope stability considering the impact of geological interfaces using discrete fractures model. J. Mater. Sci. 2019, 16, 2184–2202. [Google Scholar] [CrossRef]
- Kundu, J.; Sarkar, K.; Verma, A.K.; Singh, T.N. Novel methods for quantitative analysis of kinematic stability and slope mass rating in jointed rock slopes with the aid of a new computer application. Bull Eng Geol Environ. 2022, 81, 29. [Google Scholar] [CrossRef]
- Haq, M.A.; Baral, P. Study of permafrost distribution in Sikkim Himalayas using Sentinel-2 satellite images and logistic regression modelling. Geomorphology 2019, 333, 123–136. [Google Scholar] [CrossRef]
- Aggarwal, S.; Rai, S.C.; Thakur, P.K.; Emmer, A. Inventory and recently increasing GLOF susceptibility of glacial lakes in Sikkim, Eastern Himalaya. Geomorphology 2017, 295, 39–54. [Google Scholar] [CrossRef]
- Govindha Raj, B.K.; Kumar, V.K.; SN, R. Remote sensing based inventory of glacial lakes in Sikkim Himalaya: Semi-automated approach using satellite data. Geomat. Nat. Hazards Risk 2013, 4, 241–253. [Google Scholar] [CrossRef]
- Yin, A. Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth-Sci. Rev. 2006, 76, 1–131. [Google Scholar] [CrossRef]
- Carosi, R.; Montomoli, C.; Iaccarino, S.; Visonà, D. Structural evolution, metamorphism and melting in the Greater Himalayan Sequence in central-western Nepal. Geol. Soc. Lond. Spec. Publ. 2019, 483, 305–323. [Google Scholar] [CrossRef]
- Carosi, R.; MontoMoli, C.; Batto, D.; Visona, D. Leucogranite intruding the South Tibetan Detachment in Western Nepal; implications for exhumation models in the Himalayas. Terra Nova 2013, 25, 478–489. [Google Scholar] [CrossRef]
- Kellett, D.; Grujic, D.; Mot-Tram, C.; Mukul, M.; Larson, K.P. Virtual field guide for the Darjeeling-Sik-kim Himalaya India. Geological field trips in the Himalaya Kar-akoram and Tibet. J. Virtual Explor. 2014, 47, 1441–8142. [Google Scholar] [CrossRef]
- Chowdhury, A.; Sharma, M.C.; De, S.K.; Debnath, M. Glacier changes in the Chhombo Chhu Watershed of the Tista basin between 1975 and 2018, the Sikkim Himalaya, India. Earth Syst. Sci. Data 2021, 13, 2923–2944. [Google Scholar] [CrossRef]
- IS 1498:1970; (Reaffirmed 2021) Classification and Identification of Soils for General Engineering Purposes. Bureau of Indian Standards: New Delhi, India, 1970.
- IS 2720; (Part 4): 1985 (Reaffirmed 2020) Methods of Test for Soils: Part 4—Grain Size Analysis. Bureau of Indian Standards: New Delhi, India, 1985.
- IS 2720; (Part 17): 1986 (Reaffirmed 2021) Methods of Test for Soils: Part 17—Laboratory Determination of Permeability. Bureau of Indian Standards: New Delhi, India, 1986.
- IS 2720; (Part 10): 1991 (Reaffirmed 2020) Methods of Test for Soils: Part 10—Determination of Unconfined Compressive Strength. Bureau of Indian Standards: New Delhi, India, 1991.
- Matsui, T.; San, K.-C. Finite element slope stability analysis by shear strength reduction technique. Soils Found. 1992, 32, 59–70. [Google Scholar] [CrossRef]
- Huntington, J.L.; Hegewisch, K.C.; Daudert, B.; Morton, C.G.; Abatzoglou, J.T.; McEvoy, D.J.; Erickson, T. Climate engine: Cloud computing and visualization of climate and remote sensing data for advanced natural resource monitoring and process understanding. Bull. Am. Meteorol. Soc. 2017, 98, 2397–2410. [Google Scholar] [CrossRef]
- Bolton, M. The strength and dilatancy of sands. Géotechnique 1986, 36, 65–78. [Google Scholar] [CrossRef]
- IPCC. A special report of working groups I and II of the intergovernmental panel on climate change. In Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation; Field, C.B., Barros, V., Stocker, T.F., Qin, D., Dokken, D.J., Ebi, K.L., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar] [CrossRef]
- Huss, M.; Bookhagen, B.; Huggel, C.; Jacobsen, D.; Bradley, R.S.; Clague, J.J.; Vuille, M.; Buytaert, W.; Cayan, D.R.; Greenwood, G.; et al. Toward mountains without permanent snow and ice. Earth’s Future 2017, 5, 418–435. [Google Scholar] [CrossRef]
- Knight, J.; Harrison, S. Mountain glacial and paraglacial environments under global climate change: Lessons from the past, future directions and policy implications. Geogr. Ann. Ser. A Phys. Geogr. 2014, 96, 245–264. [Google Scholar] [CrossRef]
- Korup, O.; Tweed, F. Ice, moraine, and landslide dams in mountainous terrain. Quat. Sci. Rev. 2007, 26, 3406–3422. [Google Scholar] [CrossRef]
- Jin, H.; Li, S.; Cheng, G.; Wang, S.; Li, X. Permafrost and climatic change in China. Glob. Planet. Change 2000, 26, 387–404. [Google Scholar] [CrossRef]
- Fukui, K.; Fujii, Y.; Mikhailov, N.; Ostanin, O.; Iwahana, G. The lower limit of mountain permafrost in the Russian Altai Mountains. Permafr. Periglac. Process. 2007, 18, 129–136. [Google Scholar] [CrossRef]
- Bockheim, J.G. Global distribution of cryosols with mountain permafrost: An overview. Permafr. Periglac. Process. 2015, 26, 1–12. [Google Scholar] [CrossRef]
- Huggel, C.; Haeberli, W.; Kääb, A.; Bieri, D.; Richardson, S. An assessment procedure for glacial hazards in the Swiss Alps. Can. Geotech. J. 2004, 41, 1068–1083. [Google Scholar] [CrossRef]
- Daout, S.; Dini, B.; Haeberli, W.; Doin, M.P.; Parsons, B. Ice loss in the Northeastern Tibetan Plateau permafrost as seen by 16 yr of ESA SAR missions. Earth Planet. Sci. Lett. 2020, 545, 116404. [Google Scholar] [CrossRef]
- Dini, B.; Daout, S.; Manconi, A.; Loew, S. Classification of slope processes based on multitemporal DInSAR analyses in the Himalaya of NW Bhutan. Remote Sens. Environ. 2019, 233, 111408. [Google Scholar] [CrossRef]
- Shugar, D.H.; Jacquemart, M.; Shean, D.; Bhushan, S.; Upadhyay, K.; Sattar, A.; Schwanghart, W.; McBride, S.; Van Wyk de Vries, M.; Mergili, M.; et al. A massive rock and ice avalanche caused the 2021 disaster at Chamoli, Indian Himalaya. Science 2021, 373, 300–306. [Google Scholar] [CrossRef] [PubMed]
- Woolway, R.I.; Kraemer, B.M.; Lenters, J.D.; Merchant, C.J.; O’Reilly, C.M.; Sharma, S. Global lake responses to climate change. Nat. Rev. Earth Environ. 2020, 1, 388–403. [Google Scholar] [CrossRef]
- Furian, W.; Maussion, F.; Schneider, C. Projected 21st-century glacial lake evolution in High Mountain Asia. Front. Earth Sci. 2022, 10, 821798. [Google Scholar] [CrossRef]
- Dubey, S.; Sattar, A.; Goyal, M.K.; Allen, S.; Frey, H.; Haritashya, U.K.; Huggel, C. Mass movement hazard and exposure in the Himalaya. Earth’s Future 2023, 11, e2022EF003253. [Google Scholar] [CrossRef]
- Kargel, J.S.; Leonard, G.J.; Shugar, D.H.; Haritashya, U.K.; Bevington, A.; Fielding, E.J.; Fujita, K.; Geertsema, M.; Miles, E.S.; Steiner, J.; et al. Geomorphic and geologic controls of geohazards induced by Nepal’s 2015 Gorkha earthquake. Science 2016, 351, aac8353. [Google Scholar] [CrossRef]
- Sattar, A.; Allen, S.; Mergili, M.; Haeberli, W.; Frey, H.; Kulkarni, A.V.; Haritashya, U.K.; Huggel, C.; Goswami, A.; Ramsankaran, R. Modeling potential glacial lake outburst flood process chains and effects from artificial lake-level lowering at Gepang Gath lake, Indian Himalaya. J. Geophys. Res. Earth Surf. 2023, 128, e2022JF006826. [Google Scholar] [CrossRef]
Parameter | Symbol | Unit | Silty Sand (Loose) | Silty Sand (Dense) |
---|---|---|---|---|
Material model | Model | - | M-C | M-C |
AB section | ||||
Total unit weight | γunsat | kN/m3 | 17 | 19 |
Saturate unit weight | γsat | kN/m3 | 20 | 22 |
Young’s modulus | E | MPa | 15,000 | 30,000 |
Friction angle | ϕ | 0 | 10 | 18 |
Cohesion | c | kN/m2 | 65 | 125 |
Dilatancy | ψ | Degree | - | 6 |
Poisson’s ratio | ν | - | 0.38 | 0.32 |
Permeability | k | m/day | 0.0018 | 0.00096 |
CD section | ||||
Total unit weight | γunsat | kN/m3 | 19 | 21 |
Saturate unit weight | γsat | kN/m3 | 22 | 23 |
Young’s modulus | E | MPa | 8 | 14 |
Friction angle | ϕ | 0 | 12 | 20 |
Cohesion | c | kN/m2 | 35 kPa | 105 kPa |
Dilatancy | ψ | Degree | - | 8 |
Poisson’s ratio | ν | - | 0.42 | 0.34 |
Permeability | K | m/day | 0.00236 | 0.000864 |
EF section | ||||
Total unit weight | γunsat | kN/m3 | 16 | 20 |
Saturate unit weight | γsat | kN/m3 | 19 | 22 |
Young’s modulus | E | MPa | 10 | 28 |
Friction angle | Φ | 0 | 12 | 24 |
Cohesion | c | kN/m2 | 47.5 kPa | 115 kPa |
Dilatancy | ψ | Degree | - | 8 |
Poisson’s ratio | ν | - | 0.30 | 0.24 |
Permeability | k | m/day | 0.00138 | 0.00090 |
S. No. | Parameters Analysed | Submerged Base Level of the Dam | 5 m Above the Base Level | 10 m Above the Base Level |
---|---|---|---|---|
AB section | ||||
1 | Total displacement (m) | 1.25 | 1.25 | 1.25 |
2 | Volumetric strain (%) | 1.64 | 1.65 | 1.65 |
3 | Shear strain (%) | 2.09 | 2.09 | 2.12 |
4 | Deviatoric stress (kN/m2) | 586 | 577.80 | 567.10 |
CD section | ||||
1 | Total displacement (m) | 18.72 | 18.74 | 18.71 |
2 | Volumetric strain (%) | 9.35 | 9.36 | 9.35 |
3 | Shear strain (%) | 30.25 | 30.30 | 30.22 |
4 | Deviatoric stress (kN/m2) | 1721 | 1719 | 1699 |
EF section | ||||
1 | Total displacement (m) | 24.67 | 24.67 | 24.67 |
2 | Volumetric strain (%) | 6.88 | 6.88 | 6.88 |
3 | Shear strain (%) | 87.06 | 87.07 | 87.06 |
4 | Deviatoric stress kN/m2) | 2176 | 2177 | 2160 |
Year | Total Days | No. of Days Below 0 °C | Year | Total Days | No. of Days Below 0 °C | Year | Total Days | No. of Days Below 0 °C |
---|---|---|---|---|---|---|---|---|
1994 | 365 | 311 | 2004 | 366 | 320 | 2014 | 365 | 310 |
1995 | 365 | 305 | 2005 | 365 | 323 | 2015 | 365 | 327 |
1996 | 366 | 318 | 2006 | 365 | 321 | 2016 | 366 | 310 |
1997 | 365 | 327 | 2007 | 365 | 316 | 2017 | 365 | 314 |
1998 | 365 | 287 | 2008 | 366 | 305 | 2018 | 365 | 292 |
1999 | 365 | 301 | 2009 | 365 | 305 | 2019 | 365 | 305 |
2000 | 366 | 312 | 2010 | 365 | 297 | 2020 | 366 | 290 |
2001 | 365 | 322 | 2011 | 365 | 330 | 2021 | 365 | 295 |
2002 | 365 | 324 | 2012 | 366 | 314 | 2022 | 365 | 315 |
2003 | 365 | 324 | 2013 | 365 | 309 | 2023 | 365 | 295 |
Average | 313.7 | Average | 314 | Average | 305.3 |
Year | Total PPT (mm) | Days with Precipitation > 5 mm | Daily Avg. Minimum T (°C) | Daily Avg. Maximum T (°C) |
---|---|---|---|---|
1994 | 1040.6 | 60 | −9.2 | −1.8 |
1995 | 1168.9 | 55 | −9.2 | −2.2 |
1996 | 1048.4 | 43 | −8.8 | −1.7 |
1997 | 1151.7 | 53 | −10.0 | −2.8 |
1998 | 1103.5 | 65 | −8.2 | −1.1 |
1999 | 972.4 | 48 | −8.1 | −0.7 |
2000 | 1083.4 | 64 | −9.2 | −2.0 |
2001 | 978.5 | 48 | −8.8 | −1.2 |
2002 | 1022.6 | 63 | −9.2 | −2.0 |
2003 | 1096.6 | 58 | −8.9 | −2.0 |
Average | 1066.66 | 55.7 | −8.96 | −1.75 |
2004 | 951.5 | 46 | −8.7 | −1.7 |
2005 | 1022.9 | 55 | −9.1 | −2.0 |
2006 | 858.7 | 41 | −8.5 | −1.0 |
2007 | 1028.9 | 58 | −8.2 | −0.9 |
2008 | 1030.8 | 60 | −8.4 | −1.5 |
2009 | 1092.8 | 62 | −7.8 | −0.7 |
2010 | 1099.3 | 60 | −7.8 | −0.7 |
2011 | 1064.8 | 62 | −8.9 | −1.7 |
2012 | 1072.4 | 64 | −9.6 | −2.6 |
2013 | 1037.3 | 54 | −9.1 | −1.9 |
Average | 1025 | 56.2 | −8.61 | −1.47 |
2014 | 1152.5 | 56 | −9.0 | −1.9 |
2015 | 1014.0 | 66 | −9.2 | −2.1 |
2016 | 1032.6 | 62 | −7.6 | −0.4 |
2017 | 1011.6 | 52 | −8.1 | −1.0 |
2018 | 1089.0 | 63 | −8.2 | −1.4 |
2019 | 1081.1 | 61 | −8.7 | −2.1 |
2020 | 1322.5 | 86 | −7.7 | −1.0 |
2021 | 1283.4 | 85 | −6.9 | −0.3 |
2022 | 1130.2 | 68 | −7.4 | −0.3 |
2023 | 1157.3 | 69 | −7.4 | −0.5 |
Average | 1127 | 66.8 | −8.02 | −1.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Misra, A.K.; Srivastava, A.; Dutta, K.; Shukla, S.; Ranjan, R.K.; Wanjari, N. Evaluation of Moraine Sediment Dam Stability Under Permafrost Thawing in Glacial Environments: A Case Study of Gurudongmar Lake, Sikkim Himalayas. Appl. Sci. 2025, 15, 5892. https://doi.org/10.3390/app15115892
Misra AK, Srivastava A, Dutta K, Shukla S, Ranjan RK, Wanjari N. Evaluation of Moraine Sediment Dam Stability Under Permafrost Thawing in Glacial Environments: A Case Study of Gurudongmar Lake, Sikkim Himalayas. Applied Sciences. 2025; 15(11):5892. https://doi.org/10.3390/app15115892
Chicago/Turabian StyleMisra, Anil Kumar, Amit Srivastava, Kuldeep Dutta, Soumya Shukla, Rakesh Kumar Ranjan, and Nishchal Wanjari. 2025. "Evaluation of Moraine Sediment Dam Stability Under Permafrost Thawing in Glacial Environments: A Case Study of Gurudongmar Lake, Sikkim Himalayas" Applied Sciences 15, no. 11: 5892. https://doi.org/10.3390/app15115892
APA StyleMisra, A. K., Srivastava, A., Dutta, K., Shukla, S., Ranjan, R. K., & Wanjari, N. (2025). Evaluation of Moraine Sediment Dam Stability Under Permafrost Thawing in Glacial Environments: A Case Study of Gurudongmar Lake, Sikkim Himalayas. Applied Sciences, 15(11), 5892. https://doi.org/10.3390/app15115892