A Multi-Center, Open-Label Exploratory Study to Assess Cognitive Function Response to Lifestyle Changes Plus Supplementation in Healthy Adults with Risk Factors Associated with Cognitive Decline
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Intervention
2.3. Outcomes
2.3.1. CNS Vital Signs
2.3.2. Quality of Life Questionnaires
2.3.3. Mini-Mental State Exam-2 (MMSE-2)
2.3.4. Motivation to Make Lasting Changes to Their Lifestyle
2.3.5. Safety
2.4. Experimental Protocol
2.5. Statistical Analysis
3. Results
3.1. CNS Vital Signs
3.2. Quality of Life Questionnaires
3.3. Mini-Mental State Exam-2
3.4. Motivation to Make Lasting Lifestyle Changes
3.5. Safety
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Harada, C.N.; Love, M.C.N.; Triebel, K.L. Normal Cognitive Aging. Clin. Geriatr. Med. 2013, 29, 737–752. [Google Scholar] [CrossRef] [Green Version]
- Prince, M.J.; Wimo, A.; Guerchet, M.M.; Ali, G.C.; Wu, Y.-T.; Prina, M. World Alzheimer Report 2015—The Global Impact of Dementia: An Analysis of Prevalence, Incidence, Cost and Trends; Alzheimer’s Disease International: London, UK, 2015. [Google Scholar]
- Luck, T.; Luppa, M.; Briel, S.; Riedel-Heller, S.G. Incidence of Mild Cognitive Impairment: A Systematic Review. Dement. Geriatr. Cogn. Disord. 2010, 29, 164–175. [Google Scholar] [CrossRef]
- Janoutová, J.; Serý, O.; Hosák, L.; Janout, V. Is mild cognitive impairment a precursor of Alzheimer’s disease? Short review. Cent. Eur. J. Public Health 2015, 23, 365. [Google Scholar] [CrossRef] [Green Version]
- Petersen, R.C.; Negash, S. Mild Cognitive Impairment: An Overview. CNS Spectr. 2008, 13, 45–53. [Google Scholar] [CrossRef]
- Leibson, C.L.; Long, K.H.; Ransom, J.E.; Roberts, R.O.; Hass, S.L.; Duhig, A.M.; Smith, C.Y.; Emerson, J.A.; Pankratz, V.S.; Petersen, R.C. Direct medical costs and source of cost differences across the spectrum of cognitive decline: A population-based study. Alzheimer’s Dement 2015, 11, 917–932. [Google Scholar] [CrossRef] [Green Version]
- WHO. Risk Reduction of Cognitive Decline and Dementia: WHO Guidelines; WHO: Geneva, Switzerland, 2019. [Google Scholar]
- Castro, D.M.; Dillon, C.; Machnicki, G.; Allegri, R.F. The economic cost of Alzheimer’s disease: Family or public-health burden? Dement. Neuropsychol. 2010, 4, 262–267. [Google Scholar] [CrossRef] [Green Version]
- El-Hayek, Y.H.; Wiley, R.E.; Khoury, C.P.; Daya, R.P.; Ballard, C.; Evans, A.R.; Karran, M.; Molinuevo, J.L.; Norton, M.; Atri, A. Tip of the Iceberg: Assessing the Global Socioeconomic Costs of Alzheimer’s Disease and Related Dementias and Strategic Implications for Stakeholders. J. Alzheimer’s Dis. 2019, 70, 323–341. [Google Scholar] [CrossRef] [Green Version]
- Livingston, G.; Huntley, J.; Sommerlad, A.; Ames, D.; Ballard, C.; Banerjee, S.; Brayne, C.; Burns, A.; Cohen-Mansfield, J.; Cooper, C.; et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet 2020, 396, 413–446. [Google Scholar] [CrossRef]
- Brodziak, A.; Wolińska, A.; Kołat, E.; Różyk-Myrta, A. Guidelines for Prevention and Treatment of Cognitive Impairment in the Elderly. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2015, 21, 585. [Google Scholar] [CrossRef] [Green Version]
- Cummings, J.L.; Tong, G.; Ballard, C. Treatment Combinations for Alzheimer’s Disease: Current and Future Pharmacotherapy Options. J. Alzheimer’s Dis. 2019, 67, 779–794. [Google Scholar] [CrossRef] [Green Version]
- Naqvi, R.; Liberman, D.; Rosenberg, J.; Alston, J.; Straus, S. Preventing cognitive decline in healthy older adults. Can. Med. Assoc. J. 2013, 185, 881–885. [Google Scholar] [CrossRef] [Green Version]
- Thompson, T.W.; Waskom, M.L.; Garel, K.-L.; Cardenas-Iniguez, C.; Reynolds, G.O.; Winter, R.; Chang, P.; Pollard, K.; Lala, N.; Alvarez, G.A.; et al. Failure of Working Memory Training to Enhance Cognition or Intelligence. PLoS ONE 2013, 8, e63614. [Google Scholar] [CrossRef] [Green Version]
- Clare, L.; Nelis, S.M.; Jones, I.R.; Hindle, J.V.; Thom, J.M.; Nixon, J.; Cooney, J.; Jones, C.L.; Edwards, R.T.; Whitaker, C.J. The Agewell trial: A pilot randomised controlled trial of a behaviour change intervention to promote healthy ageing and reduce risk of dementia in later life. BMC Psychiatry 2015, 15, 25. [Google Scholar] [CrossRef] [Green Version]
- Ngandu, T.; Lehtisalo, J.; Solomon, A.; Levälahti, E.; Ahtiluoto, S.; Antikainen, R.; Bäckman, L.; Hänninen, T.; Jula, A.; Laatikainen, T.; et al. A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): A randomised controlled trial. Lancet 2015, 385, 2255–2263. [Google Scholar] [CrossRef]
- E Bredesen, D.; Sharlin, K.; Jenkins, D.; Okuno, M.; Youngberg, W.; Cohen, S.H.; Stefani, A.; Brown, R.L.; Conger, S.; Tanio, C.; et al. Reversal of Cognitive Decline: 100 Patients. J. Alzheimer’s Dis. Park. 2018, 8, 450. [Google Scholar] [CrossRef]
- Rao, R.V.; Kumar, S.; Gregory, J.; Coward, C.; Okada, S.; Lipa, W.; Kelly, L.; E Bredesen, D. ReCODE: A Personalized, Targeted, Multi-Factorial Therapeutic Program for Reversal of Cognitive Decline. Biomedicines 2021, 9, 1348. [Google Scholar] [CrossRef]
- Moon, S.Y.; Hong, C.H.; Jeong, J.H.; Park, Y.K.; Na, H.R.; Song, H.-S.; Kim, B.C.; Park, K.W.; Park, H.K.; Choi, M.; et al. Facility-based and home-based multidomain interventions including cognitive training, exercise, diet, vascular risk management, and motivation for older adults: A randomized controlled feasibility trial. Aging 2021, 13, 15898–15916. [Google Scholar] [CrossRef]
- Liu, X.; Ma, Z.; Zhu, X.; Zheng, Z.; Li, J.; Fu, J.; Shao, Q.; Han, X.; Wang, X.; Wang, Z.; et al. Cognitive Benefit of a Multidomain Intervention for Older Adults at Risk of Cognitive Decline: A Cluster-Randomized Controlled Trial. Am. J. Geriatr. Psychiatry 2022, 31, 197–209. [Google Scholar] [CrossRef]
- Anstey, K.J.; Cherbuin, N.; Kim, S.; McMaster, M.; D’Este, C.; Lautenschlager, N.; Rebok, G.; McRae, I.; Torres, S.J.; Cox, K.L.; et al. An Internet-Based Intervention Augmented with a Diet and Physical Activity Consultation to Decrease the Risk of Dementia in At-Risk Adults in a Primary Care Setting: Pragmatic Randomized Controlled Trial. J. Med. Internet Res. 2020, 22, e19431. [Google Scholar] [CrossRef]
- Ng, P.E.M.; Nicholas, S.O.; Wee, S.L.; Yau, T.Y.; Chan, A.; Chng, I.; Yap, L.K.P.; Ng, T.P. Implementation and effectiveness of a multi-domain program for older adults at risk of cognitive impairment at neighborhood senior centres. Sci. Rep. 2021, 11, 3787. [Google Scholar] [CrossRef]
- Glade, M.J.; Smith, K. Phosphatidylserine and the human brain. Nutrition 2015, 31, 781–786. [Google Scholar] [CrossRef]
- Gregory, J.; Vengalasetti, Y.; Bredesen, D.; Rao, R. Neuroprotective Herbs for the Management of Alzheimer’s Disease. Biomolecules 2021, 11, 543. [Google Scholar] [CrossRef]
- Iriti, M.; Vitalini, S.; Fico, G.; Faoro, F. Neuroprotective Herbs and Foods from Different Traditional Medicines and Diets. Molecules 2010, 15, 3517–3555. [Google Scholar] [CrossRef] [Green Version]
- Nemzer, B.; Kalita, D.; Abshiru, N. Quantification of Major Bioactive Constituents, Antioxidant Activity, and Enzyme Inhibitory Effects of Whole Coffee Cherries (Coffea arabica) and Their Extracts. Molecules 2021, 26, 4306. [Google Scholar] [CrossRef]
- Olivera-Pueyo, J.; Pelegrín-Valero, C. Dietary supplements for cognitive impairment. Actas Esp. Psiquiatr. 2017, 45, 37–47. [Google Scholar]
- Wattanathorn, J.; Mator, L.; Muchimapura, S.; Tongun, T.; Pasuriwong, O.; Piyawatkul, N.; Yimtae, K.; Sripanidkulchai, B.; Singkhoraard, J. Positive modulation of cognition and mood in the healthy elderly volunteer following the administration of Centella asiatica. J. Ethnopharmacol. 2008, 116, 325–332. [Google Scholar] [CrossRef]
- Reed, R.A.; Mitchell, E.S.; Saunders, C.; O’Connor, P.J. Acute Low and Moderate Doses of a Caffeine-Free Polyphenol-Rich Coffeeberry Extract Improve Feelings of Alertness and Fatigue Resulting from the Performance of Fatiguing Cognitive Tasks. J. Cogn. Enhanc. 2018, 3, 193–206. [Google Scholar] [CrossRef]
- Okuda, M.; Fujita, Y.; Sugimoto, H. The Additive Effects of Low Dose Intake of Ferulic Acid, Phosphatidylserine and Curcumin, Not Alone, Improve Cognitive Function in APPswe/PS1dE9 Transgenic Mice. Biol. Pharm. Bull. 2019, 42, 1694–1706. [Google Scholar] [CrossRef] [Green Version]
- Araujo, J.; Landsberg, G.M.; Milgram, N.W.; Miolo, A. Improvement of short-term memory performance in aged beagles by a nutraceutical supplement containing phosphatidylserine, Ginkgo biloba, vitamin E, and pyridoxine. Can. Vet. J. 2008, 49, 379–385. [Google Scholar]
- Asama, T. Cognitive Improvement and Safety Assessment of a Composite Dietary Supplement Containing Propolis Extract, Gingko biloba Extract, Phosphatidylserine and Curcumin in Healthy Mid—To Senior Age Japanese Adults―A Placebo—Controlled, Randomized, Parallel—Group, Double—Blind Human Clinical Study. Jpn. Pharmacol. Ther. 2020, 48, 1805–1819. [Google Scholar]
- Mix, J.A.; Crews, W. A double-blind, placebo-controlled, randomized trial of Ginkgo biloba extract EGb 761® in a sample of cognitively intact older adults: Neuropsychological findings. Hum. Psychopharmacol. Clin. Exp. 2002, 17, 267–277. [Google Scholar] [CrossRef]
- Richter, Y.; Herzog, Y.; Lifshitz, Y.; Hayun, R.; Zchut, S. The effect of soybean-derived phosphatidylserine on cognitive performance in elderly with subjective memory complaints: A pilot study. Clin. Interv. Aging 2013, 8, 557–563. [Google Scholar] [CrossRef] [Green Version]
- Stough, C.; Clarke, J.; Lloyd, J.; Nathan, P.J. Neuropsychological changes after 30-day Ginkgo biloba administration in healthy participants. Int. J. Neuropsychopharmacol. 2001, 4, 131–134. [Google Scholar] [CrossRef] [Green Version]
- Cox, K.H.; Pipingas, A.; Scholey, A.B. Investigation of the effects of solid lipid curcumin on cognition and mood in a healthy older population. J. Psychopharmacol. 2015, 29, 642–651. [Google Scholar] [CrossRef]
- Gualtieri, C.T.; Johnson, L.G. Reliability and validity of a computerized neurocognitive test battery, CNS Vital Signs. Arch. Clin. Neuropsychol. 2006, 21, 623–643. [Google Scholar] [CrossRef] [Green Version]
- Gualtieri, C.T.; Johnson, L.G. A computerized test battery sensitive to mild and severe brain injury. Am. J. Med. 2008, 10, 90. [Google Scholar]
- Ware, J.E.; Sherbourne, C.D. The MOS 36-item short-form health survey (SF-36): I. Conceptual framework and item selection. Med. Care 1992, 30, 473–483. [Google Scholar] [CrossRef]
- Johns, M.W. A New Method for Measuring Daytime Sleepiness: The Epworth Sleepiness Scale. Sleep 1991, 14, 540–545. [Google Scholar] [CrossRef] [Green Version]
- Kroenke, K.; Spitzer, R.L.; Williams, J.B. The PHQ-9: Validity of a brief depression severity measure. J. Gen. Intern. Med. 2001, 16, 606–613. [Google Scholar] [CrossRef]
- Folstein, M.F.; Folstein, S.E.; White, T.; Messer, M.A. MMSE-2: Mini-Mental State Examination; Psychological Assessments Resources: Lutz, FL, USA, 2010. [Google Scholar]
- R Core Team. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- CNS Vital Signs. Interpretation Guide. Available online: https://www.cnsvs.com/WhitePapers/CNSVS-BriefInterpretationGuide.pdf (accessed on 21 January 2022).
- Mandolesi, L.; Polverino, A.; Montuori, S.; Foti, F.; Ferraioli, G.; Sorrentino, P.; Sorrentino, G. Effects of Physical Exercise on Cognitive Functioning and Wellbeing: Biological and Psychological Benefits. Front. Psychol. 2018, 9, 509. [Google Scholar] [CrossRef] [Green Version]
- Gudden, J.; Vasquez, A.A.; Bloemendaal, M. The Effects of Intermittent Fasting on Brain and Cognitive Function. Nutrients 2021, 13, 3166. [Google Scholar] [CrossRef]
- Chapman, S.B.; Aslan, S.; Spence, J.S.; Hart, J.J.; Bartz, E.K.; Didehbani, N.; Keebler, M.W.; Gardner, C.M.; Strain, J.F.; DeFina, L.F. Neural mechanisms of brain plasticity with complex cognitive training in healthy seniors. Cereb. Cortex 2015, 25, 396–405. [Google Scholar] [CrossRef] [Green Version]
- Gorgoni, M.; D’Atri, A.; Lauri, G.; Rossini, P.M.; Ferlazzo, F.; De Gennaro, L. Is sleep essential for neural plasticity in humans, and how does it affect motor and cognitive recovery? Neural Plast. 2013, 2013, 103949. [Google Scholar] [CrossRef] [Green Version]
- Kurek-Górecka, A.; Rzepecka-Stojko, A.; Górecki, M.; Stojko, J.; Sosada, M.; Świerczek-Zięba, G. Structure and Antioxidant Activity of Polyphenols Derived from Propolis. Molecules 2013, 19, 78–101. [Google Scholar] [CrossRef] [Green Version]
- Gray, N.E.; Harris, C.J.; Quinn, J.F.; Soumyanath, A. Centella asiatica modulates antioxidant and mitochondrial pathways and improves cognitive function in mice. J. Ethnopharmacol. 2016, 180, 78–86. [Google Scholar] [CrossRef] [Green Version]
- Joseph, J.A.; Shukitt-Hale, B.; Denisova, N.A.; Bielinski, D.; Martin, A.; McEwen, J.J.; Bickford, P. Reversals of Age-Related Declines in Neuronal Signal Transduction, Cognitive, and Motor Behavioral Deficits with Blueberry, Spinach, or Strawberry Dietary Supplementation. J. Neurosci. 1999, 19, 8114–8121. [Google Scholar] [CrossRef]
- Lau, F.C.; Shukitt-Hale, B.; Joseph, J.A. The beneficial effects of fruit polyphenols on brain aging. Neurobiol. Aging 2005, 26, 128–132. [Google Scholar] [CrossRef]
- Hellmuth, J. Can we trust The End of Alzheimer’s? Lancet Neurol. 2020, 19, 389–390. [Google Scholar] [CrossRef]
- Cole, W.R.; Arrieux, J.P.; Schwab, K.; Ivins, B.J.; Qashu, F.M.; Lewis, S.C. Test-Retest Reliability of Four Computerized Neurocognitive Assessment Tools in an Active Duty Military Population. Arch. Clin. Neuropsychol. 2013, 28, 732–742. [Google Scholar] [CrossRef]
- Littleton, A.C.; Register-Mihalik, J.K.; Guskiewicz, K.M. Test-Retest Reliability of a Computerized Concussion Test: CNS Vital Signs. Sports Health 2015, 7, 443–447. [Google Scholar] [CrossRef] [Green Version]
- Rijnen, S.J.M.; Van der Linden, S.D.; Emons, W.H.M.; Sitskoorn, M.M.; Gehring, K. Test-retest reliability and practice effects of a computerized neuropsychological battery: A solution-oriented approach. Psychol. Assess. 2018, 30, 1652–1662. [Google Scholar] [CrossRef]
- Woods, D.L.; Wyma, J.M.; Yund, E.W.; Herron, T.J.; Reed, B. Factors influencing the latency of simple reaction time. Front. Hum. Neurosci. 2015, 9, 131. [Google Scholar] [CrossRef] [Green Version]
- Baddeley, A. Working Memory. Science 1992, 255, 556–559. [Google Scholar] [CrossRef]
- Cox, K.H.M.; White, D.J.; Pipingas, A.; Poorun, K.; Scholey, A. Further Evidence of Benefits to Mood and Working Memory from Lipidated Curcumin in Healthy Older People: A 12-Week, Double-Blind, Placebo-Controlled, Partial Replication Study. Nutrients 2020, 12, 1678. [Google Scholar] [CrossRef]
- Guarino, A.; Forte, G.; Giovannoli, J.; Casagrande, M. Executive functions in the elderly with mild cognitive impairment: A systematic review on motor and cognitive inhibition, conflict control and cognitive flexibility. Aging Ment. Health 2020, 24, 1028–1045. [Google Scholar] [CrossRef]
- Saunders, N.; Summers, M.J. Attention and working memory deficits in mild cognitive impairment. J. Clin. Exp. Neuropsychol. 2010, 32, 350–357. [Google Scholar] [CrossRef]
- Harvey, P.D. Domains of cognition and their assessment. Dialogues Clin. Neurosci. 2019, 21, 227–237. [Google Scholar] [CrossRef]
- Pusswald, G.; Tropper, E.; Kryspin-Exner, I.; Moser, D.; Klug, S.; Auff, E.; Dal-Bianco, P.; Lehrner, J. Health-Related Quality of Life in Patients with Subjective Cognitive Decline and Mild Cognitive Impairment and its Relation to Activities of Daily Living. J. Alzheimer’s Dis. 2015, 47, 479–486. [Google Scholar] [CrossRef]
- Stites, S.D.; Harkins, K.; Rubright, J.D.; Karlawish, J. Relationships Between Cognitive Complaints and Quality of Life in Older Adults with Mild Cognitive Impairment, Mild Alzheimer Disease Dementia, and Normal Cognition. Alzheimer Dis. Assoc. Disord. 2018, 32, 276–283. [Google Scholar] [CrossRef]
- Mourao, R.J.; Mansur, G.; Malloy-Diniz, L.F.; Castro Costa, E.; Diniz, B.S. Depressive symptoms increase the risk of progression to dementia in subjects with mild cognitive impairment: Systematic review and meta-analysis. Int. J. Geriatr. Psychiatry 2016, 31, 905–911. [Google Scholar] [CrossRef]
- Strandberg, T.; Levälahti, E.; Ngandu, T.; Solomon, A.; Kivipelto, M.; Lehtisalo, J.; Laatikainen, T.; Soininen, H.; Antikainen, R.; Jula, A.; et al. Health-related quality of life in a multidomain intervention trial to prevent cognitive decline (FINGER). Eur. Geriatr. Med. 2017, 8, 164–167. [Google Scholar] [CrossRef] [Green Version]
- Foley, D.; Monjan, A.; Masaki, K.; Ross, W.; Havlik, R.; White, L.; Launer, L. Daytime Sleepiness Is Associated with 3-Year Incident Dementia and Cognitive Decline in Older Japanese-American Men. J. Am. Geriatr. Soc. 2001, 49, 1628–1632. [Google Scholar] [CrossRef]
- Merlino, G.; Piani, A.; Gigli, G.; Cancelli, I.; Rinaldi, A.; Baroselli, A.; Serafini, A.; Zanchettin, B.; Valente, M. Daytime sleepiness is associated with dementia and cognitive decline in older Italian adults: A population-based study. Sleep Med. 2010, 11, 372–377. [Google Scholar] [CrossRef]
- Trzepacz, P.T.; Hochstetler, H.; Wang, S.; Walker, B.; Saykin, A.J.; Alzheimer’s Disease Neuroimaging. Relationship between the Montreal Cognitive Assessment and Mini-mental State Examination for Assessment of Mild Cognitive Impairment in Llder Adults. BMC Geriatr. 2015, 15, 107. [Google Scholar] [CrossRef] [Green Version]
- Colagiuri, B.; Boakes, R.A. Perceived treatment, feedback, and placebo effects in double-blind RCTs: An experimental analysis. Psychopharmacology 2010, 208, 433–441. [Google Scholar] [CrossRef]
- Turi, Z.; Bjørkedal, E.; Gunkel, L.; Antal, A.; Paulus, W.; Mittner, M. Evidence for Cognitive Placebo and Nocebo Effects in Healthy Individuals. Sci. Rep. 2018, 8, 17443. [Google Scholar] [CrossRef] [Green Version]
- Kremen, W.S.; Jak, A.J.; Panizzon, M.S.; Spoon, K.M.; E Franz, C.; Thompson, W.K.; Jacobson, K.C.; Vasilopoulos, T.; Vuoksimaa, E.; Xian, H.; et al. Early identification and heritability of mild cognitive impairment. Int. J. Epidemiol. 2014, 43, 600–610. [Google Scholar] [CrossRef] [Green Version]
- Toman, J.; Klímová, B.; Vališ, M. Multidomain lifestyle intervention strategies for the delay of cognitive impairment in healthy aging. Nutrients 2018, 10, 1560. [Google Scholar] [CrossRef] [Green Version]
Characteristic | Value Mean ± SD Median (Min to Max) |
---|---|
Age (years) | 64.5 ± 12.8 61.0 (45.0 to 97.0) |
Mean Weight (kg) | 76.6 ± 15.9 72.8 (51.3 to 123.7) |
BMI (kg/m2) | 26.1 ± 3.7 24.9 (19.7 to 33.1) |
Systolic Blood Pressure (mmHg) | 121.6 ± 11.6 125.0 (101.0 to 138.0) |
Diastolic Blood Pressure (mmHg) | 75.6 ± 7.0 76.0 (59.0 to 85.0) |
Heart Rate (bpm) | 68.1 ± 7.9 68.0 (51.0 to 81.0) |
Gender (n, %) | Female; 25 (65.8%) |
Male; 13 (34.2%) | |
Ethnicity (n, %) | Eastern European White; 1 (2.6%) |
Hispanic or Latino; 2 (5.3%) | |
Western European White; 30 (78.9%) | |
Other; 5 (13.2%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lewis, E.D.; Apostol, M.; Langston, J.; Parker, A.; Evans, M. A Multi-Center, Open-Label Exploratory Study to Assess Cognitive Function Response to Lifestyle Changes Plus Supplementation in Healthy Adults with Risk Factors Associated with Cognitive Decline. Appl. Sci. 2023, 13, 2818. https://doi.org/10.3390/app13052818
Lewis ED, Apostol M, Langston J, Parker A, Evans M. A Multi-Center, Open-Label Exploratory Study to Assess Cognitive Function Response to Lifestyle Changes Plus Supplementation in Healthy Adults with Risk Factors Associated with Cognitive Decline. Applied Sciences. 2023; 13(5):2818. https://doi.org/10.3390/app13052818
Chicago/Turabian StyleLewis, Erin D., Margaret Apostol, Jamie Langston, Alex Parker, and Malkanthi Evans. 2023. "A Multi-Center, Open-Label Exploratory Study to Assess Cognitive Function Response to Lifestyle Changes Plus Supplementation in Healthy Adults with Risk Factors Associated with Cognitive Decline" Applied Sciences 13, no. 5: 2818. https://doi.org/10.3390/app13052818
APA StyleLewis, E. D., Apostol, M., Langston, J., Parker, A., & Evans, M. (2023). A Multi-Center, Open-Label Exploratory Study to Assess Cognitive Function Response to Lifestyle Changes Plus Supplementation in Healthy Adults with Risk Factors Associated with Cognitive Decline. Applied Sciences, 13(5), 2818. https://doi.org/10.3390/app13052818