DVCW-YOLO for Printed Circuit Board Surface Defect Detection
Abstract
:1. Introduction
- 1.
- The C2fCBAM module is developed by synergistically combining the C2f architecture with the convolutional block attention module (CBAM) mechanism. This integration enables the detection model to effectively prioritize critical regions by enhancing salient features while attenuating less relevant ones. Consequently, a novel backbone network is established to facilitate the extraction of key features.
- 2.
- A neck network is designed by incorporating the VOVGSCSP module and DWConv. The implementation of the WIoU loss function during training serves to alleviate the adverse effects of low-quality and extreme samples, thereby improving model accuracy, accelerating convergence, and reducing the high rate of missed detections commonly associated with PCB defect identification.
- 3.
- We augmented the dataset and executed comparative experiments involving nine detection algorithms, which substantiate that the proposed DVCW-YOLO consistently outperforms its counterparts in most cases.
2. Methodology
2.1. Proposed DVCW-YOLO Network
2.2. C2fCBAM Model
2.3. Neck Network
2.3.1. DWConv Convolution
2.3.2. VOVGSCSP Module
2.4. WIoU Loss Function
3. Dataset Building
4. Experiments and Analysis of Results
4.1. Evaluation Indicators
4.2. Experimental Environment and Parameter Settings
4.3. Experimental Comparative Analysis
4.3.1. Comparative Experiments on Attention Mechanisms
4.3.2. Optimize the Module Ablation Experiment
4.3.3. Performance Comparison of Different Detection Algorithms
4.3.4. The Analysis of Detection Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, Y.; Yuan, M.; Zhang, J.; Ding, G.; Qin, S. Review of vision-based defect detection research and its perspectives for printed circuit board. J. Manuf. Syst. 2023, 70, 557–578. [Google Scholar] [CrossRef]
- Ma, Y.; Yin, J.; Huang, F.; Li, Q. Surface defect inspection of industrial products with object detection deep networks: A systematic review. Artif. Intell. Rev. 2024, 57, 333. [Google Scholar] [CrossRef]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar]
- Girshick, R.B. Fast R-CNN. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 1440–1448. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Singh, K. PCB Defect Detection Using Two-Stage Object Detection Network. J. Electron. Test. 2021, 37, 265–275. [Google Scholar]
- Qian, H.; Wang, H.; Feng, S.; Yan, S. FESSD: SSD target detection based on feature fusion and feature enhancement. J. Real-Time Image Process. 2023, 20, 2. [Google Scholar] [CrossRef]
- Diwan, T.; Anirudh, G.; Tembhurne, J.V. Object detection using YOLO: Challenges, architectural successors, datasets and applications. Multimed. Tools Appl. 2023, 82, 9243–9275. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, R. PCB Defect Detection Using SSD-Based Deep Learning Approach. Sensors 2022, 22, 1234. [Google Scholar]
- Liao, X.; Lv, S.; Li, D.; Jiang, C. YOLOv4-MN3 for PCB surface defect detection. Appl. Sci. 2021, 11, 11701. [Google Scholar] [CrossRef]
- Ling, Q.; Isa, N.A.M.; Asaari, M.S.M. Precise Detection for Dense PCB Components Based on Modified YOLOv8. IEEE Access 2023, 11, 116545–116560. [Google Scholar] [CrossRef]
- Chen, P.; Xie, F. A machine learning approach for automated detection of critical PCB flaws in optical sensing systems. Photonics 2023, 10, 984. [Google Scholar] [CrossRef]
- Lou, H.; Duan, X.; Guo, J.; Liu, H.; Gu, J.; Bi, L.; Chen, H. DC-YOLOv8: Small-size object detection algorithm based on camera sensor. Electronics 2023, 12, 2323. [Google Scholar] [CrossRef]
- Dang, L.; Huangfu, P.; Hou, Y.E.; Liu, Y.; Han, H. A path aggregation network based on residual feature enhancement for object detection in remote sensing imagery. Remote Sens. Lett. 2023, 14, 598–608. [Google Scholar] [CrossRef]
- Chen, J.; Ji, C.; Zhang, J.; Feng, Q.; Li, Y.; Ma, B. A method for multi-target segmentation of bud-stage apple trees based on improved YOLOv8. Comput. Electron. Agric. 2024, 220, 108876. [Google Scholar] [CrossRef]
- Xiao, Q.; Huang, J.; Huang, Z.; Li, C.; Xu, J. Transparent Component Defect Detection Method Based on Improved YOLOv7 Algorithm. Int. J. Pattern Recognit. Artif. Intell. 2023, 37, 2350030. [Google Scholar] [CrossRef]
- Wang, Q.; Nie, Z.; Liu, H. Assessment of Power System Stability During Transients Using Deep Residual Shrinkage Network and CBAM Integration. J. Circuits Syst. Comput. 2024, 33, 2450246. [Google Scholar] [CrossRef]
- Cao, Y.; Pang, D.; Zhao, Q.; Yan, Y.; Jiang, Y.; Tian, C.; Wang, F.; Li, J. Improved YOLOv8-GD deep learning model for defect detection in electroluminescence images of solar photovoltaic modules. Eng. Appl. Artif. Intell. 2024, 131, 107866. [Google Scholar] [CrossRef]
- Zhang, G.; Liu, S.; Nie, S.; Yun, L. YOLO-RDP: Lightweight Steel Defect Detection through Improved YOLOv7-Tiny and Model Pruning. Symmetry 2024, 16, 458. [Google Scholar] [CrossRef]
- Cai, S.; Zhang, X.; Mo, Y. A Lightweight underwater detector enhanced by Attention mechanism, GSConv and WIoU on YOLOv8. Sci. Rep. 2024, 14, 9558. [Google Scholar] [CrossRef]
- Yan, J.; Zeng, Y.; Lin, J.; Pei, Z.; Fan, J.; Fang, C.; Cai, Y. Enhanced Object Detection in Pediatric Bronchoscopy Images Using YOLO-Based Algorithms with CBAM Attention Mechanism. Heliyon 2024, 10, e32678. [Google Scholar] [CrossRef]
- Yang, D.; Solihin, M.I.; Ardiyanto, I.; Zhao, Y.; Li, W.; Cai, B.; Chen, C. Author Correction: A streamlined approach for intelligent ship object detection using EL-YOLO algorithm. Sci. Rep. 2024, 14, 15254. [Google Scholar] [CrossRef]
- Hu, D.; Yu, M.; Wu, X.; Hu, J. DGW-YOLOv8: A small insulator target detection algorithm based on deformable attention backbone and WIoU loss function. IET Image Process. 2024, 18, 1096–1108. [Google Scholar] [CrossRef]
- Alnaggar, O.A.M.F.; Jagadale, B.N.; Saif, M.A.N.; Ghaleb, O.A.M.; Ahmed, A.A.Q.; Aqlan, H.A.A.; Al-Ariki, H.D.E. Efficient artificial intelligence approaches for medical image processing in healthcare: Comprehensive review, taxonomy, and analysis. Artif. Intell. Rev. 2024, 57, 221. [Google Scholar] [CrossRef]
- Ali, A.; Khan, M.; Khan, K.; Khan, R.U.; Aloraini, A. Sentiment Analysis of Low-Resource Language Literature Using Data Processing and Deep Learning. Comput. Mater. Contin. 2024, 79, 713–733. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, X. Multi-modal deep learning networks for rgb-d pavement waste detection and recognition. Waste Manag. 2024, 177, 125–134. [Google Scholar] [CrossRef]
- Fan, J.; Gao, B.; Ge, Q.; Ran, Y.; Zhang, J.; Chu, H. SegTransConv: Transformer and CNN Hybrid Method for Real-Time Semantic Segmentation of Autonomous Vehicles. IEEE Trans. Intell. Transp. Syst. 2024, 25, 1586–1601. [Google Scholar] [CrossRef]
- Kennedy, A.C.; Douglass, M.J.J.; Santos, A.M.C. Being certain about uncertainties: A robust evaluation method for high-dose-rate prostate brachytherapy treatment plans including the combination of uncertainties. Phys. Eng. Sci. Med. 2023, 46, 1115–1130. [Google Scholar] [CrossRef]
- Gong, L.; Yang, Y.; Feng, S.; Dai, W.; Liang, B.; Xiong, J. Solar active regions detection and tracking based on deep learning. Sol. Phys. 2024, 299, 121. [Google Scholar] [CrossRef]
- Yang, Y.; Jiao, G.; Liu, J.; Zhao, W.; Zheng, J. A lightweight rice disease identification network based on attention mechanism and dynamic convolution. Ecol. Inform. 2023, 78, 102320. [Google Scholar] [CrossRef]
- Yue, G.; Liu, Y.; Niu, T.; Liu, L.; An, L.; Wang, Z.; Duan, M. Glu-yolov8: An improved pest and disease target detection algorithm based on yolov8. Forests 2024, 15, 1486. [Google Scholar] [CrossRef]
- Jia, S.; Du, L.; Xinyu, J.; Ben, L.; Kangkang, F. PCB defect detection algorithm based on YOLO-G. Microelectron. Comput. 2024, 41, 35–44. [Google Scholar]
- Yan, W.; Jian, L.; Jin, T.; Hong, P.; Siyi, C. Defect detection of printed circuit boards based on YOLOv8-PCB. Laser Optoelectron. Prog. 2024, 14. Available online: https://kns.cnki.net/kcms/detail/31.1690.TN.20240624.2254.060.html (accessed on 25 June 2024).
Attention Mechanism of YOLOV8n Model Backbone Network | P/% | R/% | mAP0.5/% | FPS (f/s) | FLOPs/G | Parameters/M |
---|---|---|---|---|---|---|
NONE | 96.1 | 95.0 | 95.3 | 41.6 | 8.9 | 3.15 |
+GAM | 98.2 | 99.0 | 99.0 | 18.8 | 18.0 | 7.87 |
+LSK | 98.2 | 99.0 | 99.1 | 35.7 | 9.3 | 3.35 |
+CBAM | 98.4 | 99.4 | 99.3 | 41.2 | 8.9 | 3.17 |
Model | DWConv | VOVGSCSP | WIOU | C2fCBAM | P/% | R/% | mAP0.5/% | FPS (f/s) | FLOPs /G | Params /M |
---|---|---|---|---|---|---|---|---|---|---|
YOLOV8N | × | × | × | × | 96.1 | 95.0 | 95.3 | 41.6 | 8.9 | 3.15 |
YOLOV8N-D | √ | × | × | × | 98.2 | 99.0 | 99.1 | 42.1 | 7.7 | 2.58 |
YOLOV8N-DV | √ | √ | × | × | 98.5 | 98.5 | 98.7 | 43.6 | 7.0 | 2.46 |
YOLOV8N-DVW | √ | √ | √ | × | 98.6 | 98.7 | 99.1 | 43.6 | 7.0 | 2.46 |
DVCW-YOLO | √ | √ | √ | √ | 99.1 | 99.4 | 99.3 | 43.3 | 7.0 | 2.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, P.; Zhang, Y.; Cao, Y.; Sun, J.; Chen, D.; Kuang, L. DVCW-YOLO for Printed Circuit Board Surface Defect Detection. Appl. Sci. 2025, 15, 327. https://doi.org/10.3390/app15010327
Shi P, Zhang Y, Cao Y, Sun J, Chen D, Kuang L. DVCW-YOLO for Printed Circuit Board Surface Defect Detection. Applied Sciences. 2025; 15(1):327. https://doi.org/10.3390/app15010327
Chicago/Turabian StyleShi, Pei, Yuyang Zhang, Yunqin Cao, Jiadong Sun, Deji Chen, and Liang Kuang. 2025. "DVCW-YOLO for Printed Circuit Board Surface Defect Detection" Applied Sciences 15, no. 1: 327. https://doi.org/10.3390/app15010327
APA StyleShi, P., Zhang, Y., Cao, Y., Sun, J., Chen, D., & Kuang, L. (2025). DVCW-YOLO for Printed Circuit Board Surface Defect Detection. Applied Sciences, 15(1), 327. https://doi.org/10.3390/app15010327