Fermented Products Enriched with Polyunsaturated Fatty Acids in Broiler Chicken Nutrition and Fat Quality of Produced Meat
Abstract
:1. Introduction
2. Fat Quality of Broiler Chicken Meat
3. Biotechnological Preparation of Cereals Enriched with PUFA via Fungal Solid State Fermentation
3.1. Solid State Fermentation
3.2. Microorganisms for Cereal Utilization
3.3. Regulation of the SSF Process for the Production of PUFA-Enriched Cereals
4. Fermented Products in Chicken Nutrition
Microorganism | SSF Substrates | Results | Reference |
---|---|---|---|
Umbelopsis isabellina | corn meal | Influenced the biochemical, hematological, and immunological parameters of chickens | [56] |
Thamnidium elegans | wheat bran | Higher final weight, reduced feed consumption, better feed conversion ratio | [53] |
Trichoderma pseudokoningii | wheat bran | Reduced feed consumption, which was reflected in a significantly better feed conversion rate of the chickens | [45] |
Cunninghamella elegans | spelt bran | Higher final weight, lower average daily feed intake, feed conversion ratio | [40] |
Trichoderma viride | copra meal | Growth and feed conversion ratios of chickens were the same as in birds fed the control diet | [60] |
Cunninghamella echinulata | wheat bran | Lower average daily feed intake and total feed consumption | [58] |
Acremonium charticola and Rhizopus oryzae | cassava pulp | Immproved immune response of chickens | [61] |
Umbelopsis isabellina | wheat bran | Positive influenceon the gut microbiota and immunity of broilers. | [41] |
Microorganism | SSF Substrates | Results | Reference |
---|---|---|---|
Umbelopsis isabellina | cornmeal | The amount of GLA, ALA, and OA in the fat of breast muscles was increased and the n-6/n-3 ratio was significantly decreased | [62] |
Cunninghamella elegans | spelt bran | Fat of meat contained a higher amount of unsaturated fatty acids, reflected mainly in the amount of ALA and GLA | [40] |
Cunninghamella echinulata | wheat bran | Enhanced amount of GLA in the fat of produced meat | [58] |
Thamnidium ellegans | wheat bran | Resulted in a significant increase of GLA, DGLA, and AA in the lipids of the breast muscle | [53] |
Mortierella alpina | distiller’s dried grains with solubles and soybean meal | Increased the PUFA content as well as the proportions of n-6 and n-3 in chicken breasts and the liver. | [63] |
5. Fermented Products and Quality of the Fat of Broiler Meat
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mir, N.A.; Rafiq, A.; Kumar, F.; Singh, V.; Shukla, V. Determinants of broiler chicken meat quality and factors affecting them: A review. J. Food Sci. Technol. 2017, 54, 2997–3009. [Google Scholar] [CrossRef] [PubMed]
- Milicevic, D.; Trbovic, D.; Petrovic, Z.; Jakovac-Strajn, B.; Nastasijevic, I.; Koricanac, V. Physicochemical and functional properties of chicken meat. Proc. Food Sci. 2015, 5, 191–194. [Google Scholar] [CrossRef]
- Mancinelli, C.A.; Mattioli, S.; Twining, C.; Dal Bosco, A.; Donoghue, A.M.; Arsi, K.; Angelucci, E.; Chiattelli, D.; Castellini, C. Poultry meat and eggs as an alternative source of n-3 long-chain polyunsaturated fatty acids for human nutrition. Nutrients 2022, 14, 1969. [Google Scholar] [CrossRef] [PubMed]
- Edmonds, M.S.; Johal, S.; Moreland, S. Effect of supplemental humic and butyric acid on performance and mortality in broilers raised under various environmental conditions. J. Appl. Poult. Res. 2014, 23, 260–267. [Google Scholar] [CrossRef]
- El-Zenary, A.S.; Boney, J.W.; Harvatine, K.J. Direct comparison of 18 carbon n–3 and n–6 fatty acids at equal levels in an oil blend on tissue enrichment of long-chain polyunsaturated fatty acid in broiler chickens. J. Nutr. 2023, 153, 2929–2938. [Google Scholar] [CrossRef] [PubMed]
- Long, S.; Liu, S.; Wu, D.; Mahfuz, S.; Piao, X. Effects of dietary fatty acids from different sources on growth performance, meat quality, muscle fatty acid deposition, and antioxidant capacity in broilers. Animals 2020, 10, 508. [Google Scholar] [CrossRef]
- Rymer, C.; Gibbs, R.A.; Givens, D.I. Comparison of algal and fish sources on the oxidative stability of poultry meat and its enrichment with omega-3 polyunsaturated fatty acids. Poult. Sci. 2010, 89, 150–159. [Google Scholar] [CrossRef] [PubMed]
- Konieczka, P.; Czauderna, M.; Smulinowska, S. The enrichment of chicken meat with omega-3 fatty acids by dietary fish oil or its mixture with rapeseed or flaxseed—Effect of feeding duration dietary fish oil, flaxseed, and rapeseed and n-3 enriched broiler meat. Anim. Feed Sci. Technol. 2017, 223, 42–52. [Google Scholar] [CrossRef]
- Bou, R.; Guardiola, F.; Barroeta, A.C.; Codony, R. Effect of dietary fat sources and zinc and selenium supplements on the composition and consumer acceptability of chicken meat. Poult. Sci. 2005, 84, 1129–1140. [Google Scholar] [CrossRef]
- Qi, K.K.; Chen, J.L.; Zhao, G.P.; Zheng, M.Q.; Wen, J. Effect of dietary ω-6/ω-3 on growth performance, carcass traits, meat quality and fatty acid profiles of Beijing-you chicken. J. Anim. Physiol. Anim. Nutr. 2010, 94, 474–485. [Google Scholar] [CrossRef]
- Ochsenreither, K.; Glueck, C.; Stressler, T.; Fischer, L.; Syldatk, C. Production strategies and applications of microbial single cell oils. Front. Microbiol. 2016, 7, 1539. [Google Scholar] [CrossRef] [PubMed]
- Dulf, F.V.; Vodnar, D.C.; Tosa, M.I.; Dulf, E.H. Simultaneous enrichment of grape pomace with γ-linolenic acid and carotenoids by solid-state fermentation with Zygomycetes fungi and antioxidant potential of the bioprocessed substrates. Food Chem. 2020, 310, 125927. [Google Scholar] [CrossRef] [PubMed]
- Klempová, T.; Janštová, J.; Gavurniková, S.; Havrlentová, M.; Čertík, M. Applications of new types of biomaterials obtained by fungal solid-state fermentation in bakery products manufacturing. Mat. Sci. Forum 2015, 851, 14–19. [Google Scholar] [CrossRef]
- Čertík, M.; Klempová, T.; Jalč, D.; Váradyová, Z.; Marcinčák, S. Biotechnologically enriched cereals with PUFAs in ruminant and chicken nutrition. In Food Lipids-Chemistry, Nutrition, and Biotechnology, 4th ed.; Akoh, C.C., Ed.; CRC Press/Taylor & Francis: Boca Raton, FL, USA, 2017; pp. 765–778. [Google Scholar]
- Gou, Z.Y.; Cui, X.Y.; Li, L.; Fan, Q.L.; Lin, X.J.; Wang, Y.B.; Jiang, Z.Y.; Jiang, S.Q. Effects of dietary incorporation of linseed oil with soybean isoflavone on fatty acid profiles and lipid metabolism-related gene expression in breast muscle of chickens. Animal 2020, 14, 2414–2422. [Google Scholar] [CrossRef] [PubMed]
- Diaz, O.; Rodrigez, L.; Torres, A.; Cobos, A. Chemical composition and physico-chemical properties of meat from capons as effected by breed and age. Spanish J. Agric. Res. 2010, 8, 91–99. [Google Scholar] [CrossRef]
- Kalakuntla, S.; Nagireddy, N.K.; Panda, A.K.; Jatoth, N.; Thirunahari, R.; Vangoor, R.R. Effect of dietary incorporation of n-3 polyunsaturated fatty acids rich oil sources on fatty acid profile, keeping quality and sensory attributes of broiler chicken meat. Anim. Nutr. 2017, 3, 386–391. [Google Scholar] [CrossRef]
- Kishowar, J.; Paterson, A.; Spickett, C. Fatty acid composition and lipid oxidation in chicken meat from different production regimes. Int. J. Food Sci. Technol. 2004, 39, 443–453. [Google Scholar]
- Ashayerizadeh, A.; Dastar, B.; Shargh, M.S.; Mahoonak, A.R.S.; Zerehdaran, S. Effects of feeding fermented rapeseed meal on growth performance, gastrointestinal microflora population, blood metabolites, meat quality, and lipid metabolism in broiler chickens. Livest Sci. 2018, 216, 183–190. [Google Scholar] [CrossRef]
- Gao, M.; Cieślak, A.; Kierończyk, B.; Huang, H.; Yanza, Y.R.; Zaworska-Zakrzewska, A.; Józefiak, D.; Szumacher-Strabel, M. Effects of raw and fermented rapeseed cake on growth performance, methane production, and breast meat fatty acid composition in broiler chickens. Animals 2020, 10, 2250. [Google Scholar] [CrossRef]
- Whitton, C.; Bogueva, D.; Marinova, D.; Phillips, C.J. Are we approaching peak meat consumption? Analysis of meat consumption from 2000 to 2019 in 35 countries and its relationship to gross domestic product. Animals 2021, 11, 3466. [Google Scholar] [CrossRef]
- Caldas-Cueva, J.P.; Owens, C.M. A review on the woody breast condition, detection methods, and product utilization in the contemporary poultry industry. J. Anim. Sci. 2020, 98, 207. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Kong, B.; Bowker, B.C.; Zhuang, H.; Kim, W.K. Nutritional Strategies to Improve Meat Quality and Composition in the Challenging Conditions of Broiler Production: A Review. Animals 2023, 13, 1386. [Google Scholar] [CrossRef] [PubMed]
- Čertík, M.; Klempová, T.; Guothová, L.; Mihálik, D.; Kraic, J. Biotechnology for the functional improvement of cereal-based materials enriched with polyunsaturated fatty acids and pigments. Eur. J. Lipid Sci. Technol. 2013, 115, 1247–1256. [Google Scholar] [CrossRef]
- Čertík, M.; Adamechová, Z.; Guothová, L. Simultaneous enrichment of cereals with polyunsaturated fatty acids and pigments by fungal solid-state fermentations. J. Biotechnol. 2013, 168, 130–134. [Google Scholar] [CrossRef] [PubMed]
- Bhargav, S.; Panda, B.P.; Ali, M.; Javed, S. Solid-state fermentation: An overview. Chem. Biochem. Eng. Q. 2008, 22, 49–70. [Google Scholar]
- Thomas, L.; Larroche, C.; Pandey, A. Current development in solid-state fermentation. Biochem. Eng. J. 2013, 81, 146–161. [Google Scholar] [CrossRef]
- Taiwo, A.E.; Tom-James, A.; Musonge, P. Economic assessment of cellulase production in batch and semi-batch solid-state fermentation processes. Int. J. Low-Carbon Technol. 2023, 18, 204–211. [Google Scholar] [CrossRef]
- Čertík, M.; Adamechová, Z.; Sláviková, L. Biotechnological enrichment of cereals with polyunsaturated fatty acids. In Biocatalysis and Molecular Engineering, 1st ed.; Hou, C.T., Shaw, J.-F., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010; pp. 175–193. [Google Scholar]
- Klempová, T.; Slaný, O.; Šišmiš, M.; Marcinčák, S.; Čertík, M. Dual production of polyunsaturated fatty acid and beta-carotene using Mucor wosnessenskii in process of solid-state fermentation using agro-industrial waste. J. Biotechnol. 2020, 311, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Slaný, O.; Klempová, T.; Marcinčák, S.; Čertík, M. Production of high-valued bioproducts enrcihed with γ-linolenic acid and β-carotene by filamentous fungi Umbelopsis isabellina using soild state fermentations. Ann. Microbiol. 2020, 70, 5. [Google Scholar]
- Slaný, O.; Klempová, T.; Shapaval, V.; Zimmermann, B.; Kohler, A.; Čertík, M. Animal fat as a substrate for production of n-6 fatty acids by fungal solid-state fermentation. Microorganisms 2021, 9, 170. [Google Scholar] [CrossRef]
- Čertík, M.; Sláviková, L.; Masrnová, S.; Šajbidor, J. Enhancement of nutritional value of cereals with γ-linolenic acid by fungal solid-state fermentations. Food Technol. Biotech. 2006, 44, 75–82. [Google Scholar]
- Senanayake, D.; Torley, P.J.; Chandrapala, J.; Terefe, N.S. Microbial fermentation for improving the sensory, nutritional and functional attributes of legumes. Fermentation 2023, 9, 635. [Google Scholar] [CrossRef]
- Čertík, M.; Adamechová, Z. Cereal-based bioproducts containing polyunsaturated fatty acids. Lipid Technol. 2009, 21, 250–253. [Google Scholar] [CrossRef]
- Conti, E.; Stredansky, M.; Stredanska, S.; Zanetti, F. γ-Linolenic acid production by solid-state fermentation of Mucorales strains on cereals. Bioresource Technol. 2001, 76, 283–286. [Google Scholar] [CrossRef] [PubMed]
- Slaný, O.; Klempová, T.; Shapaval, V.; Zimmermann, B.; Kohler, A.; Čertík, M. Biotransformation of animal fat by-products into ARA-enriched fermented bioproducts by solid-state fermentation of Mortierella alpina. J. Fungi 2020, 6, 236. [Google Scholar] [CrossRef]
- Wencelova, M.; Varadyova, Z.; Mihalikova, K.; Guothova, L.; Janstova, J.; Certik, M.; Homolova, L.; Pristas, P.; Jalc, D.; Kisidayova, S. Substrates enriched by the fungus Cunninghamella echinulata: An in vitro study of nutrient composition, sheep rumen fermentation and lipid metabolism. J. Appl. Microbiol. 2014, 117, 930–939. [Google Scholar] [CrossRef]
- Váradyová, Z.; Čertík, M.; Jalč, D. The possible application of fungal enriched substrates in ruminant nutrition. A review. J. Anim. Feed Sci. 2018, 27, 3–10. [Google Scholar] [CrossRef]
- Kovalík, P.; Mačanga, J.; Klempová, T.; Popelka, P.; Marcinčáková, D.; Mellen, M.; Bartkovský, M.; Maskaľová, I.; Čertík, M.; Marcinčák, S. Effect of feeding of 5% prefermented cereal-based bioproduct enriched with γ-linolenic acid on production indicators, chemical composition, fatty acids profile and lipid oxidation of broiler meat. Ital. J. Anim. Sci. 2018, 17, 408–417. [Google Scholar] [CrossRef]
- Mudroňová, D.; Karaffová, V.; Koščová, J.; Bartkovský, M.; Marcinčáková, D.; Popelka, P.; Klempová, T.; Čertík, M.; Mačanga, J.; Marcinčák, S. Effect of fungal gamma-linolenic acid and beta-carotene containng prefermented feed on immunity and gut of broiler chicken. Poult. Sci. 2018, 97, 4211–4218. [Google Scholar] [CrossRef]
- Hriciková, S.; Kožárová, I.; Koréneková, B.; Marcinčák, S. The Effect of the Supplementation of Humic Substances and Fermented Products in the Feed on the Content of Salinomycin Residues in Poultry Tissues. Foods 2024, 13, 68. [Google Scholar] [CrossRef]
- Olukomaiya, O.; Fernando, C.; Mereddy, R.; Li, X.; Sultanbawa, Y. Solid-state fermented plant protein sources in the diets of broiler chickens: A review. Anim. Nutr. 2019, 5, 319–330. [Google Scholar] [CrossRef] [PubMed]
- Oguri, M.; Okano, K.; Ieki, H.; Kitagawa, M.; Tadikoro, O.; Sano, Y.; Oishi, K.; Hirooka, H.; Kumagai, H. Feed intake, digestability, nitrogen utilization, ruminal condition, and blood metabolites in wethers fed ground bamboo pellets cultured with white-rot fungus (Ceriporiopsis subvermisporus) and mixed with soybean curd residue and soy sauce cake. Anim. Sci. J. 2013, 84, 650–655. [Google Scholar] [CrossRef] [PubMed]
- Chu, Y.T.; Lo, C.T.; Chang, S.C.; Lee, T.T. Effects of Trichoderma fermented wheat bran on growth performance, intestinal morphology, and histological findings in broiler chickens. Ital. J. Anim. Sci. 2017, 16, 82–92. [Google Scholar] [CrossRef]
- Čertík, M.; Klempová, T. Functional cereal-derived biomaterials enriched with lipophilic compounds prepared by fungal solid-state fermentations. Mater. Sci. Forum 2016, 851, 8–13. [Google Scholar] [CrossRef]
- Sugiharto, S.; Ranjitkar, S. Recent advances in fermented feeds towards improved broiler chicken performance, gastrointestinal tract microecology, and immune responses: A review. Anim. Nutr. 2019, 5, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Khempaka, S.; Thongkratok, R.; Okrathok, S.; Moles, W. An evaluation of cassava pulp feedstuf fermented with A. oryzae on growth performance, nutrient digestability and carcass quality of broilers. J. Poult. Sci. 2014, 51, 71–79. [Google Scholar] [CrossRef]
- Sugiharto, S.; Pratama, A.R.; Yudiarti, T.; Ayaşan, T. Effect of novel natural feed additive containing Averrhoa bilimbi L. fruit filtrate, wheat bran, and Saccharomyces cerevisiae on growth performance and meat characteristics of broilers. Vet. World 2021, 14, 3007. [Google Scholar] [CrossRef]
- Odeniyi, O.A.; Onilude, A.A.; Ayodele, M.A. Characteristics of a β-1, 4-D endoglucanase from Trichoderma virens wholly applied in a palm-fruit husk-based diet for poultry layers. Braz. J. Microbiol. 2012, 43, 1467–1475. [Google Scholar] [CrossRef]
- Ahmad, F.; Rafi, U.; Afzal, I. Effects of fungal fermented feeds on broiler chicken growth performance, gut morphology, and gastrointestinal tract microecology: A Review. BioSci Rev. 2023, 5, 91–102. [Google Scholar] [CrossRef]
- Belal, E. Assessment of theperformance of chicks fed with wheatbran solid fermented by Trichoderma longibrachiatum (SF1). J. Sustain. Agric. Sci. 2017, 43, 115–126. [Google Scholar]
- Bača, M.; Marcinčák, S.; Čertík, M.; Popelka, P.; Marcinčáková, D.; Guothová, L.; Molnár, L.; Klempová, T.; Maskaľová, I. Effect of adding prefermented cereal product containing gamma-linolenic acid to broiler feed on production indicators and fatty acid profile of chicken breast. Acta Vet. Brno 2014, 83, 379–384. [Google Scholar] [CrossRef]
- Zhang, A.R.; Wei, M.; Yan, L.; Zhou, G.L.; Li, Y.; Wang, H.M.; Yang, Y.Y.; Yin, W.; Guo, J.Q.; Cai, X.H.; et al. Effects of feeding solid-state fermented wheat bran on growth performance and nutrient digestibility in broiler chickens. Poult. Sci. 2022, 101, e101402. [Google Scholar] [CrossRef] [PubMed]
- Mačanga, J.; Popelka, P.; Koréneková, B.; Maskaľová, I.; Klempová, T.; Fečkaninová, A.; Mellen, M.; Marcinčáková, D.; Čertík, M.; Marcinčák, S. Effect of feeding of prefermented bioproduct containing gamma-linolenic acid and beta-carotene on selected parameters of broiler chicken meat quality. Potravinárstvo 2017, 11, 466–471. [Google Scholar] [CrossRef] [PubMed]
- Bartkovský, M.; Mudroňová, D.; Marcinčáková, D.; Klempová, T.; Sesztáková, E.; Maskaľová, I.; Karaffová, V.; Jaďuttová, I.; Čertík, M.; Hudák, M.; et al. Effect of fungal solid-state fermented product enriched with gamma-linolenic acid and beta-carotene on blood biochemistry and immunology of broiler chickens. Polish J. Vet. Sci. 2020, 23, 247–254. [Google Scholar]
- Peng, W.; Talpur, M.Z.; Zeng, Y.; Xie, P.; Li, J.; Wang, S.; Zhu, X.; Gao, P.; Jiang, Q.; Shu, G.; et al. Influence of fermented feed additive on gut morphology, immune status, and microbiota in broilers. BMC Vet. Res. 2022, 18, 218. [Google Scholar] [CrossRef]
- Semjon, B.; Bartkovský, M.; Marcinčáková, D.; Klempová, T.; Bujňák, L.; Hudák, M.; Jaďuttová, I.; Čertík, M.; Marcinčák, S. Effect of solid-state fermented wheat bran supplemented with agrimony extract on growth performance, fatty acid profile, and meat quality of broiler chickens. Animals 2020, 10, 942. [Google Scholar] [CrossRef] [PubMed]
- Semjon, B.; Dudriková, E.; Jaďďuttová, I.; Bartkovský, M.; Klempová, T.; Marcinčáková, D.; Slaný, O.; Marcinčák, S. Effect of supplementation with solid-state fermented feed in the diet of laying hens on egg qualitative variables. Potravinarstvo Slovak J. Food Sci. 2020, 14, 519–527. [Google Scholar] [CrossRef] [PubMed]
- Hatta, U.; Sjofjan, O.; Subagiyo, I.; Sundu, B. Effects of fermentation by Trichoderma viride on nutritive value of copra meal, cellulase activity and performance of broiler chickens. Livestock Res. Rural. Dev. 2014, 26, 1. [Google Scholar]
- Sugiharto, S.; Yudiarti, T.; Isroli, I. Haematological and biochemical parameters of broilers fed cassava pulp fermented with filamentous fungi isolated from the Indonesian fermented dried cassava. Livest. Res. Rural Dev. 2016, 28, 53. [Google Scholar]
- Marcinčák, S.; Klempová, T.; Bartkovský, M.; Marcinčáková, D.; Zdolec, N.; Popelka, P.; Mačanga, J.; Čertík, M. Effect of fungal solid-state fermented product in broiler chicken nutrition on quality and safety of produced breast meat. BioMed Res. Int. 2018, 2018, 2609548. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, H. Enhanced polyunsaturated fatty acids production in Mortierella alpina by SSF and the enrichment in chicken breasts. Food Nutr. Res. 2016, 60, 30842. [Google Scholar] [CrossRef] [PubMed]
- Kovalík, P.; Marcinčák, S.; Bača, M.; Popelka, P.; Marcinčáková, D.; Čertík, M.; Guothová, L. The impact of feeding by bioproduct containing gamalinolenic acid on the quality of poultry meat. Potravinárstvo 2013, 7, 87–90. [Google Scholar]
- Marcinčák, S.; Popelka, P.; Zdolec, N.; Mártonová, M.; Šimková, J.; Marcinčáková, D. Effect of supplementation of phytogenic feed additives on performance parameters and meat quality of broiler chickens. Slov. Vet. Res. 2011, 48, 27–34. [Google Scholar]
- Supuka, P.; Marcinčák, S.; Popelka, P.; Petrovič, V.; Molnár, L.; Maskal’ová, I.; Kovalík, P.; Marcinčáková, D.; Supuková, A.; Turek, P. The effects of adding agrimony and sage extracts to water on blood biochemistry and meat quality of broiler chickens. Acta Vet. Brno 2014, 84, 119–124. [Google Scholar] [CrossRef]
- Klempova, T.; Basil, E.; Kubatova, A.; Certik, M. Biosynthesis of gamma-linolenic acid and beta-carotene by Zygomycetes fungi. Biotechnol. J. 2013, 8, 794–800. [Google Scholar] [CrossRef] [PubMed]
- Marcinčák, S.; Cabadaj, R.; Popelka, P.; Šoltýsová, L. Antioxidative effect of oregano supplemented to broilers on oxidative stability of poultry meat. Slov. Vet. Res. 2008, 45, 61–66. [Google Scholar]
- Somacal, S.; Pinto, V.S.; Vendruscolo, R.G.; Somacal, S.; Wagner, R.; Ballus, C.A.; Kuhn, R.C.; Mazutti, M.A.; Menezes, C.R. Maximization of microbial oil containing polyunsaturated fatty acid production by Umbelopsis (Mortierella) isabellina. Biocatalysis Agric. Biotechnol. 2020, 30, 101831. [Google Scholar] [CrossRef]
- Chang, L.; Lu, H.; Chen, H.; Tang, X.; Zhao, J.; Zhang, H.; Chen, Y.Q.; Chen, W. Lipid metabolism research in oleaginous fungus Mortierella alpina: Current progress and future prospects. Biotechnol. Adv. 2022, 54, 107794. [Google Scholar] [CrossRef] [PubMed]
- Chang, L.; Chen, H.; Tang, X.; Zhao, J.; Zhang, H.; Chen, Y.Q.; Chen, W. Advances in improving the biotechnological application of oleaginous fungus Mortierella alpina. Appl. Microbiol. Biotechnol. 2021, 105, 6275–6289. [Google Scholar] [CrossRef]
- Fejerčáková, A.; Vašková, J.; Bača, M.; Vaško, L.; Marcinčák, S.; Hertelyová, Z.; Petrášová, D.; Guothová, L. Effect of dietary microbially produced gamma-linolenic acid and plant extracts on enzymatic and non-enzymatic antioxidants in various broiler chicken organs. J. Anim. Physiol. Anim. Nutr. 2014, 98, 860–866. [Google Scholar] [CrossRef]
- Wang, T.Y.; Wu, Y.H.; Jiang, C.Y.; Liu, Y. Solid state fermented potato pulp can be used as poultry feed. Br. Poult. Sci. 2010, 51, 229–234. [Google Scholar] [CrossRef] [PubMed]
Strain | Cereal Substrate | PUFA | Yield [g/kg FP] |
---|---|---|---|
Thamnidium elegans | spelt flakes/SMG | GLA | 7.2 |
wheat bran/SMG/sunflower oil | GLA | 10.0 | |
wheat bran/SMG/sunflower oil/plant extract | GLA | 20.0 | |
crushed corn | GLA | 10.0 | |
Mortierella isabellina | barley | GLA | 18.0 |
Cunninghamella elegans | barley | GLA | 7.0 |
barley/SMG/peanut oil | GLA | 14.2 | |
Mucor circinelloides | rye bran/SMG/sunflower oil | GLA | 24.2 |
Mortierella alpina | wheat bran/SMG | AA | 42.3 |
dehulled millet | AA | 44.7 | |
oat bran | AA | 87.0 | |
crushed sesame seeds | DGLA | 21.3 | |
peeled barley/SMG/linseed oil | EPA/AA | 23.4/36.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makiš, A.; Čertík, M.; Klempová, T.; Semjon, B.; Marcinčáková, D.; Jevinová, P.; Marcinčák, S. Fermented Products Enriched with Polyunsaturated Fatty Acids in Broiler Chicken Nutrition and Fat Quality of Produced Meat. Appl. Sci. 2024, 14, 4327. https://doi.org/10.3390/app14104327
Makiš A, Čertík M, Klempová T, Semjon B, Marcinčáková D, Jevinová P, Marcinčák S. Fermented Products Enriched with Polyunsaturated Fatty Acids in Broiler Chicken Nutrition and Fat Quality of Produced Meat. Applied Sciences. 2024; 14(10):4327. https://doi.org/10.3390/app14104327
Chicago/Turabian StyleMakiš, Andrej, Milan Čertík, Tatiana Klempová, Boris Semjon, Dana Marcinčáková, Pavlína Jevinová, and Slavomír Marcinčák. 2024. "Fermented Products Enriched with Polyunsaturated Fatty Acids in Broiler Chicken Nutrition and Fat Quality of Produced Meat" Applied Sciences 14, no. 10: 4327. https://doi.org/10.3390/app14104327
APA StyleMakiš, A., Čertík, M., Klempová, T., Semjon, B., Marcinčáková, D., Jevinová, P., & Marcinčák, S. (2024). Fermented Products Enriched with Polyunsaturated Fatty Acids in Broiler Chicken Nutrition and Fat Quality of Produced Meat. Applied Sciences, 14(10), 4327. https://doi.org/10.3390/app14104327