Maximum Correntropy Extended Kalman Filtering with Nonlinear Regression Technique for GPS Navigation
Abstract
:1. Introduction
2. Methodologies
2.1. Maximum Correntropy Criterion
2.2. Extended Kalman Filter
2.3. Maximum Correntropy Extended Kalman Filter
2.4. Maximum Correntropy Criterion-Based Extended Kalman Filter with Nonlinear Regression
- (1)
- Let us first consider a kernel bandwidth , and with small positive value for the error tolerance. Then initialize , ;
- (2)
- Then predict, ,
- (3)
- Updating,If thenOtherwise
- (4)
- Iteration loop: Calculation of using the following steps:
- i.
- ii.
- iii.
- iv.
- v.
- vi.
- vii.
- viii.
- (5)
- If then go to step 6; otherwise, set , and go back to step 4.
- (6)
- Then, set , and go back to step 2.
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Anderson, B.D.; Moore, J.B. Optimal Filtering; Courier Corporation: North Chelmsford, MA, USA, 2005. [Google Scholar]
- Bar-Shalom, Y.B.; Li, X.R.; Kirubarajan, T. Estimation, Tracking and Navigation: Theory, Algorithms and Software; Wiley: Hoboken, NJ, USA, 2001. [Google Scholar]
- Huang, Y.; Zhang, Y.; Shi, P.; Wu, Z.; Qian, J.; Chambers, J.A. Robust Kalman filters based on Gaussian scale mixture distributions with application to target tracking. IEEE Trans. Syst. Man Cybern. Syst. 2017, 49, 2082–2096. [Google Scholar] [CrossRef]
- Abdelrahman, M.; Park, S.Y. Sigma-point Kalman filtering for spacecraft attitude and rate estimation using magnetometer measurements. IEEE Trans. Aerosp. Electron. Syst. 2011, 47, 1401–1415. [Google Scholar] [CrossRef]
- Liu, X.; Ren, Z.; Lyu, H.; Jiang, Z.; Ren, P.; Chen, B. Linear and nonlinear regression-based maximum correntropy extended Kalman filtering. IEEE Trans. Syst. Man Cybern. Syst. 2019, 51, 3093–3102. [Google Scholar] [CrossRef]
- Wan, E.A.; Van Der Merwe, R. The unscented Kalman filter. In Kalman Filtering and Neural Networks; Wiley: Hoboken, NJ, USA, 2001; pp. 221–280. [Google Scholar]
- Arasaratnam, I.; Haykin, S. Cubature kalman filters. IEEE Trans. Autom. Control 2009, 54, 1254–1269. [Google Scholar] [CrossRef]
- Ito, K.; Xiong, K. Gaussian filters for nonlinear filtering problems. IEEE Trans. Autom. Control 2000, 45, 910–927. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, Y.; Zhao, Y.; Shi, P.; Chambers, J.A. A novel outlier-robust Kalman filtering framework based on statistical similarity measure. IEEE Trans. Autom. Control 2020, 66, 2677–2692. [Google Scholar] [CrossRef]
- Karlgaard, C.D. Nonlinear regression Huber–Kalman filtering and fixed-interval smoothing. J. Guid. Control Dyn. 2015, 38, 322–330. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, Y.; Li, N.; Wu, Z.; Chambers, J.A. A novel robust student’s t-based Kalman filter. IEEE Trans. Aerosp. Electron. Syst. 2017, 53, 1545–1554. [Google Scholar] [CrossRef]
- Roth, M.; Özkan, E.; Gustafsson, F.A. Student’s t filter for heavy tailed process and measurement noise. In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013; pp. 5770–5774. [Google Scholar]
- Huang, H.; Zhang, H. Student’s t-Kernel-Based Maximum Correntropy Kalman Filter. Sensors 2022, 22, 1683. [Google Scholar] [CrossRef]
- Chen, W.; Li, Z.; Chen, Z.; Sun, Y.; Liu, Y. Multiple similarity measure-based maximum correntropy criterion Kalman filter with adaptive kernel width for GPS/INS integration navigation. Measurement 2023, 222, 113666. [Google Scholar] [CrossRef]
- Lu, C.; Zhang, Y.; Ge, Q. Kalman filter based on multiple scaled multivariate skew normal variance mean mixture distributions with application to target tracking. IEEE Trans. Circuits Syst. II Express Briefs 2020, 68, 802–806. [Google Scholar] [CrossRef]
- Liu, W.; Pokharel, P.P.; Principe, J.C. Correntropy: Properties and applications in non-Gaussian signal processing. IEEE Trans. Signal Process. 2007, 55, 5286–5298. [Google Scholar] [CrossRef]
- Principe, J.C. Information Theoretic Learning: Renyi’s Entropy and Kernel Perspectives; Springer Science & Business Media: New York, NY, USA, 2010. [Google Scholar]
- Chen, X.; Yang, J.; Liang, J.; Ye, Q. Recursive robust least squares support vector regression based on maximum correntropy criterion. Neurocomputing 2012, 97, 63–73. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, H.; Huang, H.; Ge, B. A redundant measurement-based maximum correntropy extended Kalman filter for the noise covariance estimation in INS/GNSS integration. Remote Sens. 2023, 15, 2430. [Google Scholar] [CrossRef]
- Shi, L.; Lin, Y. Convex combination of adaptive filters under the maximum correntropy criterion in impulsive interference. IEEE Signal Process. Lett. 2014, 21, 1385–1388. [Google Scholar] [CrossRef]
- Ogunfunmi, T.; Paul, T. The quarternion maximum correntropy algorithm. IEEE Trans. Circuits Syst. II Express Briefs 2015, 62, 598–602. [Google Scholar] [CrossRef]
- Wang, G.; Li, N.; Zhang, Y. Maximum correntropy unscented Kalman and information filters for non-Gaussian measurement noise. J. Frankl. Inst. 2017, 354, 8659–8677. [Google Scholar] [CrossRef]
- He, R.; Hu, B.; Yuan, X.; Wang, L. Robust Recognition via Information Theoretic Learning; Springer International Publishing: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Zhao, S.; Chen, B.; Principe, J.C. Kernel adaptive filtering with maximum correntropy criterion. In Proceedings of the 2011 International Joint Conference on Neural Networks, San Jose, CA, USA, 31 July–5 August 2011; pp. 2012–2017. [Google Scholar]
- Wu, Z.; Shi, J.; Zhang, X.; Ma, W.; Chen, B. Senior Member, IEEE. Kernel recursive maximum correntropy. Signal Process. 2015, 117, 11–16. [Google Scholar] [CrossRef]
- Bao, R.J.; Rong, H.J.; Angelov, P.P.; Chen, B.; Wong, P.K. Correntropy-based evolving fuzzy neural system. IEEE Trans. Fuzzy Syst. 2017, 26, 1324–1338. [Google Scholar] [CrossRef]
- Ma, W.; Zheng, D.; Li, Y.; Zhang, Z.; Chen, B. Bias-compensated normalized maximum correntropy criterion algorithm for system identification with noisy input. Signal Process. 2018, 152, 160–164. [Google Scholar] [CrossRef]
- Cinar, G.T.; Príncipe, J.C. Hidden state estimation using the correntropy filter with fixed point update and adaptive kernel size. In Proceedings of the 2012 International Joint Conference on Neural Networks (IJCNN), Brisbane, QLD, Australia, 10–15 June 2012; pp. 1–6. [Google Scholar]
- Chen, B.; Liu, X.; Zhao, H.; Principe, J.C. Maximum correntropy Kalman filter. Automatica 2017, 76, 70–77. [Google Scholar] [CrossRef]
- Jing, H.; Gao, Y.; Shahbeigi, S.; Dianati, M. Integrity monitoring of GNSS/INS based positioning systems for autonomous vehicles: State-of-the-art and open challenges. IEEE Trans. Intell. Transp. Syst. 2022, 23, 14166–14187. [Google Scholar] [CrossRef]
- Liu, X.; Qu, H.; Zhao, J.; Chen, B. Extended Kalman filter under maximum correntropy criterion. In Proceedings of the 2016 International Joint Conference on Neural Networks (IJCNN), Vancouver, BC, Canada, 24–29 July 2016; pp. 1733–1737. [Google Scholar]
- Dang, L.; Huang, Y.; Zhang, Y.; Chen, B. Multi-kernel correntropy based extended Kalman filtering for state-of-charge estimation. ISA Trans. 2022, 129, 271–283. [Google Scholar] [CrossRef] [PubMed]
- Jwo, D.J.; Cho, T.S.; Biswal, A. Geometric Insights into the Multivariate Gaussian Distribution and Its Entropy and Mutual Information. Entropy 2023, 25, 1177. [Google Scholar] [CrossRef] [PubMed]
- Simon, D. Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Brown, R.G.; Hwang, P.Y.C. Introduction to Random Signals and Applied Kalman Filtering; John Wiley & Sons: New York, NY, USA, 1997. [Google Scholar]
- GPSoft LLC. Satellite Navigation Toolbox 3.0 User’s Guide; GPSoft LLC: Athens, OH, USA, 2003. [Google Scholar]
- GPSoft LLC. Inertial Navigation System Toolbox 3.0 User’s Guide; GPSoft LLC: Athens, OH, USA, 2007. [Google Scholar]
Filters | East (m) | North (m) | Altitude (m) |
---|---|---|---|
EKF [29] | 28.5627 | 21.7379 | 40.5981 |
MCCEKF-BC [31] | 19.3647 | 16.6939 | 25.4365 |
MCCEKF-DS [34] | 16.5144 | 15.4960 | 24.1786 |
MCCEKF-GL [32] | 16.5886 | 15.6737 | 24.4489 |
MCCEKF-NR [Present] | 16.4092 | 15.3790 | 24.0792 |
Mixture-LRMCCEKF [Present] | 16.4124 | 15.3989 | 24.1061 |
Filters | East (m) | North (m) | Altitude (m) |
---|---|---|---|
EKF [29] | 1.0496 × 104 | 2.8975 × 103 | 7.4510 × 103 |
MCCEKF-BC [31] | 1.1562 × 103 | 752.3388 | 1.1221 × 103 |
MCCEKF-DS [34] | 603.6376 | 469.2932 | 904.7247 |
MCCEKF-GL [32] | 597.2612 | 493.8688 | 929.5508 |
NRMCCEKF [Present] | 603.4894 | 469.0979 | 904.6238 |
Mixture-LRMCCEKF [Present] | 603.5379 | 469.1823 | 904.6829 |
Filters | East (m) | North (m) | Altitude (m) |
---|---|---|---|
EKF [29] | −4.4477 | 2.0030 | −7.7829 |
MCCEKF-BC [31] | −3.5017 | −0.4887 | −8.6859 |
MCCEKF-DS [34] | −1.9928 | 0.3381 | −7.2658 |
MCCEKF-GL [32] | −2.0206 | 0.3320 | −7.3809 |
MCCEKF-NR [Present] | −1.8926 | 0.2726 | −7.1856 |
Mixture-LRMCCEKF [Present] | −2.0108 | 0.2862 | −7.2701 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biswal, A.; Jwo, D.-J. Maximum Correntropy Extended Kalman Filtering with Nonlinear Regression Technique for GPS Navigation. Appl. Sci. 2024, 14, 7657. https://doi.org/10.3390/app14177657
Biswal A, Jwo D-J. Maximum Correntropy Extended Kalman Filtering with Nonlinear Regression Technique for GPS Navigation. Applied Sciences. 2024; 14(17):7657. https://doi.org/10.3390/app14177657
Chicago/Turabian StyleBiswal, Amita, and Dah-Jing Jwo. 2024. "Maximum Correntropy Extended Kalman Filtering with Nonlinear Regression Technique for GPS Navigation" Applied Sciences 14, no. 17: 7657. https://doi.org/10.3390/app14177657
APA StyleBiswal, A., & Jwo, D.-J. (2024). Maximum Correntropy Extended Kalman Filtering with Nonlinear Regression Technique for GPS Navigation. Applied Sciences, 14(17), 7657. https://doi.org/10.3390/app14177657