Soil Moisture Content Prediction Using Gradient Boosting Regressor (GBR) Model: Soil-Specific Modeling with Five Depths
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Data Collection
2.2. Soil Sampling and Gravimetric Measurements
2.3. Meteorological Data Collection Utilizing IoT Sensor
2.4. Data Preprocessing and Feature Engineering
2.5. Development and Optimization of GBR Model
2.6. Performance Evaluation Measures
- 1-
- MSE is the average of the squared differences between predicted and observed values [41].
- 2-
- The root means squared error (RMSE) [41] is as follows:
- 3-
- Mean Absolute Error (MAE) calculates the average of the absolute differences between predictions and actual observations, as shown in Equation (6) [41]:
- 4-
- The Nash Sutcliffe efficiency metric (NSE) [42] is as follows:
- 5-
- R-squared (R2) is a statistical metric that represents the proportion of the total variance in the observed data that is explained by the model. Higher R2 indicates less difference between observed and predicted values [43].
3. Results and Discussion
3.1. Statistical Analysis Results for the Two Soil Textures
3.2. Model Performance Results
3.3. Feature Importance Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Babaeian, E.; Paheding, S.; Siddique, N.; Devabhaktuni, V.K.; Tuller, M. Estimation of Root Zone Soil Moisture from Ground and Remotely Sensed Soil Information with Multisensor Data Fusion and Automated Machine Learning. Remote Sens. Environ. 2021, 260, 112434. [Google Scholar] [CrossRef]
- Ågren, A.M.; Larson, J.; Paul, S.S.; Laudon, H.; Lidberg, W. Use of Multiple LIDAR-Derived Digital Terrain Indices and Machine Learning for High-Resolution National-Scale Soil Moisture Mapping of the Swedish Forest Landscape. Geoderma 2021, 404, 115280. [Google Scholar] [CrossRef]
- Mane, S.; Das, N.; Singh, G.; Cosh, M.; Dong, Y. Advancements in Dielectric Soil Moisture Sensor Calibration: A Comprehensive Review of Methods and Techniques. Comput. Electron. Agric. 2024, 218, 108686. [Google Scholar] [CrossRef]
- Tarolli, P.; Zhao, W. Drought in Agriculture: Preservation, Adaptation, Migration. Innov. Geosci. 2023, 1, 100002. [Google Scholar] [CrossRef]
- Tsai, P.-H.; Huang, Y.; Tai, J.-H. Estimating Soil Water Content from Thermal Images with an Artificial Neural Network. Catena 2024, 241, 108029. [Google Scholar] [CrossRef]
- Acharya, B.; Sharma, V. Comparative analysis of soil and water dynamics in conventional and sod-based crop rotation in Florida. Front. Agron. 2025, 7, 1552425. [Google Scholar] [CrossRef]
- Markham, A.; Trigoni, N. Magneto-Inductive Networked Rescue System (MINERS). In Proceedings of the 11th International Conference on Information Processing in Sensor Networks, Beijing China, 16–20 April 2012; ACM: New York, NY, USA, 2012; pp. 317–328. [Google Scholar] [CrossRef]
- Basara, J.B. Soil Moisture Observations for Flash Flood Research and Prediction. In Coping with Flash Floods; Springer: Dordrecht, The Netherlands, 2001; pp. 231–241. [Google Scholar] [CrossRef]
- Zhang, X.; Andreyev, A.; Zumpf, C.; Negri, M.C.; Guha, S.; Ghosh, M. Thoreau: A Subterranean Wireless Sensing Network for Agriculture and the Environment. In Proceedings of the 2017 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Atlanta, GA, USA, 1–4 May 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 78–84. [Google Scholar] [CrossRef]
- Stroobosscher, Z.J.; Athelly, A.; Guzmán, S.M. Assessing Capacitance Soil Moisture Sensor Probes’ Ability to Sense Nitrogen, Phosphorus, and Potassium Using Volumetric Ion Content. Front. Agron. 2024, 6, 1346946. [Google Scholar] [CrossRef]
- Gurung, S.; Thakur, S.; Smithers, B.; Acevedo, M. Wireless Soil Moisture Sensor Networks for Agriculture. In Proceedings of the 2020 Waste-Management Education Research (WERC), Las Cruces, NM, USA, 12–15 April 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–9. [Google Scholar] [CrossRef]
- Neményi, M.; Ambrus, B.; Teschner, G.; Alahmad, T.; Nyéki, A.; Kovács, A.J. Challenges of Ecocentric Sustainable Development in Agriculture with Special Regard to the Internet of Things (IoT), an ICT Perspective. Prog. Agric. Eng. Sci. 2023, 19, 113–122. [Google Scholar] [CrossRef]
- Alahmad, T.; Neményi, M.; Nyéki, A. Applying IoT Sensors and Big Data to Improve Precision Crop Production: A Review. Agronomy 2023, 13, 2603. [Google Scholar] [CrossRef]
- Maraveas, C.; Piromalis, D.; Arvanitis, K.G.; Bartzanas, T.; Loukatos, D. Applications of IoT for Optimized Greenhouse Environment and Resources Management. Comput. Electron. Agric. 2022, 198, 106993. [Google Scholar] [CrossRef]
- Wu, Y.; Yang, Z.; Liu, Y. Internet-of-Things-Based Multiple-Sensor Monitoring System for Soil Information Diagnosis Using a Smartphone. Micromachines 2023, 14, 1395. [Google Scholar] [CrossRef] [PubMed]
- Songara, J.C.; Patel, J.N. Calibration and Comparison of Various Sensors for Soil Moisture Measurement. Measurement 2022, 197, 111301. [Google Scholar] [CrossRef]
- Li, Z.-L.; Leng, P.; Zhou, C.; Chen, K.-S.; Zhou, F.-C.; Shang, G.-F. Soil Moisture Retrieval from Remote Sensing Measurements: Current Knowledge and Directions for the Future. Earth Sci. Rev. 2021, 218, 103673. [Google Scholar] [CrossRef]
- Zhu, S.; Cui, N.; Jin, H.; Jin, X.; Guo, L.; Jiang, S.; Wu, Z.; Lv, M.; Chen, F.; Liu, Q.; et al. Optimization of Multi-Dimensional Indices for Kiwifruit Orchard Soil Moisture Content Estimation Using UAV and Ground Multi-Sensors. Agric. Water Manag. 2024, 294, 108705. [Google Scholar] [CrossRef]
- Zheng, J.; Jin, X.; Li, Q.; Lang, J.; Yin, X. Soil Moisture Variation and Affecting Factors Analysis in the Zhangjiakou–Chengde District Based on Modified Temperature Vegetation Dryness Index. Ecol. Indic. 2024, 168, 112775. [Google Scholar] [CrossRef]
- Chandrappa, V.Y.; Ray, B.; Ashwatha, N.; Shrestha, P. Spatiotemporal Modeling to Predict Soil Moisture for Sustainable Smart Irrigation. Internet Things 2023, 21, 100671. [Google Scholar] [CrossRef]
- Li, B.; You, Z.; Ni, K.; Wang, Y. Prediction of Soil Compaction Parameters Using Machine Learning Models. Appl. Sci. 2024, 14, 2716. [Google Scholar] [CrossRef]
- Islam, M.N.; Logofatu, D.; Haque, M.Z. A Comparative Study on Machine Learning Methods Through Evaluating the Impact of Contributing Factors on The Accuracy of Soil Moisture Prediction. In Proceedings of the 2023 International Conference on Innovations in Intelligent Systems and Applications (INISTA), Hammamet, Tunisia, 20–23 September 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Zambudio Martínez, M.; da Silveira, L.H.M.; Marin-Perez, R.; Gomez, A.F.S. Development and Comparison of Artificial Neural Networks and Gradient Boosting Regressors for Predicting Topsoil Moisture Using Forecast Data. AI 2025, 6, 41. [Google Scholar] [CrossRef]
- Ren, Y.; Ling, F.; Wang, Y. Research on Provincial-Level Soil Moisture Prediction Based on Extreme Gradient Boosting Model. Agriculture 2023, 13, 927. [Google Scholar] [CrossRef]
- Celik, M.F.; Isik, M.S.; Yuzugullu, O.; Fajraoui, N.; Erten, E. Soil Moisture Prediction from Remote Sensing Images Coupled with Climate, Soil Texture and Topography via Deep Learning. Remote Sens. 2022, 14, 5584. [Google Scholar] [CrossRef]
- Fu, R.; Xie, L.; Liu, T.; Zheng, B.; Zhang, Y.; Hu, S. A Soil Moisture Prediction Model, Based on Depth and Water Balance Equation: A Case Study of the Xilingol League Grassland. Int. J. Environ. Res. Public Health 2023, 20, 1374. [Google Scholar] [CrossRef] [PubMed]
- United Nations. UN-Water Annual Report 2023. 2024. Available online: https://www.unwater.org/publications/un-water-annual-report-2023 (accessed on 4 November 2024).
- Popp, J.; Oláh, J.; Neményi, M.; Nyéki, A. Global Challenges and the ‘Farm to Fork’ Strategies of the European Green Deal: Blessing or Curse. Prog. Agric. Eng. Sci. 2024, 20, 101–111. [Google Scholar] [CrossRef]
- Nyéki, A.; Daróczy, B.; Kerepesi, C.; Neményi, M.; Kovács, A.J. Spatial Variability of Soil Properties and Its Effect on Maize Yields within Field—A Case Study in Hungary. Agronomy 2022, 12, 395. [Google Scholar] [CrossRef]
- USDA. Natural Resources Conservation Service. Soil Classification; Retrieved 17 October 2020; 2020. Available online: https://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/survey/class/ (accessed on 29 July 2024).
- Dirksen, C. Soil Physics Measurements; Catena Verlag: Stuttgart, Germany, 1999; ISBN 3923381433. [Google Scholar]
- Ehtasham, L.; Sherani, S.H.; Nawaz, F. Acceleration of the Hydrological Cycle and Its Impact on Water Availability over Land: An Adverse Effect of Climate Change. Meteorol. Hydrol. Water Manag. 2024, 12, 1–21. [Google Scholar] [CrossRef]
- Moghadas, D.; Jadoon, K.Z.; Vanderborght, J.; Lambot, S.; Vereecken, H. Effects of Near Surface Soil Moisture Profiles During Evaporation on Far-Field Ground-Penetrating Radar Data: A Numerical Study. Vadose Zone J. 2013, 12, 1–11. [Google Scholar] [CrossRef]
- Granata, F. Evapotranspiration Evaluation Models Based on Machine Learning Algorithms—A Comparative Study. Agric. Water Manag. 2019, 217, 303–315. [Google Scholar] [CrossRef]
- Du, M.; Zhang, J.; Wang, Y.; Liu, H.; Wang, Z.; Liu, C.; Yang, Q.; Hu, Y.; Bao, Z.; Liu, Y.; et al. Evaluating the Contribution of Different Environmental Drivers to Changes in Evapotranspiration and Soil Moisture, a Case Study of the Wudaogou Experimental Station. J. Contam. Hydrol. 2021, 243, 103912. [Google Scholar] [CrossRef]
- Python Software Foundation. Python Language Reference, Version 3.10. 2024. Available online: https://www.python.org (accessed on 11 November 2024).
- Hussain, M.; Sharmin, N.; Shafiul, S.B. Estimation of Soil Moisture with Meteorological Variables in Supervised Machine Learning Models. In Proceedings of the 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), Chittagong, Bangladesh, 23–25 February 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Wang, S.; Fu, G. Modelling Soil Moisture Using Climate Data and Normalized Difference Vegetation Index Based on Nine Algorithms in Alpine Grasslands. Front. Environ. Sci. 2023, 11, 1130448. [Google Scholar] [CrossRef]
- Friedman, J.H. Greedy Function Approximation: A Gradient Boosting Machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Natekin, A.; Knoll, A. Gradient Boosting Machines, a Tutorial. Front. Neurorobot. 2013, 7, 21. [Google Scholar] [CrossRef]
- Willmott, C.J.; Ackleson, S.G.; Davis, R.E.; Feddema, J.J.; Klink, K.M.; Legates, D.R.; O’Donnell, J.; Rowe, C.M. Statistics for the Evaluation and Comparison of Models. J. Geophys. Res. Ocean. 1985, 90, 8995–9005. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River Flow Forecasting through Conceptual Models Part I—A Discussion of Principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Wright, S. Correlation and Causation. J. Agric. Res. 1921, 20, 557. [Google Scholar]
- Guo, X.; Fu, Q.; Hang, Y.; Lu, H.; Gao, F.; Si, J. Spatial Variability of Soil Moisture in Relation to Land Use Types and Topographic Features on Hillslopes in the Black Soil (Mollisols) Area of Northeast China. Sustainability 2020, 12, 3552. [Google Scholar] [CrossRef]
- Zhao, W.; Fang, X.; Daryanto, S.; Zhang, X.; Wang, Y. Factors Influencing Soil Moisture in the Loess Plateau, China: A Review. Environ. Sci. Trans. R. Soc. Edinb. 2018, 109, 501–509. [Google Scholar] [CrossRef]
- Kandala, R.; Franssen, H.H.; Chaudhuri, A.; Sekhar, M. The Value of Soil Temperature Data versus Soil Moisture Data for State, Parameter, and Flux Estimation in Unsaturated Flow Model. Vadose Zone J. 2024, 23, e20298. [Google Scholar] [CrossRef]
- Sehler, R.; Li, J.; Reager, J.; Ye, H. Investigating Relationship Between Soil Moisture and Precipitation Globally Using Remote Sensing Observations. J. Contemp. Water Res. Educ. 2019, 168, 106–118. [Google Scholar] [CrossRef]
- McColl, K.A.; Tang, L.I. An Analytic Theory of Near-Surface Relative Humidity over Land. J. Clim. 2024, 37, 1213–1230. [Google Scholar] [CrossRef]
- Leng, P.; Li, Z.-L.; Duan, S.-B.; Gao, M.-F.; Huo, H.-Y. A Practical Approach for Deriving All-Weather Soil Moisture Content Using Combined Satellite and Meteorological Data. ISPRS J. Photogramm. Remote Sens. 2017, 131, 40–51. [Google Scholar] [CrossRef]
- Ines, A.V.M.; Das, N.N.; Hansen, J.W.; Njoku, E.G. Assimilation of Remotely Sensed Soil Moisture and Vegetation with a Crop Simulation Model for Maize Yield Prediction. Remote Sens. Environ. 2013, 138, 149–164. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, X.; Pan, Z.; Zhao, P.; Zhang, J.; Jiang, K.; Wang, J.; Han, G.; Song, Y.; Huang, N.; et al. Quantitative Estimation of the Effects of Soil Moisture on Temperature Using a Soil Water and Heat Coupling Model. Agriculture 2022, 12, 1371. [Google Scholar] [CrossRef]
- Meng, X.; Zeng, J.; Yang, Y.; Zhao, W.; Ma, H.; Letu, H.; Zhu, Q.; Liu, Y.; Wang, P.; Peng, J. High-Resolution Soil Moisture Mapping through Passive Microwave Remote Sensing Downscaling. Innov. Geosci. 2024, 2, 100105. [Google Scholar] [CrossRef]
Soil Texture | pH | Sand % Range | Silt % Range | Clay % Range | Mean SMC % | Std of SMC % | Bulk Density |
---|---|---|---|---|---|---|---|
Loam | 7.614 | 40.99–49.01 | 40.91–45.97 | 10.10–14.50 | 13.79 | 3.94 | 1.538 |
Silt loam | 7.45 | 12.36–15.31 | 63.70–70.19 | 17.40–21 | 16.95 | 5.07 | 1.52 |
Soil Texture | Depth (cm) | Mean SMC (%) | SD (%) | CV (%) |
---|---|---|---|---|
Loam | 5 | 12.8 | 3.08 | 24 |
Loam | 20 | 16.19 | 3.51 | 21.7 |
Loam | 40 | 14.66 | 3.76 | 25.6 |
Loam | 60 | 12.61 | 4.39 | 34.8 |
Loam | 80 | 12.68 | 4.94 | 39 |
Silt loam | 5 | 14.99 | 2.62 | 17.5 |
Silt loam | 20 | 18.27 | 3.51 | 19.2 |
Silt loam | 40 | 18.03 | 4.11 | 22.8 |
Silt loam | 60 | 16.97 | 7.23 | 42.6 |
Silt loam | 80 | 16.47 | 7.87 | 47.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alahmad, T.; Neményi, M.; Nyéki, A. Soil Moisture Content Prediction Using Gradient Boosting Regressor (GBR) Model: Soil-Specific Modeling with Five Depths. Appl. Sci. 2025, 15, 5889. https://doi.org/10.3390/app15115889
Alahmad T, Neményi M, Nyéki A. Soil Moisture Content Prediction Using Gradient Boosting Regressor (GBR) Model: Soil-Specific Modeling with Five Depths. Applied Sciences. 2025; 15(11):5889. https://doi.org/10.3390/app15115889
Chicago/Turabian StyleAlahmad, Tarek, Miklós Neményi, and Anikó Nyéki. 2025. "Soil Moisture Content Prediction Using Gradient Boosting Regressor (GBR) Model: Soil-Specific Modeling with Five Depths" Applied Sciences 15, no. 11: 5889. https://doi.org/10.3390/app15115889
APA StyleAlahmad, T., Neményi, M., & Nyéki, A. (2025). Soil Moisture Content Prediction Using Gradient Boosting Regressor (GBR) Model: Soil-Specific Modeling with Five Depths. Applied Sciences, 15(11), 5889. https://doi.org/10.3390/app15115889