Attempts to Use Hemp (Cannabis sativa L. var. sativa) Inflorescence Extract to Limit the Growth of Fungi Occurring in Agricultural Crops
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pant Material
2.2. Extract Preparation
2.3. Characteristics of the Chemical Composition of Hemp Extracts and Analysis of Their Antioxidant Activity
2.3.1. Evaluation of Total Polyphenol Content
2.3.2. Evaluation of Flavonoid Content
2.3.3. Estimation of Cannabinoid Content
- -
- RP C18 Nex-Leaf CBX Potency 150 × 4.6 mm, 2.7 μm column with Nex-Leaf CBX 5 × 4.6 mm, 2.7 μm precolumn.
- -
- Gradient elution: water + 0.085% phosphoric acid (A), acetonitrile + 0.085% phosphoric acid (B); 70% B until 3 min, 85% B until 7 min, 95% B from 7.01 min to 8.00 min, then 70% B until 10 min.
- -
- Mobile phase flow rate 1.0 mL/min.
- -
- Chromatographic column temperature 35 °C.
- -
- Injection volume 5 µL.
- -
- Detection at λ = 220 nm
- -
- Analysis time 8 min.
2.3.4. Assessment of Antioxidant Activity
2.4. Biological Tests
2.4.1. Preparation of Fungal Cultures
2.4.2. Assessment of Antifungal Extract Activity—In Vitro Tests
2.5. Statistical Analysis
3. Results
3.1. Content of Selected Biologically Active Substances in the Extract
3.2. Inhibition of Fungal Growth
3.3. Fungal Morphology Changes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rohr, J.R.; Barrett, C.B.; Civitello, D.J.; Craft, M.E.; Delius, B.; DeLeo, G.A.; Hudson, P.J.; Jouanard, N.; Nguyen, K.H.; Ostfeld, R.O.; et al. Emerging human infectious diseases and the links to global food production. Nat. Sustain. 2019, 2, 445–456. [Google Scholar] [CrossRef]
- Pańka, D.; Jeske, M.; Łukanowski, A.; Baturo-Cieśniewska, A.; Prus, P.; Maitah, M.; Maitaha, K.; Malec, K.; Rymarz, D.; Muhire’a, J.D.; et al. Can cold plasma be used for boosting plant growth and plant protection in sustainable plant production? Agronomy 2020, 12, 841. [Google Scholar] [CrossRef]
- Ginter, A. Plant protection within the European Green Deal on the example starch potato cultivation. Prog. Plant Prot. 2022, 62, 208–215. [Google Scholar] [CrossRef]
- Ahmed, M.; Ji, M.; Qin, P.; Gu, Z.; Liu, Y.; Sikandar, A.; Iqbal, M.F.; Javeed, A. Phytochemical screening, total phenolic and flavonoids contents and antioxidant activities of Citrullus colocynthis L. and Cannabis sativa L. Appl. Ecol. Environ. Res. 2019, 17, 6961–6979. [Google Scholar] [CrossRef]
- Suteu, D.; Rusu, L.; Zaharia, C.; Badeanu, M.; Daraban, G.M. Challenge of utilization vegetal extracts as natural plant protection products. Appl. Sci. 2020, 10, 8913. [Google Scholar] [CrossRef]
- Kumar, J.; Ramlal, A.; Mallick, D.; Mishra, V. An overview of some biopesticides and their importance in plant protection for commercial acceptance. Plants 2021, 10, 1185. [Google Scholar] [CrossRef]
- Samada, L.H.; Tambunan, U.S.F. Biopesticides as promising alternatives to chemical pesticides: A review of their current and future status. Online J. Biol. Sci. 2020, 20, 66–76. [Google Scholar] [CrossRef]
- Rajput, V.S.; Jhala, J.; Acharya, V.S. Biopesticides and their mode of action against insect pests: A review. Int. J. Chem. Stud. 2020, 8, 2856–2862. [Google Scholar] [CrossRef]
- Ullah, F.; Ayaz, M.; Sadiq, A.; Ullah, F.; Hussain, I.; Shahid, M.; Yessimbekov, Z.; Adhikari-Devkota, A.; Devkota, H.P. Potential role of plant extracts and phytochemicals against foodborne pathogens. Appl. Sci. 2020, 10, 4597. [Google Scholar] [CrossRef]
- ElSohly, M.A.; Radwan, M.M.; Gul, W.; Chandra, S.; Galal, A. Phytochemistry of Cannabis sativa L. In Phytocannabinoids; Kinghorn, A., Falk, H., Gibbons, S., Kobayashi, J., Eds.; Progress in the Chemistry of Organic Natural Products; Springer: Cham, Switzerland, 2017; Volume 103. [Google Scholar] [CrossRef]
- Strzelczyk, M.; Kaniewski, R. Konopie siewne Cannabis sativa L.—Jeden z najstarszych gatunków roślin użytkowych. Postępy Fitoter. 2021, 22, 53–60. [Google Scholar] [CrossRef]
- Kaniewski, R.; Pniewska, I.; Kubacki, A.; Strzelczyk, M.; Chudy, M.; Oleszak, G. Konopie siewne (Cannabis sativa L.)—Wartościowa roślina użytkowa i lecznicza. Postępy Fitoter. 2017, 18, 139–144. [Google Scholar] [CrossRef]
- Aliferis, K.A.; Bernard-Perron, D. Cannabinomics: Application of metabolomics in Cannabis (Cannabis sativa L.) research and development. Front. Plant Sci. 2020, 11, 554. [Google Scholar] [CrossRef]
- Rupasinghe, H.V.; Davis, A.; Kumar, S.K.; Murray, B.; Zheljazkov, V.D. Industrial hemp (Cannabis sativa subsp. sativa) as an emerging source for value-added functional food ingredients and nutraceuticals. Molecules 2020, 25, 4078. [Google Scholar] [CrossRef]
- Andre, C.M.; Hausman, J.F.; Guerriero, G. Cannabis sativa: The plant of the thousand and one molecules. Front. Plant Sci. 2016, 7, 19. [Google Scholar] [CrossRef]
- Di Sotto, A.; Gullì, M.; Acquaviva, A.; Tacchini, M.; Di Simone, S.C.; Chiavaroli, A.; Recinella, Ł.; Leone, S.; Brunetti, L.; Orlando, G.; et al. Phytochemical and pharmacological profiles of the essential oil from the inflorescences of the Cannabis sativa L. Ind. Crop. Prod. 2022, 183, 114980. [Google Scholar] [CrossRef]
- Perera, P.K.; Diddeniya, J.I.D. In-Vitro and In-Vivo supportive research on medicinal properties of Cannabis sativa: A comprehensive review. J. Ayurvedic Herb. Med. 2022, 8, 40–47. [Google Scholar] [CrossRef]
- Schofs, L.; Sparo, M.D.; Sanchez Bruni, S.F. The antimicrobial effect behind Cannabis sativa. Pharmacol. Res. Perspect. 2021, 9, e00761. [Google Scholar] [CrossRef]
- Kursa, W.; Jamiołkowska, A.; Wyrostek, J.; Kowalski, R. Antifungal Effect of Plant Extracts on the Growth of the Cereal Pathogen Fusarium spp.—An in Vitro Study. Agronomy 2022, 12, 3204. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic -phosphotungstic acid reagents. Am. J. Enol. Viticult. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Karadeniz, F.; Burdurlu, H.S.; Koca, N.; Soyer, Y. Antioxidant activity of selected fruits and vegetables grown in Turkey. Turk. J. Agric. For. 2005, 29, 297–303. [Google Scholar]
- Mandrioli, M.; Tura, M.; Scotti, S.; Gallina Toschi, T. Fast Detection of 10 Cannabinoids by RP-HPLC-UV Method in Cannabis sativa L. Molecules 2019, 24, 2113. [Google Scholar] [CrossRef] [PubMed]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Wyrostek, J.; Kowalski, R. Effect of ultrasound and fragmentation of the raw material on the extraction of phenolic compounds from peppermint leaves and black tea. Przemysł Chem. 2022, 101, 928–933. [Google Scholar]
- Kulik, T.; Fordoński, G.; Pszczółkowska, A.; Płodzień, K.; Olszewski, J. Identification of some Fusarium species from selected crop seeds using traditional method and BIO-PCR. Acta Agrobot. 2005, 58, 33–54. [Google Scholar] [CrossRef]
- Turner, A.S.; Lees, A.K.; Rezanoor, H.N.; Nicholson, P. Refinement of PCR-detection of Fusarium avenaceum and evidence from DNA marker studies for phenetic relatedness to Fusarium tricinctum. Plant Pathol. 1998, 47, 278–288. [Google Scholar] [CrossRef]
- Schilling, A.G.; Möller, E.M.; Geiger, H.H. Polymerase Chain Reaction—Based Assays for Species—Specific Detection of Fusarium culmorum, F. graminearum, and F. avenaceum. Phytopathology 1996, 86, 515–523. [Google Scholar] [CrossRef]
- Nicholson, P.; Simpson, D.R.; Weston, G.; Rezanoor, H.N.; Lees, A.K.; Parry, D.W.; Joyce, D. Detection and quantification of Fusarium culmorum and Fusarium graminearum in cereals using PCR assays. Physiol. Molec. Plant Pathol. 1998, 53, 17–37. [Google Scholar] [CrossRef]
- Edel, V.; Steinberg, C.N.; Gautheron, N.; Alabouvette, C. Ribosomal DNA-targeted oligonucleotide probe and PCR assay specific for Fusarium oxysporum. Mycol. Res. 2000, 104, 518–526. [Google Scholar] [CrossRef]
- Jamiołkowska, A.; Kowalski, R. Laboratory effect of Silphium perfoliatum L. on the growth of tested fungi. Acta Sci. Pol.-Hortoru. 2012, 11, 43–55. [Google Scholar]
- Szalata, M.; Dreger, M.; Zielińska, A.; Banach, J.; Szalata, M.; Wielgus, K. Simple Extraction of Cannabinoids from Female Inflorescences of Hemp (Cannabis sativa L.). Molecules 2022, 27, 5868. [Google Scholar] [CrossRef]
- Qamar, S.; Torres, Y.J.M.; Parekh, H.S.; Falconer, J.R. Effects of Ethanol on the Supercritical Carbon Dioxide Extraction of Cannabinoids from Near Equimolar (THC and CBD Balanced) Cannabis Flower. Separations 2021, 8, 154. [Google Scholar] [CrossRef]
- Munekata, P.E.S.; Rocchetti, G.; Pateiro, M.; Lucini, L.; Domínguez, R.; Lorenzo, J.M. Addition of plant extracts to meat and meat products to extend shelf-life and health-promoting attributes: An overview. Curr. Opin. Food Sci. 2020, 31, 81–87. [Google Scholar] [CrossRef]
- Efenberger-Szmechtyk, M.; Nowak, A.; Czyżowska, A. Extracts rich in polyphenols—Natural preservatives of meat products. Przemysł Spożywczy 2018, 72, 28–33. [Google Scholar]
- Hoang, H.T.; Moon, J.Y.; Lee, Y.C. Natural antioxidants from plant extracts in skincare cosmetics: Recent applications. challenges and perspectives. Cosmetics 2021, 8, 106. [Google Scholar] [CrossRef]
- Lacatusu, I.; Istrati, D.; Bordei, N.; Popescu, M.; Seciu, A.M.; Panteli, L.M.; Badea, N. Synergism of plant extract and vegetable oils-based lipid nanocarriers: Emerging trends in development of advanced cosmetic prototype products. Mater. Sci. Eng. C 2020, 108, 110412. [Google Scholar] [CrossRef] [PubMed]
- Harhaun, R.; Kunik, O.; Saribekova, D.; Lazzara, G. Biologically active properties of plant extracts in cosmetic emulsions. Microchem. J. 2020, 154, 104543. [Google Scholar] [CrossRef]
- Veiga, M.; Costa, E.M.; Silva, S.; Pintado, M. Impact of plant extracts upon human health: A review. Crit. Rev. Food Sci. Nutr. 2020, 60, 873–886. [Google Scholar] [CrossRef] [PubMed]
- Rolnik, A.; Olas, B. The plants of the Asteraceae family as agents in the protection of human health. Int. J. Mol. Sci. 2021, 22, 3009. [Google Scholar] [CrossRef]
- Gedikoğlu, A.; Sökmen, M.; Çivit, A. Evaluation of Thymus vulgaris and Thymbra spicata essential oils and plant extracts for chemical composition antioxidant and antimicrobial properties. Food Sci. Nutr. 2019, 7, 1704–1714. [Google Scholar] [CrossRef]
- Behiry, S.I.; Hamad, N.A.; Alotibi, F.O.; Al-Askar, A.A.; Arishi, A.A.; Kenawy, A.M.; Elsamra, I.A.; Youssef, N.H.; Elsharkawy, M.M.; Abdelkhalek, A.; et al. Antifungal and Antiaflatoxigenic Activities of Different Plant Extracts against Aspergillus flavus. Sustainability 2022, 14, 12908. [Google Scholar] [CrossRef]
- Sánchez-Hernández, E.; González-García, V.; Correa-Guimarães, A.; Casanova-Gascón, J.; Martín-Gil, J.; Martín-Ramos, P. Phytochemical profile and activity against Fusarium species of Tamarix gallica bark aqueous ammonia extract. Agronomy 2023, 13, 496. [Google Scholar] [CrossRef]
- Gildea, L.; Ayariga, J.A.; Ajayi, O.S.; Xu, J.; Villafane, R.; Samuel-Foo, M. Cannabis sativa CBD Extract Shows Promising Antibacterial Activity against Salmonella typhimurium and S. newington. Molecules 2022, 27, 2669. [Google Scholar] [CrossRef]
- Audu, B.S.; Ofojekwu, P.C.; Ujah, A.; Ajima, M.N.O. Phytochemical. proximate composition. amino acid profile and characterization of Marijuana (Cannabis sativa L.). J. Phytopharm. 2014, 3, 35–43. [Google Scholar] [CrossRef]
- Adaszyńska, M.; Swarcewicz, M. Olejki eteryczne jako substancje aktywne lub konserwanty w kosmetykach. Wiadomości Chem. 2012, 66, 139–158. [Google Scholar]
- Haliński, Ł. Metabolity wtórne roślin jako alternatywne pestycydy. Lab.-Przegląd Ogólnopolski 2019, 1, 62–67. [Google Scholar]
- Hemp Production in the UE. Available online: https://agriculture.ec.europa.eu/farming/crop-productions-and-plant-based-products/hemp_en (accessed on 15 February 2024).
- Kursa, W.; Jamiołkowska, A.; Skwaryło-Bednarz, B.; Kowalski, R.; Wyrostek, J.; Patkowska, E.; Kopacki, M. In vitro efficacy of herbal plant extracts on some phytopathogenic fungi. Acta Sci. Pol.-Hortoru. 2022, 21, 79–90. [Google Scholar] [CrossRef]
- Al Khoury, A.; Sleiman, R.; Atoui, A.; Hindieh, P.; Maroun, R.G.; Bailly, J.D.; El Khoury, A. Antifungal and anti-aflatoxigenic properties of organs of Cannabis sativa L.: Relation to phenolic content and antioxidant capacities. Arch. Microbiol. 2021, 203, 4485–4492. [Google Scholar] [CrossRef]
- Isidore, E.; Karim, H.; Ioannou, I.; Isidore, E.; Karim, H.; Ioannou, I. Extraction of phenolic compounds and terpenes from Cannabis sativa L. by-products: From conventional to intensified processes. Antioxidants 2021, 10, 942. [Google Scholar] [CrossRef] [PubMed]
- Atalay, S.; Jarocka-Karpowicz, I.; Skrzydlewska, E. Antioxidative and Anti-Inflammatory Properties of Cannabidiol. Antioxidants 2020, 9, 21. [Google Scholar] [CrossRef] [PubMed]
- Kopustinskiene, D.M.; Masteikova, R.; Lazauskas, R.; Bernatoniene, J. Cannabis sativa L. Bioactive compounds and their protective role in oxidative stress and inflammation. Antioxidants 2022, 11, 660. [Google Scholar] [CrossRef] [PubMed]
- Fathordoobady, F.; Singh, A.; Kitts, D.D.; Pratap Singh, A. Hemp (Cannabis sativa L.) extract: Anti-microbial Properties, Methods of Extraction and Potential Oral Delivery. Food Rev. Int. 2019, 35, 664–684. [Google Scholar] [CrossRef]
- Glivar, T.; Eržen, J.; Kreft, S.; Zagožen, M.; Čerenak, A.; Čeh, B.; Benković, E.T. Cannabinoid content in industrial hemp (Cannabis sativa L.) varieties grown in Slovenia. Ind. Crop. Prod. 2020, 145, 112082. [Google Scholar] [CrossRef]
- García-Tejero, I.F.; Zuazo, V.D.; Sánchez-Carnenero, C.; Hernández, A.; Ferreiro-Vera, C.; Casano, S. Seeking suitable agronomical practices for industrial hemp (Cannabis sativa L.) cultivation for biomedical applications. Ind. Crop. Prod. 2019, 139, 111524. [Google Scholar] [CrossRef]
- Moreno, T.; Montanes, F.; Tallon, S.J.; Fenton, T.; King, J.W. Extraction of cannabinoids from hemp (Cannabis sativa L.) using high pressure solvents: An overview of different processing options. J. Supercrit. Fluids 2020, 161, 104850. [Google Scholar] [CrossRef]
- Izzo, A.A.; Borrelli, F.; Capasso, R.; Di Marzo, V.; Mechoulam, R. Non-psychotropic plant cannabinoids: New therapeutic opportunities from an ancient herb. Trends Pharmacol. Sci. 2009, 30, 515–527. [Google Scholar] [CrossRef] [PubMed]
- Mańkowska, G.; Luwańska, A.; Wielgus, K.; Bocianowski, J. Ocena zawartości kannabinoidów wybranych odmian konopi Cannabis sativa L. Biul. Inst. Hod. Aklim. Roślin 2015, 277, 79–86. [Google Scholar] [CrossRef]
- Hong, H.; Sloan, L.; Saxena, D.; Scott, D.A. The Antimicrobial Properties of Cannabis and Cannabis-Derived Compounds and Relevance to CB2-Targeted Neurodegenerative Therapeutics. Biomedicines 2022, 10, 1959. [Google Scholar] [CrossRef] [PubMed]
- Pasquali, F.; Schinzari, M.; Lucchi, A.; Mandrioli, M.; Toschi, T.G.; De Cesare, A.; Manfreda, G. Preliminary data on the antimicrobial effect of Cannabis sativa L. variety Futura 75 against food-borne pathogens in vitro as well as against naturally occurring microbial populations on minced meat during storage. Ital. J. Food Saf. 2020, 9, 8581. [Google Scholar] [CrossRef] [PubMed]
- Esra, M.M.A.; Aisha, Z.I.A.; Salwa, M.E.K.; Umelkheir, M.A.G. Antimicrobial Activity of Cannabis sativa L. Chin. Med. 2012, 3, 61–64. [Google Scholar] [CrossRef]
- Khan, I.H.; Javaid, A. Antifungal Activity of leaf extract of Cannabis Sativa against Aspergillus flavipes. Pakistan J. Weed Sci. Res. 2020, 26, 447–453. [Google Scholar] [CrossRef]
- Nazzaro, F.; Fratianni, F.; Coppola, R.; De Feo, V. Essential oils and antifungal activity. Pharmaceuticals 2017, 10, 86. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.H.; Javaid, A.; Shad, N. Comparative efficacy of organic solvent fractions of leaf extract of hemp against Aspergillus versicolor. Pakistan J. Weed Sci. Res. 2021, 27, 101–108. [Google Scholar] [CrossRef]
- Tapwal, A.; Garg, S.; Gautam, N.; Kumar, R. In Vitro antifungal potency of plant extracts against five phytopathogens. Braz. Arch. Biol. Technol. 2011, 54, 1093–1098. [Google Scholar] [CrossRef]
Parameter (Units) | Result ± SD |
---|---|
Flavonoids (mg·mL−1) | 1.55 ± 0.036 |
Polyphenols (mg·mL−1) | 149.65 ± 0.797 |
Antioxidant activity (% inhibition) | 22.93 ± 4.013 |
Antioxidant activity (mM Trolox) | 32.05 ± 6.328 |
Cannabinoids | Concentration (%, w/w) | |
---|---|---|
Experimental Extract (100%, 1:1) | Hemp Oil CBD 20% “Ultra Extract” | |
Cannabidiol (CBD) | 0.08 | 20.71 |
Cannabidiolic acid (CBDA) | 0.04 | 1.10 |
delta-9-tetrahydrocannabinol (Δ9-THC) | <0.01 | 0.11 |
delta-9-tetrahydrocannabinol acid (Δ9-THCA) | <0.01 | <0.01 |
Cannabichromene (CBC) | <0.01 | 0.22 |
Cannabigerolic acid (CBGA) | <0.01 | 0.06 |
Cannabigerol (CBG) | <0.01 | 2.66 |
Cannabidiwarin (CBDV) | <0.01 | 0.08 |
Cannabinol (CBN) | <0.01 | 0.02 |
Sum of CBD and CBDA | 0.12 | 21.81 |
Sum of Δ9-THC and Δ9-THCA | <0.01 | 0.11 |
Total cannabinoids | 0.12 | 24.96 |
Fungus Species | Experimental Combination | Number of Days ± SD | ||||
---|---|---|---|---|---|---|
2 | 4 | 6 | 8 | 10 | ||
A. alternata | H5 | 58.16 ± 6.37 a | 61.14 ± 4.10 b | 63.78 ± 0.56 a | 66.35 ± 2.73 b | 64.10 ± 2.31 a |
H10 | 63.89 ± 0.00 a | 71.01 ± 1.45 a | 68.37 ± 2.70 a | 73.57 ± 1.88 a | 69.91 ± 6.57 a | |
H20 | 57.41 ± 11.56 a | 74.07 ± 2.12 a | 70.82 ± 3.98 a | 76.04 ± 0.42 a | 76.46 ± 0.95 a | |
LSD | 17.422 | 7.651 | 5.426 | 4.807 | 9.876 | |
B. cinerea | H5 | 67.32 ± 2.26 a | 72.07 ± 5.29 a | 62.59 ± 7.03 a | 47.78 ± 11.48 a | 34.07 ± 10.68 a |
H10 | 67.26 ± 2.73 a | 72.94 ± 2.48 a | 65.93 ± 4.49 a | 51.85 ± 6.12 a | 36.67 ± 7.29 a | |
H20 | 62.2 ± 9.45 a | 75.42 ± 2.56 a | 70.59 ± 2.30 a | 58.89 ± 4.41 a | 45.00 ± 6.41 a | |
LSD | 11.414 | 10.205 | 13.709 | 21.284 | 22.107 | |
C. coccodes | H5 | 58.90 ± 0.00 b | 64.10 ± 2.22 b | 62.34 ± 2.25 b | 62.84 ± 2.11 c | 61.36 ± 2.60 b |
H10 | 61.54 ± 0.00 a | 68.10 ± 5.62 b | 68.20 ± 4.41 b | 70.16 ± 2.20 b | 64.78 ± 3.64 b | |
H20 | 61.54 ± 0.00 a | 81.82 ± 0.00 a | 79.60 ± 3.12 a | 76.67 ± 3.67 a | 75.26 ± 1.97 a | |
LSD | - | 7.653 | 7.767 | 5.826 | 7.666 | |
F. avenaceum | H5 | 40.91 ± 14.19 a | 49.28 ± 7.53 a | 51.90 ± 5.90 b | 46.20 ± 6.88 c | 55.20 ± 34.87 a |
H10 | 27.66 ± 7.37 a | 50.58 ± 3.63 a | 56.25 ± 2.17 b | 55.96 ± 0.92 b | 54.41 ± 2.18 a | |
H20 | 42.34 ± 3.12 a | 60.75 ± 0.00 a | 69.82 ± 0.00 a | 69.37 ± 0.38 a | 63.34 ± 1.22 a | |
LSD | 22.327 | 11.520 | 7.222 | 9.002 | 46.906 | |
F.culmorum | H5 | 58.73 ± 7.27 a | 54.27 ± 5.18 b | 62.69 ± 1.97 b | 62.78 ± 2.89 a | 54.81 ± 5.59 a |
H10 | 40.21 ± 12.88 b | 63.00 ± 5.57 a b | 64.69 ± 5.13 b | 58.70 ± 3.78 b | 52.59 ± 5.40 a | |
H20 | 66.13 ± 4.84 a | 70.29 ± 1.35 a | 72.95 ± 3.08 a | 62.78 ± 2.42 a | 51.48 ± 4.17 a | |
LSD | 14.141 | 10.470 | 6.001 | 1.969 | 5.466 | |
F. graminearum | H5 | 28.57 ± 12.37 a | 33.56 ± 9.71 a | 31.78 ± 4.46 a | 19.32 ± 3.94 b | 13.1 ± 1.03 b |
H10 | 5.56 ± 12.73 b | 46.91 ± 2.36 a | 43.31 ± 2.44 a | 41.69 ± 2.87 a | 42.63 ± 3.16 a | |
H20 | 31.43 ± 8.57 a | 38.67 ± 7.57 a | 35.74 ± 3.68 a | 38.80 ± 3.32 a | 36.72 ± 3.58 a | |
LSD | 20.763 | 19.727 | 9.456 | 6.781 | 7.322 | |
F. oxysporum | H5 | 52.75 ± 6.86 a | 53.85 ± 5.77 a | 47.75 ± 8.71 a | 51.05 ± 5.35 a | 47.72 ± 4.86 a |
H10 | 49.49 ± 9.26 a | 58.33 ± 5.16 a | 51.46 ± 8.41 a | 56.91 ± 8.14 a | 55.33 ± 7.85 a | |
H20 | 61.54 ± 12.82 a | 54.22 ± 14.01 a | 58.68 ± 8.99 a | 61.52 ± 9.98 a | 62.45 ± 7.53 a | |
LSD | 15.328 | 19.994 | 20.773 | 21.406 | 17.210 | |
F. sporotrichioides | H5 | 30.91 ± 3.15 a | 50.72 ± 3.47 a | 62.63 ± 3.21 a | 59.26 ± 0.85 a | 47.59 ± 2.74 a |
H10 | 28.07 ± 13.25 a | 52.38 ± 6.23 a | 57.81 ± 3.57 a | 45.93 ± 6.12 b | 40.56 ± 2.55 a | |
H20 | 51.77 ± 4.91 a | 62.78 ± 3.94 a | 67.81 ± 3.16 a | 59.44 ± 4.41 a | 50.19 ± 6.39 a | |
LSD | 21.031 | 10.908 | 8.466 | 11.237 | 10.662 | |
T. koningii | H5 | 77.58 ± 1.55 a | 80.00 ± 2.42 a | 72.22 ± 3.09 a | 63.15 ± 3.06 b | 56.85 ± 1.40 a |
H10 | 77.55 ± 4.68 a | 85.66 ± 2.55 a | 77.41 ± 1.70 a | 70.93 ± 1.95 a | 65.00 ± 2.94 a | |
H20 | 76.53 ± 3.53 a | 84.79 ± 2.63 a | 77.41 ± 4.98 a | 68.15 ± 2.57 a b | 62.22 ± 4.19 a | |
LSD | 3.883 | 5.155 | 8.751 | 5.609 | 7.229 |
Fungus Species | Experimental Combination | Mycelium Surface and Structure | Obverse | Reverse |
---|---|---|---|---|
A. alternata | C5, C10, C20 | Fluffy, raised | Green-grey | Black |
H5, H10, H20 | Fluffy, dense-fibrous, flat | Green-grey | Black | |
B. cinerea | C5, C10, C20 | Fluffy, raised | White-grey | White-grey |
H5, H10, H20 | Fluffy, raised (conical) in the middle | White | White | |
C. coccodes | C5, C10, C20 | Dense, flat | Black | Black |
H5, H10, H20 | Dense, flat | Black-brown | Black-brown | |
F. avenaceum | C5, C10, C20 | Fluffy, raised | Pink-white; pink | Chestnut |
H5, H10, H20 | Fluffy, regularly raised | White-pink-purple Pink-white | Intensely pink | |
F. culmorum | C5, C10, C20 | Fluffy, regular uniform growth | White-pink | Purple |
H5, H10, H20 | Fluffy, raised | White-pink | Purple-maroon | |
F. graminearum | C5, C10, C20 | Fluffy, regular growth, raised in the center | White-pink; pink | Chestnut |
H5, H10, H20 | Fluffy, regular growth, raised in the center | White-pink; pink | Chestnut | |
F. oxysporum | C5, C10, C20 | Dense, leathery, flat | Purple-white | Purple |
H5, H10, H20 | Dense, flat | White-gray-pink | Purple | |
F.sporotrichioides | C5, C10, C20 | Fluffy, regular uniform growth | Pink-white-yellow | Chestnut |
H5, H10, H20 | Fluffy, convex | White-gray-pink | Chestnut | |
T. koningii | C5, C10, C20 | Fluffy, fibrous, flat | Dark green | Light green |
H5, H10, H20 | Fluffy, slightly raised | Light green | Light green |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kursa, W.; Jamiołkowska, A.; Wyrostek, J.; Kowalski, R. Attempts to Use Hemp (Cannabis sativa L. var. sativa) Inflorescence Extract to Limit the Growth of Fungi Occurring in Agricultural Crops. Appl. Sci. 2024, 14, 1680. https://doi.org/10.3390/app14041680
Kursa W, Jamiołkowska A, Wyrostek J, Kowalski R. Attempts to Use Hemp (Cannabis sativa L. var. sativa) Inflorescence Extract to Limit the Growth of Fungi Occurring in Agricultural Crops. Applied Sciences. 2024; 14(4):1680. https://doi.org/10.3390/app14041680
Chicago/Turabian StyleKursa, Weronika, Agnieszka Jamiołkowska, Jakub Wyrostek, and Radosław Kowalski. 2024. "Attempts to Use Hemp (Cannabis sativa L. var. sativa) Inflorescence Extract to Limit the Growth of Fungi Occurring in Agricultural Crops" Applied Sciences 14, no. 4: 1680. https://doi.org/10.3390/app14041680
APA StyleKursa, W., Jamiołkowska, A., Wyrostek, J., & Kowalski, R. (2024). Attempts to Use Hemp (Cannabis sativa L. var. sativa) Inflorescence Extract to Limit the Growth of Fungi Occurring in Agricultural Crops. Applied Sciences, 14(4), 1680. https://doi.org/10.3390/app14041680