Characterization of Dietary Constituents, Phytochemicals, and Antioxidant Capacity of Carpobrotus edulis Fruit: Potential Application in Nutrition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material and Sample Preparation
2.2. Proximate Analysis
2.3. Mineral Composition Analysis
2.4. Determination of Fatty Acid (FA) Content
2.5. Phytochemical Content and Antioxidant Activity
2.5.1. Extract Preparation
2.5.2. Total Phenolic Content
2.5.3. Total Flavonoid Content
2.5.4. Antioxidant Activity
2.6. Statistical Treatment
3. Results
3.1. Nutritional Composition
3.2. Mineral Composition
3.3. Fatty Acids Profile
3.4. Bioactive Compounds and Antioxidant Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Drius, M.; Jones, L.; Marzialetti, F.; De Francesco, M.C.; Stanisci, A.; Carranza, M.L. Not just a sandy beach. The multi-service value of Mediterranean coastal dunes. Sci. Total Environ. 2019, 668, 1139–1155. [Google Scholar] [CrossRef] [PubMed]
- Maximo, P.; Ferreira, L.M.; Branco, P.S.; Lourenço, A. Invasive plants: Turning enemies into value. Molecules 2020, 25, 3529. [Google Scholar] [CrossRef] [PubMed]
- Akinyede, K.A.; Ekpo, O.E.; Oguntibeju, O.O. Ethnopharmacology, therapeutic properties and nutritional potentials of Carpobrotus edulis: A comprehensive review. Sci. Pharm. 2020, 88, 39. [Google Scholar] [CrossRef]
- Oliveira, D.; Hayrapetyan, R.; Dias, M.I.; Barros, L.; Séverin, I.; Custódio, L.; Chagnon, M.C.; Oliveira, R. Protective properties of the edible halophyte Carpobrotus edulis (L.) N.E.Br. towards neoformed food contaminants-related oxidative stress and genotoxicity. Food Biosci. 2024, 61, 104447. [Google Scholar] [CrossRef]
- Knorr, D.; Augustin, M.A. Towards resilient food systems: Interactions with indigenous knowledge. Trends Food Sci. Technol. 2025, 156, 104875. [Google Scholar] [CrossRef]
- Campoy, J.G.; Acosta, A.T.R.; Affre, L.; Barreiro, R.; Brundu, G.; Buisson, E.; González, L.; Lema, M.; Novoa, A.; Retuerto, R.; et al. Monographs of invasive plants in Europe: Carpobrotus. Bot. Lett. 2018, 165, 440–475. [Google Scholar] [CrossRef]
- Castañeda-Loaiza, V.; Placines, C.; Rodrigues, M.J.; Pereira, C.; Zengin, G.; Uysal, A.; Jeko, J.; Cziáky, Z.; Reis, C.P.; Gaspar, M.M. If you cannot beat them, join them: Exploring the fruits of the invasive species Carpobrotus edulis (L.) N.E. Br as a source of bioactive products. Ind. Crops Prod. 2020, 144, 112005. [Google Scholar] [CrossRef]
- Neves, M.; Antunes, M.; Fernandes, W.; Campos, M.J.; Azevedo, Z.M.; Freitas, V.; Rocha, J.M.; Tecelão, C. Physicochemical and nutritional profile of leaves, flowers, and fruits of the edible halophyte chorão-da-praia (Carpobrotus edulis) on Portuguese west shores. Food Biosci. 2021, 43, 101288. [Google Scholar] [CrossRef]
- Garcia-Oliveira, P.; Carreira-Casais, A.; Pereira, E.; Dias, M.I.; Pereira, C.; Calhelha, R.C.; Stojković, D.; Sokovic, M.; Simal-Gandara, J.; Prieto, M.A.; et al. From tradition to health: Chemical and bioactive characterization of five traditional plants. Molecules 2022, 27, 6495. [Google Scholar] [CrossRef]
- Omoruyi, S.I.; Enogieru, A.B.; Okobi Eko Ekpo, O.E. In vitro evaluation of the antiproliferative activity of Carpobrotus edulis on human neuroblastoma cells. J. Herb. Med. 2021, 30, 100519. [Google Scholar] [CrossRef]
- Omoruyi, B.E.; Ighodaro, D.I.; Afolayan, A.J.; Bradley, G. Inhibition of HIV-1 Protease by Carpobrotus edulis (L.). Evid.-Based Complement. Altern. Med. 2020, 2020, 9648056. [Google Scholar] [CrossRef] [PubMed]
- Rocha, M.I.; Rodrigues, M.J.; Pereira, C.; Pereira, H.; da Silva, M.M.; Neng, N.R.; Nogueira, J.M.F.; Varela, J.; Barreira, L.; Custódio, L. Biochemical profile and in vitro neuroprotective properties of Carpobrotus edulis L., a medicinal and edible halophyte native to the coast of South Africa. S. Afr. J. Bot. 2017, 111, 222–231. [Google Scholar] [CrossRef]
- Sabiu, S.; Balogun, F.O.; Amoo, S.O. Phenolics profiling of Carpobrotus edulis (L.) N.E.Br. and insights into molecular dynamics of their significance in type 2 diabetes therapy and its retinopathy complication. Molecules 2021, 26, 4867. [Google Scholar] [CrossRef] [PubMed]
- Bonel-Pérez, G.C.; Pérez-Jiménez, A.; Gris-Cárdenas, I.; Parra-Pérez, A.M.; Lupiáñez, J.A.; Reyes-Zurita, F.J.; Siles, E.; Csuk, R.; Peragón, J.; Rufino-Palomares, E.E. Antiproliferative and Pro-Apoptotic Effect of Uvaol in Human Hepatocarcinoma HepG2 Cells by Affecting G0/G1 Cell Cycle Arrest, ROS Production and AKT/PI3K Signaling Pathway. Molecules 2020, 25, 4254. [Google Scholar] [CrossRef]
- Singh, P.A.; Kumar, S. Applications of tannins in industry. In Tannins—Structural Properties, Biological Properties and Current Knowledge; Aires, A., Ed.; IntechOpen: London, UK, 2020; pp. 1–25. [Google Scholar]
- Qi, Q.; Chu, M.; Yu, X.; Xie, Y.; Li, Y.; Du, Y.; Liu, X.; Zhang, Z.; Shi, J.; Yan, N. Anthocyanins and Proanthocyanidins: Chemical Structures, Food Sources, Bioactivities, and Product Development. Food Rev. Int. 2022, 39, 4581–4609. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of the Association of Analytical Chemists International; Official Methods; AOAC: Gaithersburg, MD, USA, 2012. [Google Scholar]
- Food and Agriculture Organization of the United Nations. Food Energy-Methods of Analysis and Conversion Factors; FAO Food and Nutrition Paper 77; FAO: Rome, Italy, 2003; Available online: https://www.fao.org/uploads/media/FAO_2003_Food_Energy_02.pdf (accessed on 20 February 2024).
- Vinha, A.F.; Costa, A.S.G.; Espírito Santo, L.; Ferreira, D.M.; Sousa, C.; Pinto, E.; Almeida, A.; Oliveira, M.B.P.P. High-value compounds in papaya by-products (Carica papaya L. var. Formosa and Aliança): Potential sustainable use and exploitation. Plants 2024, 13, 1009. [Google Scholar] [CrossRef]
- ISO 12966-2:2017; Animal and Vegetable Fats and Oils. Gas Chromatography of Fatty Acid Methyl Esters: Part 2: Preparation of Methyl Esters of Fatty Acids. ISO: Geneva, Switzerland, 2017. Available online: https://www.iso.org (accessed on 20 February 2024).
- Nunes, M.A.; Costa, A.S.G.; Bessada, S.; Santos, J.; Puga, H.; Alves, R.C.; Freitas, V.; Oliveira, M.B.P.P. Olive Pomace as a Valuable Source of Bioactive Compounds: A Study Regarding its Lipid- and Water-Soluble Components. Sci. Total Environ. 2018, 644, 229–236. [Google Scholar] [CrossRef]
- Costa, A.S.G.; Alves, R.C.; Vinha, A.F.; Barreira, S.V.P.; Nunes, M.A.; Cunha, L.M.; Oliveira, M.B.P.P. Optimization of antioxidants extraction from coffee silverskin, a roasting by-product, having in view a sustainable process. Ind. Crops Prod. 2014, 53, 350–357. [Google Scholar] [CrossRef]
- Vinha, A.F.; Costa, A.S.G.; Pimentel, F.B.; Espírito Santo, L.; Sousa, C.; Freitas, M.; Fernandes, E.; Oliveira, M.B.P.P. Bioactive compounds and scavenging capacity of Adansonia digitata L. (baobab fruit) pulp extracts against ROS and RNS of physiological relevance. Appl. Sci. 2024, 14, 3408. [Google Scholar] [CrossRef]
- Broomhead, N.K.; Moodley, R.; Jonnalagadda, S.B. Chemical and elemental analysis of the edible fruit of five Carpobrotus species from South Africa: Assessment of nutritional value and potential metal toxicity. Int. J. Environ. Health Res. 2019, 30, 357–371. [Google Scholar] [CrossRef]
- Patel, V.; Aggarwal, K.; Dhawan, A.; Singh, B.; Shah, P.; Sawhney, A.; Jain, R. Protein supplementation: The double-edged sword. Bayl. Univ. Med. Cent. Proc. 2023, 37, 118–126. [Google Scholar] [CrossRef] [PubMed]
- Finger, D.; Goltz, F.R.; Umpierre, D.; Meyer, E.; Rosa, L.H.; Schneider, C.D. Effects of protein supplementation in older adults undergoing resistance training: A systematic review and meta-analysis. Sports Med. 2015, 45, 245–255. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, F.J.; Matias, C.N.; Faleiro, J.; Giro, R.; Pires, J.; Figueiredo, H.; Carvalhinho, R.; Monteiro, C.P.; Reis, J.F.; Valamatos, M.J.; et al. A novel plant-based protein has similar effects compared to whey protein on body composition, strength, power, and aerobic performance in professional and semi-professional futsal players. Front. Nutr. 2022, 9, 934438. [Google Scholar] [CrossRef] [PubMed]
- Corgneau, M.; Gaiani, C.; Petit, J.; Nikolova, Y.; Banon, S.; Ritié-Pertusa, L.; Lam Le, D.T.; Scher, J. Nutritional quality evaluation of commercial protein supplements. Int. J. Food Sci. Technol. 2019, 54, 2586–2594. [Google Scholar] [CrossRef]
- Kovacevic, V.; Sudaric, A.; Antunovic, M. Mineral Nutrition. In Soybean Physiology and Biochemistry; El-Shemy, H.A., Ed.; IntechOpen: London, UK, 2011; Chapter 19; pp. 389–427. [Google Scholar]
- Pereira, C.G.; Neng, N.R.; Custódio, L. From threat to opportunity: Harnessing the invasive Carpobrotus edulis (L.) N.E.Br for nutritional and phytotherapeutic valorization amid seasonal and spatial variability. Mar. Drugs 2023, 21, 436. [Google Scholar] [CrossRef]
- Jing, T.; Li, J.; He, Y.; Shankar, A.; Saxena, A.; Tiwari, A.; Maturi, K.C.; Solanki, M.K.; Singh, V.; Eissa, M.A.; et al. Role of calcium nutrition in plant physiology: Advances in research and insights into acidic soil conditions—A comprehensive review. Plant Physiol. Biochem. 2024, 210, 108602. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Guideline: Potassium Intake for Adults and Children; WHO: Geneva, Switzerland, 2012. [Google Scholar]
- D’Elia, L.; Masulli, M.; Cappuccio, F.P.; Zarrella, A.F.; Strazzullo, P.; Galletti, F. Dietary potassium intake and risk of diabetes: A systematic review and meta-analysis of prospective studies. Nutrients 2022, 14, 4785. [Google Scholar] [CrossRef]
- Gitlin, M. Lithium side effects and toxicity: Prevalence and management strategies. Int. J. Bipolar Disord. 2016, 4, 27. [Google Scholar] [CrossRef]
- Dopp, E.; Rettenmeier, A.W. Tin, Toxicity. In Encyclopedia of Metalloproteins; Kretsinger, R.H., Uversky, V.N., Permyakov, E.A., Eds.; Springer: New York, NY, USA, 2013. [Google Scholar]
- Shirani, M.; Azadnasab, R.; Baradaran, M.; Shariati, S. A Review of Toxicity Studies of Zirconium and Its Derivatives. Jundishapur J. Nat. Pharm. Prod. 2023, 18, e137464. [Google Scholar] [CrossRef]
- US. Department of Agriculture—USDA. Composition of Foods Raw, Processed, Prepared; USDA Nutrient Database for Standard Reference; US Department of Agriculture: Beltsville, MD, USA, 2001. [Google Scholar]
- Pereira, C.; Dias, M.I.; Petropoulos, S.A.; Plexida, S.; Chrysargyris, A.; Tzortzakis, N.; Calhelha, R.C.; Ivanov, M.; Stojković, D.; Soković, M.; et al. The effects of biostimulants, biofertilizers and water-stress on nutritional value and chemical composition of two spinach genotypes (Spinacia oleracea L.). Molecules 2019, 24, 4494. [Google Scholar] [CrossRef]
- Sousa, C.; Moutinho, C.; Vinha, A.F.; Matos, C. Trace Minerals in Human Health: Iron, Zinc, Copper, Manganese and Fluorine. Int. J. Sci. Res. Methodol. 2019, 13, 57–80. Available online: https://ijsrm.humanjournals.com/wp-content/uploads/2019/10/5.Carla-Sousa-Carla-Moutinho-Ana-F.-Vinha-Carla-Matos.pdf (accessed on 19 January 2025).
- Ribeiro, A.; Azevedo, C.; Sousa, C.; Moutinho, C.; Vinha, A.F.; Matos, C. Suplementos de cálcio: Quem e como. Egitania Sciencia 2020, 1, 73–90. [Google Scholar] [CrossRef]
- Puri, V.; Nagpal, M.; Singh, I.; Singh, M.; Dhingra, G.A.; Huanbutta, K.; Dheer, D.; Sharma, A.; Sangnim, T. A comprehensive review on nutraceuticals: Therapy support and formulation challenges. Nutrients 2022, 14, 4637. [Google Scholar] [CrossRef]
- Stone, M.S.; Martyn, L.; Weaver, C.M. Potassium Intake, Bioavailability, Hypertension, and Glucose Control. Nutrients 2016, 8, 444. [Google Scholar] [CrossRef]
- Custódio, L.; Ferreira, A.C.; Pereira, H.; Silvestre, L.; Vizetto-Duarte, C.; Barreira, L.; Rauter, A.P.; Alberício, F.; Varela, J. The marine halophytes Carpobrotus edulis L. and Arthrocnemum macrostachyum L. are potential sources of nutritionally important PUFAs and metabolites with antioxidant, metal chelating and anticholinesterase inhibitory activities. Bot. Mar. 2012, 55, 281–288. [Google Scholar] [CrossRef]
- Marangoni, F.; Agostoni, C.; Borghi, C.; Catapano, A.L.; Cena, H.; Ghiselli, A.; La Vecchia, C.; Lercker, G.; Manzato, E.; Pirillo, A.; et al. Dietary linoleic acid and human health: Focus on cardiovascular and cardiometabolic effects. Atherosclerosis 2020, 292, 90–98. [Google Scholar] [CrossRef]
- Bajramova, A.; Spégel, P. A comparative study of the fatty acid profile of common fruits and fruits claimed to confer health benefits. J. Food Compos. Anal. 2022, 112, 104657. [Google Scholar] [CrossRef]
- Kim, K.-B.; Nam, Y.A.; Kim, H.S.; Hayes, A.W.; Lee, B.-M. α-Linolenic acid: Nutraceutical, pharmacological and toxicological evaluation. Food Chem. Toxicol. 2014, 70, 163–178. [Google Scholar] [CrossRef]
- Jandacek, R.J. Linoleic acid: A nutritional quandary. Healthcare 2017, 5, 25. [Google Scholar] [CrossRef]
- Sousa, C.; Moutinho, C.; Matos, C.; Vinha, A.F. Portuguese grapevine leaves: A neglected by-product with high potential. Appl. Sci. 2024, 14, 9803. [Google Scholar] [CrossRef]
- Palomino, O.M.; Giordani, V.; Chowen, J.S.; Fernández-Alfonso, M.S.; Goya, L. Physiological doses of oleic and palmitic acids protect human endothelial cells from oxidative stress. Molecules 2022, 27, 5217. [Google Scholar] [CrossRef] [PubMed]
- Natali, F.; Siculella, L.; Salvati, S.; Gnoni, G.V. Oleic acid is a potent inhibitor of fatty acid and cholesterol synthesis in C6 glioma cells. J. Lipid Res. 2007, 48, 1966–1975. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Kim, Y.; Lee, D.H.; Lee, S.H.; Park, H.J.; Lee, D.; Kim, H. Neuroprotective effects of oleic acid in rodent models of cerebral ischaemia. Sci. Rep. 2019, 9, 10732. [Google Scholar] [CrossRef] [PubMed]
- Ooi, K.M.; Vacy, K.; Boon, W.C. Fatty acids and beyond: Age and Alzheimer’s disease related changes in lipids reveal the neuro-nutraceutical potential of lipids in cognition. Neurochem. Int. 2021, 149, 105143. [Google Scholar] [CrossRef]
- Carta, G.; Murru, E.; Banni, S.; Manca, C. Palmitic acid: Physiological role, metabolism and nutritional implications. Front. Physiol. 2017, 8, 306122. [Google Scholar] [CrossRef]
- Casillas-Vargas, G.; Ocasio-Malavé, C.; Medina, S.; Morales-Guzmán, C.; Del Valle, R.G.; Carballeira, N.M.; Sanabria-Ríos, D.J. Antibacterial fatty acids: An update of possible mechanisms of action and implications in the development of the next-generation of antibacterial agents. Prog. Lipid Res. 2021, 82, 101093. [Google Scholar] [CrossRef]
- Izar, M.C.O.; Lottenberg, A.M.G.; Giraldez, V.Z.R.; Santos Filho, R.D.; Machado, R.M.; Bertolami, A.; Assad, M.H.V.; Saraiva, J.F.K.; Faludi, A.A.; Moreira, A.S.B.; et al. Position statement on fat consumption and cardiovascular health. Arq. Bras. Cardiol. 2021, 116, 160–212. [Google Scholar] [CrossRef]
- Martins, A.; Vasas, A.; Viveiros, M.; Molnár, J.; Hohmann, J.; Amaral, L. Antibacterial properties of compounds isolated from Carpobrotus edulis. Int. J. Antimicrob. Agents 2011, 37, 438–444. [Google Scholar] [CrossRef]
- Laloo, N.; Terblanche, U.; Ssemakalu, C.C.; Pillay, M. Effect of solvent, pH, extraction time and temperature on the extraction of phenolic compounds and antioxidant activity of Carpobrotus edulis. J. Phytol. 2024, 16, 1–7. [Google Scholar] [CrossRef]
- González-Campos, J.B.; Pérez-Nava, A.; Valle-Sánchez, M.; Delgado-Rangel, L.H. Deep eutectic solvents applications aligned to 2030 United Nations Agenda for Sustainable Development. Chem. Eng. Process.-Process Intensif. 2024, 199, 109751. [Google Scholar] [CrossRef]
- Freire, M.G.; Coutinho, J.A.P. Editorial overview: A closer look on sustainable solvents and processes. Curr. Opin. Green Sustain. Chem. 2019, 18, A4–A6. [Google Scholar] [CrossRef]
- Hafsa, J.; Hammi, K.M.; Khedher, M.R.B.; Smach, M.A.; Charfeddine, B.; Limem, K.; Majdoub, H. Inhibition of protein glycation, antioxidant and antiproliferative activities of Carpobrotus edulis extracts. Biomed. Pharmacother. 2016, 84, 1496–1503. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Li, X.; Sang, S.; McClements, D.J.; Chen, L.; Long, J.; Jiao, A.; Jin, Z.; Qiu, C. Polyphenols as plant-based nutraceuticals: Health effects, encapsulation, nano-delivery, and application. Foods 2022, 11, 2189. [Google Scholar] [CrossRef] [PubMed]
Nutritional Composition | Fruits * |
---|---|
Moisture | 3.7 ± 0.02 |
Ash | 10.9 ± 0.09 |
Crude Protein | 22.8 ± 0.10 |
Total Fat | 4.5 ± 0.15 |
Total Carbohydrates | 60.5 ± 0.20 |
Energy (kcal) | 332.5 ± 0.22 |
Essential Trace Minerals | |
---|---|
Fe (µg/g) | 32.20 ± 0.42 |
Cu (µg/g) | 5.89 ± 0.17 |
Zn (µg/g) | 25.06 ± 0.41 |
Mn (µg/g) | 7.05 ± 0.36 |
Mo (µg/g) | n.d. |
Co (ng/g) | <LoD |
Cr (ng/g) | n.d. |
Se (µg/g) | 0.016 ± 0.010 |
Non-essential and toxic trace elements | |
Al (µg/g) | 10.4 ± 2.0 |
As (ng/g) | 12.8 ± 5.1 |
B (µg/g) | <LoD |
Ba (ng/g) | n.d. |
Be (ng/g) | <LoD |
Bi (ng/g) | n.d. |
Cd (ng/g) | 0.55 ± 0.06 |
Cs (ng/g) | <LoD |
Li (ng/g) | 11.2 ± 3.1 |
Ni (µg/g) | n.d. |
Pb (ng/g) | <LoD |
Rb (µg/g) | 14.20 ± 0.29 |
Sb (µg/g) | n.d. |
Sn (ng/g) | 101 ± 14 |
Sr (µg/g) | 20.12 ± 0.11 |
Te (µg/g) | <LoD |
Ti (µg/g) | n.d. |
V (µg/g) | <LoD |
W (µg/g) | <LoD |
Zr (ng/g) | 24.39 ± 1.2 |
Macro-elements | |
Ca (mg/g) | 12.44 ± 0.89 |
K (mg/g) | 1.24 ± 0.40 |
Mg (mg/g) | 2.98 ± 0.25 |
Na (µg/g) | <LoD |
Fatty Acids | % of Total FA | |
---|---|---|
Undecanoic | C11:0 | n.d. |
Lauric | C12:0 | 0.19 ± 0.003 |
Myristic | C14:0 | 0.66 ± 0.004 |
Palmitic | C16:0 | 12.41 ± 0.012 |
Palmitoleic | C16:1 | 0.12 ± 0.005 |
Heptadecanoic | C17:0 | n.d. |
Stearic | C18:0 | 2.96 ± 0.008 |
Oleic | C18:1n9c | 17.51 ± 0.030 |
Linoleic 1 | C18:2n6c 1 | 52.08 ± 0.015 |
Arachidic | C20:0 | 1.71 ± 0.006 |
α-Linolenic 1 | C18:3n3 1 | 2.10 ± 0.002 |
cis-11-Eicosanoic | C20:1n9 | 0.49 ± 0.001 |
Behenic | C22:0 | 2.54 ± 0.003 |
Tricosanoic | C23:0 | n.d. |
Lignoceric | C24:0 | n.d. |
n6/n3 | 24.80 ± 0.043 | |
n9/n6 | 0.346 ± 0.117 | |
ΣSFA | 20.47 ± 0.017 | |
ΣMUFA | 18.12 ± 0.030 | |
ΣPUFA | 54.18 ± 0.015 |
Fruit Extracts | TPC (mg GAE/g) | TFC (mg CE/g) | DPPH• (%) | FRAP (%) |
---|---|---|---|---|
Ethanolic | 252.3 ± 3.05 b | 36.27 ± 0.76 b | 76.50 ± 4.52 b | 20.30 ± 0.39 b,c |
Aqueous | 156.7 ± 4.04 c | 26.75 ± 0.78 c | 21.87 ± 0.60 c | 19.11 ± 0.35 c |
Hydroalcoholic | 311.7 ± 3.78 a | 50.43 ± 2.08 a | 95.89 ± 0.75 a | 47.27 ± 0.73 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marques, C.R.; Sousa, C.; Moutinho, C.; Matos, C.; Vinha, A.F. Characterization of Dietary Constituents, Phytochemicals, and Antioxidant Capacity of Carpobrotus edulis Fruit: Potential Application in Nutrition. Appl. Sci. 2025, 15, 5599. https://doi.org/10.3390/app15105599
Marques CR, Sousa C, Moutinho C, Matos C, Vinha AF. Characterization of Dietary Constituents, Phytochemicals, and Antioxidant Capacity of Carpobrotus edulis Fruit: Potential Application in Nutrition. Applied Sciences. 2025; 15(10):5599. https://doi.org/10.3390/app15105599
Chicago/Turabian StyleMarques, Carlota R., Carla Sousa, Carla Moutinho, Carla Matos, and Ana Ferreira Vinha. 2025. "Characterization of Dietary Constituents, Phytochemicals, and Antioxidant Capacity of Carpobrotus edulis Fruit: Potential Application in Nutrition" Applied Sciences 15, no. 10: 5599. https://doi.org/10.3390/app15105599
APA StyleMarques, C. R., Sousa, C., Moutinho, C., Matos, C., & Vinha, A. F. (2025). Characterization of Dietary Constituents, Phytochemicals, and Antioxidant Capacity of Carpobrotus edulis Fruit: Potential Application in Nutrition. Applied Sciences, 15(10), 5599. https://doi.org/10.3390/app15105599