In Vitro Evaluation of Surface Roughness and Color Variation after Two Brushing Protocols with Toothpastes Containing Different Whitening Technologies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tooth Preparation
2.2. Brushing Protocols
- Control group (CTO): Colgate® Total Original (Colgate, Palmolive, Porto Salvo, Portugal) conventional toothpaste;
- Group 1 (OB3D): Oral B® 3D White Luxe Perfection (Procter & Gamble, Schwalbach am Taunus, Germany) based on abrasive microsphere whitening technology;
- Group 2 (CBW): Curaprox® Black is White (Curaden Swiss Headquarters, Kriens, Switzerland) based on the activated charcoal whitening technology;
- Group 3 (SWN): Signal® White Now (Unilever RA, Rueil-Malmaison, France) based on blue covarine whitening technology.
2.3. Surface Roughness Measurement
2.4. Color Variation
2.5. Statistical Analysis
3. Results
3.1. Surface Roughness
3.2. Color Variation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Compound | Quantity |
---|---|
NaCl | 0.80 g |
KCl | 0.80 g |
CaCl2•2H2O | 1.812 g |
NaH2PO4•2H2O | 1.38 g |
Na2S•9H2O | 0.01 g |
Urea | 2 g |
Distilled H2O | 2000 mL |
Toothpaste Name | Tooth Technology | Composition | Manufacturer (Batch Number) |
---|---|---|---|
Colgate® Total Original (CTO) | Control non-whitening | Glycerin, Aqua, Hydrated Silica, Sodium Lauryl Sulfate, Arginine, Aroma, Cellulose Gum, Zinc Oxide, Poloxamer 407, Zinc Citrate, Tetrasodium Pyrophosphate, Xanthan Gum, Benzyl Alcohol, Cocamidopropyl Betaine, Sodium Fluoride (1450 ppm F−), Sodium Saccharin, Phosphoric Acid, Hydroxypropyl Methylcellulose, Sucralose, CI 73360, CI 74160, CI 77891. | Colgate, Palmolive, Porto Salvo, Portugal (3104PL1171) |
Oral B® 3D White Luxe Perfection (OB3D) | Abrasive microsphere whitening technology | Glycerin, Hydrated Silica, Sodium Hexametaphosphate, Aqua, PEG-6, Aroma, Trisodium Phosphate, Sodium Lauryl Sulfate, Cocamidopropyl Betaine, Sodium Saccharin, Sodium Fluoride (1450 ppm F−), Carrageenan, PVP, Xanthan Gum, Limonene, Sucralose, Sodium Benzoate, Sodium Hydroxide, CI 74160, Citric Acid, Sodium Citrate, Potassium Sorbate. | Procter & Gamble, Schwalbach am Taunus, Germany (2306G7) |
Curaprox® Black is White (CBW) | Activated charcoal whitening technology | Aqua, Sorbitol, Hydrated Silica, Glycerin, Charcoal Powder, Aroma, Decyl Glucoside, Cocamidopropyl, Betaine, Sodium Monofluorophospate (950 ppm F−), Tocopherol, Xanthan Gym, Maltodextrin, Mica, Hydroxyapatite (Nano), Potassium Acesulfame, Titanium Dioxide, Micro-Crystalline Cellulose, Sodium Chloride, Potassium Chloride, Citrus Limon Peel Oil, Sodium Hydroxide, Zea Mays Starch, Amyloglucosidase, Glucose Oxidase, Urtica Dioica Leaf Extract, Potassium Thiocyanate, Cetearyl Alchohol, Hydrogenated Lecithin, Menthyl Lactate, Mehtyl Diisopropyl Propionamide, Ethyl Menthane Carboxamide, Stearic Acid, Mannitol, Sodium Bisulfite, Tin Oxide, Lactoperoxidase, Limonene. | Curaden Swiss Headquarters, Kriens, Switzerland (199MHD) |
Signal® White Now (SWN) | Blue covarine whitening technology | Aqua, Hydrogenated Starch Hydrolysate, Hydrated Silica, Sodium Lauryl Sulfate, Aroma, Cellulose Gum, Sodium Saccharin, Sodium Fluoride (1450 ppm F−), PVM/MA Copolymer, Glycerin, CI 42090, CI 74160. | Unilever RA, Rueil-Malmaison, France (2038FCA) |
References
- Goettems, M.L.; Fernandez, M.D.S.; Donassollo, T.A.; Henn Donassollo, S.; Demarco, F.F. Impact of Tooth Bleaching on Oral Health-Related Quality of Life in Adults: A Triple-Blind Randomised Clinical Trial. J. Dent. 2021, 105, 103564. [Google Scholar] [CrossRef] [PubMed]
- Goulart, M.D.A.; Condessa, A.M.; Hilgert, J.B.; Hugo, F.N.; Celeste, R.K. Concerns about Dental Aesthetics Are Associated with Oral Health Related Quality of Life in Southern Brazilian Adults. Ciênc. Saúde Coletiva 2018, 23, 3957–3964. [Google Scholar] [CrossRef] [PubMed]
- Demarco, F.F.; Meireles, S.S.; Masotti, A.S. Over-the-Counter Whitening Agents: A Concise Review. Braz. Oral Res. 2009, 23, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Mortazavi, H.; Baharvand, M.; Khodadoustan, A. Colors in Tooth Discoloration: A New Classification and Literature Review. Int. J. Clin. Dent. 2014, 7, 17. [Google Scholar]
- Schemel-Suaréz, M.; López-López, J.; Chimenos-Kustner, E. Dental Pigmentation and Hemochromatosis: A Case Report. Quintessence Int. 2017, 48, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Joiner, A. Whitening Toothpastes: A Review of the Literature. J. Dent. 2010, 38, e17–e24. [Google Scholar] [CrossRef] [PubMed]
- Tao, D.; Smith, R.N.; Zhang, Q.; Sun, J.N.; Philpotts, C.J.; Ricketts, S.R.; Naeeni, M.; Joiner, A. Tooth Whitening Evaluation of Blue Covarine Containing Toothpastes. J. Dent. 2017, 67, S20–S24. [Google Scholar] [CrossRef] [PubMed]
- Peraro Vaz, V.T.; Jubilato, D.P.; Mendonca de Oliveira, M.R.; Freitas Bortolatto, J.; Floros, M.C.; Dantas, A.A.R.; Batista Oliveira Junior, O.D. Whitening Toothpaste Containing Activated Charcoal, Blue Covarine, Hydrogen Peroxide or Microbeads: Which One Is the Most Effective? J. Appl. Oral Sci. 2019, 27, e20180051. [Google Scholar] [CrossRef]
- Vural, U.K.; Bagdatli, Z.; Yilmaz, A.E.; Yalçın Çakır, F.; Altundaşar, E.; Gurgan, S. Effects of Charcoal-Based Whitening Toothpastes on Human Enamel in Terms of Color, Surface Roughness, and Microhardness: An in Vitro Study. Clin. Oral Investig. 2021, 25, 5977–5985. [Google Scholar] [CrossRef]
- Suriyasangpetch, S.; Sivavong, P.; Niyatiwatchanchai, B.; Osathanon, T.; Gorwong, P.; Pianmee, C.; Nantanapiboon, D. Effect of Whitening Toothpaste on Surface Roughness and Colour Alteration of Artificially Extrinsic Stained Human Enamel: In Vitro Study. Dent. J. 2022, 10, 191. [Google Scholar] [CrossRef]
- Lippert, F. An Introduction to Toothpaste-Its Purpose, History and Ingredients. In Monographs in Oral Science; Van Loveren, C., Ed.; S. Karger AG: Basel, Switzerland, 2013; Volume 23, pp. 1–14. ISBN 978-3-318-02206-3. [Google Scholar]
- Greenwall, L.H.; Greenwall-Cohen, J.; Wilson, N.H.F. Charcoal-Containing Dentifrices. Br. Dent. J. 2019, 226, 697–700. [Google Scholar] [CrossRef] [PubMed]
- Forouzanfar, A.; Hasanpour, P.; Yazdandoust, Y.; Bagheri, H.; Mohammadipour, H.S. Evaluating the Effect of Active Charcoal-Containing Toothpaste on Color Change, Microhardness, and Surface Roughness of Tooth Enamel and Resin Composite Restorative Materials. Int. J. Dent. 2023, 2023, 6736623. [Google Scholar] [CrossRef]
- Del Mar Pérez, M.; Ghinea, R.; Rivas, M.J.; Yebra, A.; Ionescu, A.M.; Paravina, R.D.; Herrera, L.J. Development of a Customized Whiteness Index for Dentistry Based on CIELAB Color Space. Dent. Mater. 2016, 32, 461–467. [Google Scholar] [CrossRef] [PubMed]
- Epple, M.; Meyer, F.; Enax, J. A Critical Review of Modern Concepts for Teeth Whitening. Dent. J. 2019, 7, 79. [Google Scholar] [CrossRef] [PubMed]
- Cone, M.R.; Choi, J.; Awdaljan, M. Optimized Digital Shade Calibration Technology for the Restoration of a Single Central Incisor. J. Prosthet. Dent. 2022, 128, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Jamwal, N.; Rao, A.; Shenoy, R.; Pai, M.; Ks, A.; Br, A. Effect of Whitening Toothpaste on Surface Roughness and Microhardness of Human Teeth: A Systematic Review and Meta-Analysis. F1000Research 2022, 11, 22. [Google Scholar] [CrossRef] [PubMed]
- Yaghini, J.; Moghareabed, A.; Hatam, F.; Keshani, F. Effect of Two Types of Charcoal Toothpaste on the Enamel Surface Roughness of Permanent Teeth. Dent. Res. J. 2023, 20, 98. [Google Scholar]
- ISO 11405; Dental Materials–Testing of Adhesion to Tooth Structure. International Organisation for Standardisation: Geneva, Switzerland, 2015.
- Bazzi, J.Z.; Bindo, M.J.F.; Rached, R.N.; Mazur, R.F.; Vieira, S.; De Souza, E.M. The Effect of At-Home Bleaching and Toothbrushing on Removal of Coffee and Cigarette Smoke Stains and Color Stability of Enamel. J. Am. Dent. Assoc. 2012, 143, e1–e7. [Google Scholar] [CrossRef]
- ElAziz, R.H.; Gadallah, L.K.; Saleh, R.S. Evaluation of Charcoal and Sea Salt–Lemon-Based Whitening Toothpastes on Color Change and Surface Roughness of Stained Teeth. J. Contemp. Dent. Pract. 2022, 23, 169–175. [Google Scholar] [CrossRef]
- De Oliveira, R.R.L.; Albuquerque, D.A.C.; Cruz, T.G.S.; Yamaji, F.M.; Leite, F.L. Measurement of the Nanoscale Roughness by Atomic Force Microscopy: Basic Principles and Applications. In Atomic Force Microscopy-Imaging, Measuring and Manipulating Surfaces at the Atomic Scale; InTech: London, UK, 2012; ISBN 978-953-51-0414-8. [Google Scholar]
- Anderson, L.N.; Alsahafi, T.; Clark, W.A.; Felton, D.; Sulaiman, T.A. Evaluation of Surface Roughness of Differently Manufactured Denture Base Materials. J. Prosthet. Dent. 2023, S0022-3913(23)00568-1. [Google Scholar] [CrossRef]
- Rutkūnas, V.; Dirsė, J.; Bilius, V. Accuracy of an Intraoral Digital Scanner in Tooth Color Determination. J. Prosthet. Dent. 2020, 123, 322–329. [Google Scholar] [CrossRef] [PubMed]
- Chu, S.J.; Trushkowsky, R.D.; Paravina, R.D. Dental Color Matching Instruments and Systems. Review of Clinical and Research Aspects. J. Dent. 2010, 38, e2–e16. [Google Scholar] [CrossRef] [PubMed]
- Inami, T.; Tanimoto, Y.; Minami, N.; Yamaguchi, M.; Kasai, K. Color Stability of Laboratory Glass-Fiber-Reinforced Plastics for Esthetic Orthodontic Wires. Korean J. Orthod. 2015, 45, 130. [Google Scholar] [CrossRef] [PubMed]
- Neves, C.B.; Costa, J.; Portugal, J.; Bettencourt, A.F. Understanding the Mechanical, Surface, and Color Behavior of Oral Bioactive Prosthetic Polymers under Biodegradation Processes. Polymers 2023, 15, 2549. [Google Scholar] [CrossRef] [PubMed]
- Pero, A.C.; Ignárcio, J.; Giro, G.; Mendoza-Marin, D.O.; Paleari, A.G.; Compagnoni, M.A. Surface Properties and Color Stability of an Acrylic Resin Combined with an Antimicrobial Polymer. Rev. Odontol. UNESP 2013, 42, 237–242. [Google Scholar] [CrossRef]
- Bersezio, C.; Martín, J.; Mayer, C.; Rivera, O.; Estay, J.; Vernal, R.; Haidar, Z.S.; Angel, P.; Oliveira, O.B.; Fernández, E. Quality of Life and Stability of Tooth Color Change at Three Months after Dental Bleaching. Qual. Life Res. 2018, 27, 3199–3207. [Google Scholar] [CrossRef]
- Agustanti, A.; Ramadhani, S.A.; Adiatman, M.; Rahardjo, A.; Callea, M.; Yavuz, I.; Maharani, D.A. Efficacy Test of a Toothpaste in Reducing Extrinsic Dental Stain. J. Phys. Conf. Ser. 2017, 884, 012135. [Google Scholar] [CrossRef]
- Rahardjo, A.; Gracia, E.; Riska, G.; Adiatman, M.; Maharani, D.A. Potential Side Effects of Whitening Toothpaste on Enamel Roughness and Micro Hardness. Int. J. Clin. Prev. Dent. 2015, 11, 239–242. [Google Scholar] [CrossRef]
- Gharechahi, M.; Moosavi, H.; Forghani, M. Effect of Surface Roughness and Materials Composition. J. Biomater. Nanobiotechnol. 2012, 3, 541–546. [Google Scholar] [CrossRef]
- Mullan, F.; Austin, R.S.; Parkinson, C.R.; Bartlett, D.W. An In-Situ Pilot Study to Investigate the Native Clinical Resistance of Enamel to Erosion. J. Dent. 2018, 70, 124–128. [Google Scholar] [CrossRef]
- Teutle-Coyotecatl, B.; Contreras-Bulnes, R.; Rodríguez-Vilchis, L.E.; Scougall-Vilchis, R.J.; Velazquez-Enriquez, U.; Almaguer-Flores, A.; Arenas-Alatorre, J.A. Effect of Surface Roughness of Deciduous and Permanent Tooth Enamel on Bacterial Adhesion. Microorganisms 2022, 10, 1701. [Google Scholar] [CrossRef] [PubMed]
- Hodoroaba, V.-D. Energy-Dispersive X-Ray Spectroscopy (EDS). In Characterization of Nanoparticles; Elsevier: Amsterdam, The Netherlands, 2020; pp. 397–417. ISBN 978-0-12-814182-3. [Google Scholar]
- Peetsch, A.; Epple, M. Characterization of the Solid Components of Three Desensitizing Toothpastes and a Mouth Wash. Mater. Werkst. 2011, 42, 131–135. [Google Scholar] [CrossRef]
- Shaikh, M.; Sung, H.; Lopez, T.; Andra, R.; McKean, B.; Jesson, J.; Pascal, C.; Pascal, C.; Chavez, A.; Schwieterman, K.; et al. Effect of Charcoal Dentifrices on Tooth Whitening and Enamel Surface Roughness. Am. J. Dent. 2021, 34, 295–299. [Google Scholar] [PubMed]
- Aškinytė, D.; Bendinskaitë, R.; Valeiðaitë, S.; Zekonienë, J. The Effectiveness of Whitening Toothpastes in Reducing Extrinsic Dental Stain. Sveik. Moksl./Health Sci. 2011, 21, 57–60. [Google Scholar]
- Lin, H.-N.; Wang, L.-C.; Chen, M.-S.; Chang, P.-J.; Lin, P.-Y.; Fang, A.; Chen, C.-Y.; Lee, P.-Y.; Lin, C.-K. Discoloration Improvement by Mechanically-Milled Binary Oxides as Radiopacifier for Mineral Trioxide Aggregates. Materials 2022, 15, 7934. [Google Scholar] [CrossRef]
- Snizhko, D. Colorimeter Based on Color Sensor. Electrotech. Rev. 2017, 1, 98–103. [Google Scholar] [CrossRef]
NBS units | Color Differences |
---|---|
<0.5 | Extremely slight change |
0.5–1.5 | Slight change |
1.5–3.0 | Perceivable change |
3.0–6.0 | Marked change |
6.0–12 | Extremely marked change |
≥12 | Change to another color |
ΔRa (nm) M (± SD) | Protocol S | Protocol L |
---|---|---|
CTO | −66.1 (± 139.0) a | −19.9 (± 301.3) a |
OB3D | 150.4 (± 130.8) a | −51.2 (± 4.5) a |
CBW | 400.7 (± 273.5) a | 115.5 (± 259.0) a |
SWN | 436.2 (± 141.8) b | 155.2 (± 123.0) a |
ΔE M (± SD) | Protocol S | Protocol L |
---|---|---|
CTO | 14.7 (± 3.7) | 10.7 (± 2.9) |
OB3D | 14.9 (± 2.4) | 10.9 (± 2.5) |
CBW | 11.6 (± 3.2) | 12.2 (± 2.4) |
SWN | 11.8 (± 1.1) | 11.7 (± 3.9) |
NBS Units Color Differences | Protocol S | Protocol L |
---|---|---|
CTO | 13.5 Change to another color | 6.7 Extremely marked change |
OB3D | 13.7 Change to another color | 7.5 Extremely marked change |
CBW | 10.7 Extremely marked change | 11.2 Extremely marked change |
SWN | 10.8 Extremely marked change | 10.8 Extremely marked change |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lobito, A.; Colaço, C.; Costa, J.; Caldeira, J.; Proença, L.; Mendes, J.J. In Vitro Evaluation of Surface Roughness and Color Variation after Two Brushing Protocols with Toothpastes Containing Different Whitening Technologies. Appl. Sci. 2024, 14, 4053. https://doi.org/10.3390/app14104053
Lobito A, Colaço C, Costa J, Caldeira J, Proença L, Mendes JJ. In Vitro Evaluation of Surface Roughness and Color Variation after Two Brushing Protocols with Toothpastes Containing Different Whitening Technologies. Applied Sciences. 2024; 14(10):4053. https://doi.org/10.3390/app14104053
Chicago/Turabian StyleLobito, Angel, Catarina Colaço, Joana Costa, Jorge Caldeira, Luís Proença, and José João Mendes. 2024. "In Vitro Evaluation of Surface Roughness and Color Variation after Two Brushing Protocols with Toothpastes Containing Different Whitening Technologies" Applied Sciences 14, no. 10: 4053. https://doi.org/10.3390/app14104053
APA StyleLobito, A., Colaço, C., Costa, J., Caldeira, J., Proença, L., & Mendes, J. J. (2024). In Vitro Evaluation of Surface Roughness and Color Variation after Two Brushing Protocols with Toothpastes Containing Different Whitening Technologies. Applied Sciences, 14(10), 4053. https://doi.org/10.3390/app14104053