Ultrasound-Assisted Extraction as a Technique for Preparing Improved Infusions as Functional Beverage Bases
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tea Samples
2.2. Assessment of the Total Dissolved Solids and Electrical Conductivity
2.3. Procedure for Measuring the Total Ion Content of Dried Tea
2.4. Extraction Procedure
2.5. Calculation of the Percentage of Extracted Ions
2.6. Statistical Analysis of the Results
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
Sample Availability
References
- Hayat, K.; Iqbal, H.; Malik, U.; Bilal, U.; Mushtaq, S. Tea and Its Consumption: Benefits and Risks. Crit. Rev. Food Sci. Nutr. 2015, 55, 939–954. [Google Scholar] [CrossRef]
- Brzezicha-Cirocka, J.; Grembecka, M.; Szefer, P. Herbata Jako Źródło Manganu w Codziennej Diecie Człowieka. Bromat. Chem. Toksykol. 2016, 3, 234–237. [Google Scholar]
- Jakubczyk, K.; Kupnicka, P.; Melkis, K.; Mielczarek, O.; Walczyńska, J.; Chlubek, D.; Janda-Milczarek, K. Effects of Fermentation Time and Type of Tea on the Content of Micronutrients in Kombucha Fermented Tea. Nutrients 2022, 14, 4828. [Google Scholar] [CrossRef]
- Hazimeh, D.; Massoud, G.; Parish, M.; Singh, B.; Segars, J.; Islam, M.S. Green Tea and Benign Gynecologic Disorders: A New Trick for an Old Beverage? Nutrients 2023, 15, 1439. [Google Scholar] [CrossRef] [PubMed]
- Waugh, D.; Godfrey, M.; Limeback, H.; Potter, W. Black Tea Source, Production and Consumption: An Assessment of Health Risks Associated with Fluoride Intake in New Zealand. J. Environ. Public Health 2017, 2017, 5120504. [Google Scholar] [CrossRef] [PubMed]
- Esfehani, M.; Ghasemzadeh, S.; Mirzadeh, M. Comparison of Fluoride Ion Concentration in Black, Green and White Tea. Int. J. Ayurvedic Med. 2019, 9, 263–265. [Google Scholar] [CrossRef]
- Klepacka, J.; Tońska, E.; Rafałowski, R.; Czarnowska-Kujawska, M.; Opara, B. Tea as a Source of Biologically Active Compounds in the Human Diet. Molecules 2021, 26, 1487. [Google Scholar] [CrossRef]
- Wen, C.; Zhang, Q.; Xie, F.; Jiang, J. Brick Tea Consumption and Its Relationship with Fluorosis in Tibetan Areas. Front. Nutr. 2022, 9, 1030344. [Google Scholar] [CrossRef]
- Li, X.; Smid, S.D.; Lin, J.; Gong, Z.; Chen, S.; Zhang, Y.; Hao, Z.; Lin, H.; Yu, X. Neuroprotective and Anti-Amyloid β Effects and Main Chemical Profiles of White Tea: Comparison with Green, Oolong and Black Tea. Molecules 2019, 24, 1926. [Google Scholar] [CrossRef]
- Yadav, K.C.; Parajuli, A.; Khatri, B.B.; Shiwakot, L.D. Phytochemicals and Quality of Green and Black Teas from Different Clones of the Tea Plant. J. Qual. Food 2020, 2020, 1–13. [Google Scholar]
- Brodziak-Dopierała, B.; Fischer, A. Analysis of Mercury Content in Various Types of Tea (Camellia sinensis) and Yerba Mate (Ilex Paraguariensis). Int. J. Environ. Res. Public Health 2022, 19, 5491. [Google Scholar] [CrossRef] [PubMed]
- Bhutia Pemba, H.; Ab Lepcha, R.; Tamang, D. Bioactive Compounds and Antioxidant Properties of Tea: Status, Global Research and Opportunities. J. Tea Sci. Res 2015, 5, 1–13. [Google Scholar]
- Li, X.; Zhu, X. Tea: Types, Production and Tradel. In Encyclical: Food Health; Elsevier: Amsterdam, The Netherlands, 2016; pp. 279–282. [Google Scholar]
- Hać-Szymańczuk, E.; Fiziar, M.; Cegiełka, A.; Piwowarek, K.; Misiura, S. Comparison of the Microbiological Quality of Black, Green and Red Teas, Activity on the Warsaw Market. Prob Noteb. Prog. Role Sci. 2017, 591, 33–42. [Google Scholar]
- Kj Dutta, S.; Chowdhury, P.; Sanjoy, D.; Jarin, A. Status and Productivity of Tea Plantations in the Chattogram Tea Valley in Bangladesh. Int. J. Biosci. 2021, 18, 251–260. [Google Scholar]
- Czarniecka-Skubina, E.; Korzeniowska-Ginter, R.; Pielak, M.; Sałek, P.; Owczarek, T.; Kozak, A. Consumer Choices and Habits Related to Tea Consumption by Poles. Foods 2022, 11, 2873. [Google Scholar] [CrossRef] [PubMed]
- Tm Agarwalb, S.; Maki, K.C. The Anti-Obesity Effect of Green Tea Catechins: A Mechanistic Review. J. Nutr. Biochem. 2011, 22, 1–7. [Google Scholar]
- Roy, R.B.; Tudu, B.; Pramanik, P.; Deca, H.; Tamuly, P.; Bandyopadhyay, R. Detection of Theaflavins in Black Tea Using a Molecularly Imprinted Nanocomposite Polyacrylamide-Graphite Electrode. Sens. Cylind. B Chem. 2017, 246, 840–847. [Google Scholar]
- Mr, H.; Gao, Y.; Tu, Y. Mechanisms of Weight Reduction by Black Tea Polyphenols. Molecules 2016, 21, 1659. [Google Scholar]
- Horžić, D.; Komes, D.; Belščak, A.; Ganić, K.K.; Iveković, D.; Karlović, D. The Composition of Polyphenols and Methylxanthines in Teas and Herbal Infusions. Food Chem. 2009, 115, 441–448. [Google Scholar] [CrossRef]
- Wereńska-Sudnik, M.; Chelmecka, I.; Wołoszyn, J.; Okruszek, A.; Haraf, G.; Okrusz, A. Wpływ Dodatku Proszku Zielonej Herbaty Na Jakość Wyrobów Podrobowych Przechowywanych w Warunkach Chłodniczych. Technologia 2016, 23, 60–71. [Google Scholar]
- Sharangi, A. Medicinal and Therapeutic Potentialities of Tea (Camellia sinensis L). Food Res. Int. 2009, 42, 529–535. [Google Scholar] [CrossRef]
- Dias, T.R.; Tomas, G.; Teixeira, N.F.; Alves, M.G.; Oliveira, P.F.; Silva, B.M. White Tea (Camellia sinensis (L.)): Antioxidant Properties and Beneficial Health Effects. Int. J. Food Sci. Nutr. Diet IJFS 2013, 2, 19–26. [Google Scholar]
- Dmowski, P.; Kosiorek, A. Antioxidant Properties of High-Quality Black Teas on the e-Commerce Market. Noteb. Sci. Acad. Plague Sci. Acad. Plague Gdyn. 2017, 99, 9–19. [Google Scholar]
- Prasanth, M.I.; Sivamaruthi, B.S.; Chaiyasut, C.; Tencomnao, T. A Review of the Role of Green Tea (Camellia sinensis) in Antiphotoaging, Stress Resistance, Neuroprotection, and Autophagy. Nutrients 2019, 11, 474. [Google Scholar] [CrossRef] [PubMed]
- Michalak-Majewska, M.W. Część 1. Znaczenie Żywieniowe. Nauka Przyr. Technol. 2011, 5, 1–11. [Google Scholar]
- Xing, L.; Zhang, H.; Qi, R.; Tsao, R.; Mine, Y. Recent Advances in the Understanding of the Health Benefits and Molecular Mechanisms Associated with Green Tea Polyphenols. J. Agric. Food Chem. 2019, 67, 1029–1043. [Google Scholar] [CrossRef]
- Yang, C.S.; Wang, X.; Lu, G.; Picinich, S.C. Cancer Prevention by Tea: Animal Studies, Molecular Mechanisms and Human Relevance. Nat. Rev. Cancer 2009, 9, 429–439. [Google Scholar] [CrossRef]
- Brzezicha-Cirocka, J.; Grembecka, M.; Ciesielski, T.; Flaten, T.P.; Szefer, P. Evaluation of Macro- and Microelement Levels in Black Tea in View of Its Geographical Origin. Biol. Trace Elem. Res. 2017, 176, 429–441. [Google Scholar] [CrossRef]
- Kieliszek, M. Selenium–A Fascinating Trace Element, Properties and Sources in Food. Molecules 2019, 24, 1298. [Google Scholar] [CrossRef]
- Milani, R.F.; Silvestre, L.K.; Morgano, M.A.; Cadore, S. Investigation of Twelve Trace Elements in Herbal Tea Commercialized in Brazil. J. Trace Elem. Med. Biol. 2019, 52, 111–117. [Google Scholar] [CrossRef]
- Fernandes, J.; Reboredo, F.H.; Luis, I.; Silva, M.M.; Simões, M.M.; Lidon, F.C.; Ramalho, J.C. Elemental Composition of Commercial Herbal Tea Plants and Respective Infusions. Plants 2022, 11, 1412. [Google Scholar] [CrossRef]
- Sentkowska, A.; Pyrzyńska, K. Antioxidant Properties of Selenium Nanoparticles Synthesized Using Tea and Herb Water Extracts. Appl. Sci. 2023, 13, 1071. [Google Scholar] [CrossRef]
- Wyprostek, J.; Kowalski, R.; Pankiewicz, U.; Solarska, E. Determination of the Content of Selected Active Substances in Primary and Secondary Herbal Infusions by Means of UV-VIS and GC-MS Spectroscopic Analysis. J. Anal. Methods 2020, 2020, 8891855. [Google Scholar] [CrossRef]
- Mr, S.Y.; Tai, H.C.; Xl Tong, Y.; Zhang, L.J.F.; Lin, Z.H.X. Tea and Tea Drinking: China’s Outstanding Contribution to Humanity. Chin. Med. 2022, 17, 1–40. [Google Scholar]
- David, L. Water and Electrolyte Requirements: Effects of Exercise and Environmental Conditions. Clin. Sport Med. 1984, 3, 639–648. [Google Scholar] [CrossRef]
- Frączek, B.; Gacek, M.; Grzelak, A. Żywieniowe Wspomaganie Zdolności Wysiłkowych w Grupie Sportowców Wyczynowych. Probl. Hig. Epidemiol. 2012, 93, 817–823. [Google Scholar]
- Jarosz, M. Normy Żywienia dla Populacji Polskiej-Nowelizacja; Pol Health: Warsaw, Poland, 2012. [Google Scholar]
- Krupa, R. Zagrażające Życiu Stany Hipokaliemii-Przyczyny, Objawy, Powikłania Kardiologiczne, Zasady Postępowania. Choroby Serca Naczyń 2013, 10, 173–174. [Google Scholar]
- Zagroda, M.; Prystupa, A.; Mosiewicz, J. Zaburzenia Gospodarki Potasowej w Patogenezie i Leczeniu Napadowego Migotania Przedsionków. Fam. Med. Prim. Care Rev. 2013, 2, 205–206. [Google Scholar]
- Szeleszczuk, Ł.; Kuras, M. Znaczenie Wapnia w Metabolizmie Człowieka i Czynniki Wpływające na Jego Biodostępność w Diecie. Prospect. Pharm. Sci. 2014, 12, 16–22. [Google Scholar] [CrossRef]
- Tankeu, A.N.; Agbor, V.; Noubiap, J.J. Calcium Supplementation and Cardiovascular Risk: A Growing Concern. J. Clin. Hypertens. 2017, 19, 640–646. [Google Scholar] [CrossRef]
- Li, K.; Wang, X.F.; Li, D.Y.; Chen, Y.C.; Zhao, L.J.; Xg Guo, Y.F.; Shen, J.; Lin, X.; Deng, J. The Good, the Bad and the Ugly of Calcium Supplementation: A Review of Calcium Intake for Human Health. Clin. Clin. Interv. Aging 2018, 13, 2443–2452. [Google Scholar] [CrossRef] [PubMed]
- Cormick, G. JM Calcium Intake and Health. Nutrients 2019, 11, 1606. [Google Scholar] [CrossRef] [PubMed]
- Shkembi, B.; Huppertz, T. Calcium Absorption from Foods: Food Matrix Effects. Nutrients 2021, 14, 180. [Google Scholar] [CrossRef] [PubMed]
- Puścion-Jakubik, A.; Staniaszek, G.; Brzozowska, P.; Socha, K. Quality of Calcium Food Supplements: Evaluation Compared to Manufacturers’ Declarations. Molecules 2022, 27, 8154. [Google Scholar] [CrossRef]
- Gröber, U.; Schmidt, J.; Kisters, K. Magnesium in Prevention and Therapy. Nutrients 2015, 7, 8199–8226. [Google Scholar] [CrossRef]
- Schuchardt, J.P.; Hahn, A. Intestinal Absorption and Factors Affecting Magnesium Bioavailability–An Update. Curr. Nutr. Sci. Food 2017, 13, 260–278. [Google Scholar] [CrossRef]
- Blancquaert, L.; Vervaet, C.; Derave, W. Predicting and Testing Bioavailability of Magnesium Supplements. Nutrients 2019, 11, 1663. [Google Scholar] [CrossRef]
- Barbagallo, M.; Veronese, N.; Dominguez, L.J. Magnesium in Aging, Health and Diseases. Nutrients 2021, 13, 463. [Google Scholar] [CrossRef]
- Utyshenko, V.P.; Molchanov, M.; Beskaravayny, P.; Uversky, V.N.; Timchenko, M.A. Analyzing and Mapping Sweat Metabolomics by High-Resolution NMR Spectroscopy. PLoS ONE 2011, 6, e28824. [Google Scholar] [CrossRef]
- Dunstan, R.H.; Sparkes, D.L.; Dascombe, B.J.; Macdonald, M.M.; Evans, C.A.; Stevens, C.J.; Crompton, M.J.; Gottfries, J.; Franks, J.; Murphy, G.; et al. Sweat Facilitated Amino Acid Losses in Male Athletes during Exercise at 32–34 °C. PLoS ONE 2016, 11, e0167844. [Google Scholar] [CrossRef]
- Murphy, G.R.; Dunstan, R.H.; Macdonald, M.M.; Borges, N.; Radford, Z.; Sparkes, D.L.; Dascombe, B.J.; Roberts, T.K. Relationships between Electrolyte and Amino Acid Compositions in Sweat during Exercise Suggest a Role for Amino Acids and K+ in Reabsorption of Na+ and Cl- from Sweat. PLoS ONE 2019, 14, e0223381. [Google Scholar] [CrossRef] [PubMed]
- Sugajski, M.; Buszewska-Forajta, M.; Buszewski, B. Functional Beverages in the 21st Century. Beverages 2023, 9, 27. [Google Scholar] [CrossRef]
- Wolski, T.; Ludwiczuk, A. Ekstrakcja Produktów Naturalnych Gazami w Stanie Nadkrytycznym. Przemysł Chemiczny T 2001, 80, 286–289. [Google Scholar]
- Zhang, Q.; Lin, L.; Ye, W. Natural Product Extraction and Isolation Techniques: A Comprehensive Review. Chin. Med. 2018, 20, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Rouhani, S.; Alizadeh, N.; Salimi, S.; Haji-Ghasemi, T. Ultrasonic Assisted Extraction of Natural Pigments from Rhizomes of Curcuma longa, L. Progress in Color. Color. Coat. 2009, 2, 103–113. [Google Scholar]
- PN-ISO 1573:1996; Tea—Determination of Loss in Mass at 103 Degrees C. Polish Committee for Standardization: Warsaw, Poland, 1996.
- PN-ISO 1575:1996; Tea—Determination of Total Ash. Polish Committee for Standardization: Warsaw, Poland, 1996.
- PN-A-04018:1975/Az3:2002; Agricultural Food Products—Determination of Nitrogen by the Kjeldahl Method and Expressing as Protein. Polish Committee for Standardization: Warsaw, Poland, 2002.
- Stasiuk, E.; Przybyłowski, P.; Tomczyk, M.; Olesiuk, J.; Dżugan, M. Ocena Jakości Napojów Izotonicznych Przygotowanych Samodzielnie Na Bazie Naturalnych Składników. Pol. J. Sports Med. 2015, 4, 169–177. [Google Scholar]
- Renke, G.; Almeida, V.B.P.; Souza, E.A.; Lessa, S.; Teixeira, R.L.; Rocha, L.; Sousa, P.L.; Starling-Soares, B. Clinical Outcomes of the Deleterious Effects of Aluminum on Neuro-Cognition, Inflammation, and Health: A Review. Nutrients 2023, 15, 2221. [Google Scholar] [CrossRef]
- Matwiejuk, A. Mineral Ingredients (Macro-and Microelements) Their Importance in Sports Nutrition. Sci. Ann. Univ. Phys. Educ. Tour. Bialystok 2009, 97, 97–99. [Google Scholar]
- Piskuła, P.; Astel, A. Rola Suplementacji w Zbilansowanym Żywieniu Człowieka. Cz. 2, Charakterystyka Oraz Skład Jonowy Ekstraktów z Herbat; LAB Laboratoria, Aparatura, Badania: Katowice, Poland, 2017; Volume 22, pp. 16–23. [Google Scholar]
- Łukasz, B.; Rybakowska, I.M.; Krakowiak, A.; Sein Anand, J. The Health Effects of Environmental and Occupational Exposure to Aluminum. Med. Pr 2020, 71, 79–88. [Google Scholar] [CrossRef]
- Katarzyna Dziubak, A.; Kręźlewicz, A. Poziomy Metali Szkodliwych Dla Zdrowia w Różnych Typach Żywności. Stud. Ecol. Bioethicae 2021, 19, 115–122. [Google Scholar]
- Kumar, K.; Srivastav, S.; Sharanagat, V.S. Ultrasound Assisted Extraction (UAE) of Bioactive Compounds from Fruit and Vegetable Processing by-Products: A Review. Ultrason. Sonochem. 2021, 70, 105325. [Google Scholar] [CrossRef] [PubMed]
- Adetunji, L.R.; Adekunle, A.; Orsat, V.; Raghavan, V. Advances in the Pectin Production Process Using Novel Extraction Techniques: A Review. Food Hydrocoll. 2017, 62, 239–250. [Google Scholar] [CrossRef]
- Ajila, C.M.; Brar, S.K.; Verma, M.; Tyagi, R.D.; Godbout, S.; Valéro, J.R. Extraction and Analysis of Polyphenols: Recent Trends. Crit. Rev. Biotechnol. 2011, 31, 227–249. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Castello, E.M.; Rodriguez-Lopez, A.D.; Mayor, L.; Ballesteros, R.; Conidi, C.; Cassano, A. Optimization of Conventional and Ultrasound Assisted Extraction of Flavonoids from Grapefruit (Citrus paradisi L.) Solid Wastes. LWT—Food Sci. Technol. 2015, 64, 1114–1122. [Google Scholar] [CrossRef]
- Pan, G.; Yu, G.; Zhu, C.; Qiao, J. Optimization of Ultrasound-Assisted Extraction (UAE) of Flavonoids Compounds (FC) from Hawthorn Seed (HS). Ultrason. Sonochem. 2012, 19, 486–490. [Google Scholar] [CrossRef] [PubMed]
- Pingret, D.; Fabiano-Tixier, A.-S.; Bourvellec, C.L.; Renard, C.M.G.C.; Chemat, F. Lab and Pilot-Scale Ultrasound-Assisted Water Extraction of Polyphenols from Apple Pomace. J. Food Eng. 2012, 111, 73–81. [Google Scholar] [CrossRef]
- Perkowska, S.; Bazylak, B.; Wplyw, G. Warunkow Ekstrakcji Na Zawartosc Rozpuszczalnych Szczawianow w Wodnych Naparach Herbat Zielonych i Herbatek Ziolowych. Żywność Nauka Technol. Jakość 2010, 17, 107–121. [Google Scholar]
- Zurek, N.; Kapusta, I.; Cebulak, T. Wpływ Warunków Ekstrakcji Na Potencjał Przeciwutleniający Wyciągów z Kwiatów, Liści i Owoców Głogu (Crataegus x Macrocarpa L). Żywność Nauka Technol. Jakość 2020, 27, 130–141. [Google Scholar]
- Przybylska, A.; Stuper-Szablewska, K.; Matysiak, A.; Perkowski, J. Optymalizacja Warunków Ekstrakcji Związków Fenolowych Ogółem i Aktywności Przeciwutleniającej z Ziarna Pszenicy. Apar. Badaw. Dydakt. 2018, 23, 4–12. [Google Scholar]
- Sołtysiak, K. Ekstrakcja Związków Bioaktywnych z Ziaren Ryżu Wspomagana Ultradźwiękami. Politechnika Łódzka-Wydział Inżynierii Procesowej i Ochrony Środowiska, VII Seminarium Studenckie. Bezpieczeństwo w Inżynierii Procesowej; Wydawnictwo Politechniki Łódzkiej: Łódź, Poland, 2017. [Google Scholar]
- Zaguła, G.; Bajcar, M.; Saletnik, B.; Czernicka, M.; Puchalski, C.; Kapusta, I.; Oszmiański, J. Porównanie efektywności wodnej ekstrakcji substancji z suchych liści herbaty technikami ekstrakcji wspomaganej polem magnetycznym. Cząsteczki 2017, 22, 1656. [Google Scholar] [CrossRef]
- Tal-Figiel, B.; Figiel, W. Porównanie efektywności ekstrakcji surowców roślinnych za pomocą niekonwencjonalnych technik ekstrakcyjnych. Inż. Ap. Chem. 2010, 49, 15–16. [Google Scholar]
- Turek, A. Wpływ Kwasu Taninowego i Penicyliny Na Stabilność Białek Osierdzia. Eng. Biomater. 2007, 10, 84–86. [Google Scholar]
- Avilés-Betanzos, K.A.; Scampicchio, M.; Ferrentino, G.; Ramírez-Sucre, M.O.; Rodríguez-Buenfil, I.M. Evaluation of the Capsaicinoid Extraction Conditions from Mexican Capsicum Chinense Var. Mayapan with Supercritical Fluid Extraction (SFE). Processes 2023, 11, 2272. [Google Scholar] [CrossRef]
- Paryjczak, T. Promowanie Zrównoważonego Rozwoju Przez Zieloną Chemię, Część 2. Probl. Ekorozwoju 2008, 3, 45–51. [Google Scholar]
- Raghunath, S.; Mallikarjunan, K. Optimization of Ultrasound-Assisted Extraction of Cold-Brewed Black Tea Using Response Surface Methodology. J. Food Process Eng. 2020, 43, 11. [Google Scholar] [CrossRef]
- Horžić, D.; Jambrak, A.R.; Belščak-Cvitanović, A.; Komes, D.; Lelas, V. Comparison of Conventional and Ultrasound Assisted Extraction Techniques of Yellow Tea and Bioactive Composition of Obtained Extracts. Food Bioproc. Technol. 2012, 5, 2858–2870. [Google Scholar] [CrossRef]
- Xie, K.; He, X.; Chen, K.; Chen, J.; Sakao, K.; Hou, D.-X. Antioxidant Properties of a Traditional Vine Tea, Ampelopsis Grossedentata. Antioxidants 2019, 8, 295. [Google Scholar] [CrossRef]
- Cheng, Y.; Xue, F.; Yang, Y. Hot Water Extraction of Antioxidants from Tea Leaves–Optimization of Brewing Conditions for Preparing Antioxidant-Rich Tea Drinks. Molecules 2023, 28, 3030. [Google Scholar] [CrossRef]
- Luo, Q.; Zhang, J.-R.; Li, H.-B.; Wu, D.-T.; Geng, F.; Corke, H.; Wei, X.-L.; Gan, R.-Y. Ekstrakcja zielonych polifenoli przeciwutleniających z zielonej herbaty (Camellia sinensis). Przeciwutleniacze 2020, 9, 785. [Google Scholar] [CrossRef]
- Wyrostek, J.; Kowalski, R. Wpływ ultradźwięków i rozdrobnienia surowca na ekstrakcję związków fenolowych i flawonoidów z liści mięty pieprzowej i herbaty czarnej. Przemysł Chem. 2022, 101, 98–103. [Google Scholar]
Numbering Used in Further Results | Tea | Origin | Moisture Content, % | Ash Content, % | Protein Content, % |
---|---|---|---|---|---|
1 | Nepal Everest (black tea) | Nepal | 3.98 ± 0.33 | 6.21 ± 0.27 | 20.31 ± 0.35 |
2 | Ceylon Kenilworth (black tea) | Sri Lanka | 7.17 ± 0.29 | 6.04 ± 0.19 | 15.30 ± 0.13 |
3 | Black Vietnam (black tea) | Vietnam | 6.58 ± 0.27 | 6.15 ± 0.18 | 29.65 ± 0.34 |
4 | Fog Green Tea (green tea) | Taiwan | 5.13 ± 0.31 | 7.28 ± 0.26 | 23.20 ± 0.37 |
5 | Sencha Kyoto Organic (green tea) | Japan | 4.91 ± 0.33 | 7.27 ± 0.32 | 24.00 ± 0.17 |
6 | Yunnan Green (green tea) | China | 5.18 ± 0.25 | 7.34 ± 0.32 | 23.67 ± 0.31 |
7 | White Monkey (white tea) | China | 4.56 ± 0.14 | 5.68 ± 0.22 | 16.31 ± 0.22 |
8 | Yin Zhen Hunan (white tea) | China | 4.89 ± 0.18 | 5.77 ± 0.21 | 15.23 ± 0.33 |
9 | Pai Mu Tan Rose (white tea) | China | 5.01 ± 0.10 | 5.31 ± 0.37 | 15.44 ± 0.24 |
Element | Measurement Line, nm | Recovery According to CRM, % | Recovery According to Known Addition Method, % |
---|---|---|---|
Na | 589.5 | 98 | 101 |
Ca | 317.9 | 101 | 99 |
Cu | 324.7 | 98 | 99 |
K | 766.4 | 102 | 98 |
Mg | 279.5 | 102 | 101 |
P | 177.4 | 101 | 99 |
S | 180.7 | 97 | 100 |
Zn | 213.8 | 99 | 97 |
Fe | 259.9 | 98 | 99 |
Mn | 257.6 | 97 | 100 |
Mo | 202.0 | 101 | 101 |
Sr | 407.7 | 100 | 99 |
As | 189.0 | 99 | 99 |
Cd | 228.8 | 98 | 97 |
Pb | 220.3 | 98 | 101 |
Ions, mg/10 g | Tea 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|
Al | 2.82 f | 1.52 d | 2.18 e | 1.29 bc | 7.52 g | 2.02 e | 1.15 b | 0.41 a | 1.41 cd |
As | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
Ca | 7.76 c | 11.66 e | 12.02 e | 9.14 d | 11.34 e | 8.96 d | 5.99 f | 7.82 c | 6.72 b |
Cd | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
Cr | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
Cu | 0.03 b | 0.02 a | 0.03 ab | 0.10 d | 0.03 ab | 0.06 c | 0.04 b | 0.03 b | 0.02 a |
Fe | <LOD | <LOD | <LOD | <LOD | 0.06 | <LOD | 0.02 | 0.01 | <LOD |
K | 220.22 de | 235.33 cf | 183.11 c | 226.00 de | 213.97 d | 241.03 f | 182.76 c | 131.77 a | 151.99 b |
Mg | 14.27 d | 11.27 c | 9.18 b | 15.98 e | 9.65 b | 19.03 f | 9.21 b | 7.51 a | 7.16 a |
Mn | 1.63 b | 1.52 ab | 1.97 c | 4.85 g | 4.89 g | 3.45 f | 3.02 b | 2.37 d | 1.40 a |
Mo | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
Na | 1.89 f | 1.11 e | 1.18 e | 0.83 c | 0.43 a | 0.52 b | 1.12 e | 1.10 e | 0.90 c |
Ni | 0.05 c | 0.02 a | 0.05 c | 0.08 e | <LOD | 0.06 cd | 0.06 cd | 0.07 de | 0.03 b |
P | 128.44 h | 94.44 f | 103.42 f | 73.74 d | 50.22 b | 106.40 h | 86.74 e | 38.40 a | 62.34 c |
Pb | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
S | 13.22 b | 20.22 d | 15.21 c | 12.82 b | 16.53 c | 15.21 c | 12.82 b | 10.17 a | 13.12 b |
Sr | 0.03 a | 0.03 a | 0.08 b | 0.03 a | 0.03 a | 0.03 a | 0.03 a | 0.03 a | 0.03 a |
Zn | 0.02 a | 0.02 a | 0.41 e | 0.04 b | 0.02 a | 0.25 c | 0.03 b | 0.29 d | 0.26 c |
TOTAL IONS | 387.56 | 375.64 | 326.66 | 343.61 | 307.17 | 395.00 | 301.84 | 199.57 | 243.97 |
Black Tea 1 | ||||||
---|---|---|---|---|---|---|
Ions, mg/10 g | Traditional Extraction | Ultrasound Extraction | ||||
Extraction Time | Extraction Time | |||||
1 min | 5 min | 10 min | 1 min | 5 min | 10 min | |
Ca | 4.52 a | 6.05 c | 6.95 e | 5.15 b | 6.39 d | 7.50 f |
K | 62.72 a | 91.47 b | 175.43 d | 158.83 c | 178.56 d | 199.20 e |
Mg | 2.40 a | 3.49 b | 5.49 c | 9.48 d | 10.05 d | 12.90 e |
Na | 0.32 a | 0.33 a | 0.37 b | 0.72 c | 0.89 d | 1.02 e |
Black Tea 2 | ||||||
Ions, mg/10 g | Traditional Extraction | Ultrasound Extraction | ||||
Extraction Time | Extraction Time | |||||
1 min | 5 min | 10 min | 1 min | 5 min | 10 min | |
Ca | 6.56 a | 7.40 b | 9.81 c | 7.06 b | 7.48 b | 10.40 d |
K | 43.82 a | 131.66 c | 202.96 d | 49.17 b | 147.96 d | 215.76 e |
Mg | 1.57 a | 5.83 c | 9.55 e | 1.81 b | 6.40 d | 10.38 f |
Na | 0.43 a | 0.64 b | 0.85 d | 0.44 a | 0.73 c | 0.90 e |
Black Tea 3 | ||||||
Ions, mg/g | Traditional Extraction | Ultrasound Extraction | ||||
Extraction Time | Extraction Time | |||||
1 min | 5 min | 10 min | 1 min | 5 min | 10 min | |
Ca | 7.15 a | 8.68 b | 9.52 d | 7.70 a | 9.53 d | 11.09 e |
K | 102.16 a | 127.10 b | 135.93 b | 136.33 b | 167.10 c | 169.00 c |
Mg | 4.26 a | 5.93 b | 5.88 b | 6.59 c | 7.63 d | 8.38 e |
Na | 0.48 a | 0.54 b | 0.64 c | 0.48 a | 0.70 c | 0.89 d |
Green Tea 4 | ||||||
---|---|---|---|---|---|---|
Ions, mg/10 g | Traditional Extraction | Ultrasound Extraction | ||||
Extraction Time | Extraction Time | |||||
1 min | 5 min | 10 min | 1 min | 5 min | 10 min | |
Ca | 6.90 a | 7.17 a | 7.27 a | 7.03 a | 8.14 b | 8.39 b |
``K | 49.59 a | 50.74 a | 137.46 b | 132.26 b | 166.76 c | 212.56 d |
Mg | 2.44 a | 2.48 a | 8.35 b | 8.01 b | 10.61 c | 14.51 d |
Na | 0.34 a | 0.38 a | 0.55 b | 0.51 b | 0.66 c | 0.77 d |
Green Tea 5 | ||||||
Ions, mg/10 g | Traditional Extraction | Ultrasound Extraction | ||||
Extraction Time | Extraction Time | |||||
1 min | 5 min | 10 min | 1 min | 5 min | 10 min | |
Ca | 6.95 a | 7.18 ab | 7.95 b | 7.80 b | 9.35 c | 10.46 d |
K | 50.77 a | 63.64 b | 126.46 c | 129.06 c | 163.33 d | 195.63 e |
Mg | 2.12 a | 2.93 a | 5.07 b | 5.25 b | 7.15 c | 8.78 d |
Na | 0.25 a | 0.29 ab | 0.33 c | 0.30 bc | 0.33 c | 0.40 d |
Green Tea 6 | ||||||
Ions, mg/10 g | Traditional Extraction | Ultrasound Extraction | ||||
Extraction Time | Extraction Time | |||||
1 min | 5 min | 10 min | 1 min | 5 min | 10 min | |
Ca | 5.78 a | 6.09 a | 6.87 b | 5.91 a | 6.12 a | 8.14 c |
K | 41.67 a | 91.74 b | 126.93 c | 137.70 c | 216.57 d | 221.83 d |
Mg | 2.72 a | 5.76 b | 8.61 c | 9.19 c | 15.83 d | 17.32 e |
Na | 0.35 a | 0.37 a | 0.45 b | 0.38 a | 0.44 b | 0.47 b |
White Tea 7 | ||||||
---|---|---|---|---|---|---|
Ions, mg/10 g | Traditional Extraction | Ultrasound Extraction | ||||
Extraction Time | Extraction Time | |||||
1 min | 5 min | 10 min | 1 min | 5 min | 10 min | |
Ca | 5.17 ab | 5.12 a | 5.44 b | 5.09 a | 5.17 ab | 5.50 b |
K | 90.48 a | 102.46 a | 147.86 b | 153.26 b | 161.60 b | 168.96 c |
Mg | 5.18 a | 5.77 a | 7.45 b | 7.96 b | 8.66 c | 8.83 c |
Na | 0.43 a | 0.48 b | 0.60 c | 0.59 c | 0.82 d | 1.07 d |
White Tea 8 | ||||||
Ions, mg/10 g | Traditional Extraction | Ultrasound Extraction | ||||
Extraction Time | Extraction Time | |||||
1 min | 5 min | 10 min | 1 min | 5 min | 10 min | |
Ca | 5.31 a | 5.34 a | 6.24 b | 5.96 b | 6.14 b | 7.20 c |
K | 90.11 a | 99.25 a | 116.36 bc | 101.10 ab | 113.40 bc | 123.16 c |
Mg | 4.22 a | 5.85 b | 5.92 b | 4.87 b | 5.69 b | 6.67 c |
Na | 0.34 a | 0.59 c | 0.92 d | 0.40 b | 0.91 d | 1.02 e |
White Tea 9 | ||||||
Ions, mg/10 g | Traditional Extraction | Ultrasound Extraction | ||||
Extraction Time | Extraction Time | |||||
1 min | 5 min | 10 min | 1 min | 5 min | 10 min | |
Ca | 5.00 a | 5.14 a | 5.73 b | 5.26 a | 5.88 b | 6.12 c |
K | 105.26 a | 120.73 b | 147.06 c | 133.33 bc | 145.96 c | 150.73 c |
Mg | 4.09 a | 4.95 a | 6.44 c | 5.52 b | 6.15 c | 6.50 c |
Na | 0.43 a | 0 | 0.58 b | 0.62 b | 0.81 c | 0.83 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mroczek, K.; Saletnik, B.; Bajcar, M.; Saletnik, A.; Puchalski, C.; Zaguła, G. Ultrasound-Assisted Extraction as a Technique for Preparing Improved Infusions as Functional Beverage Bases. Appl. Sci. 2023, 13, 11392. https://doi.org/10.3390/app132011392
Mroczek K, Saletnik B, Bajcar M, Saletnik A, Puchalski C, Zaguła G. Ultrasound-Assisted Extraction as a Technique for Preparing Improved Infusions as Functional Beverage Bases. Applied Sciences. 2023; 13(20):11392. https://doi.org/10.3390/app132011392
Chicago/Turabian StyleMroczek, Karolina, Bogdan Saletnik, Marcin Bajcar, Aneta Saletnik, Czesław Puchalski, and Grzegorz Zaguła. 2023. "Ultrasound-Assisted Extraction as a Technique for Preparing Improved Infusions as Functional Beverage Bases" Applied Sciences 13, no. 20: 11392. https://doi.org/10.3390/app132011392
APA StyleMroczek, K., Saletnik, B., Bajcar, M., Saletnik, A., Puchalski, C., & Zaguła, G. (2023). Ultrasound-Assisted Extraction as a Technique for Preparing Improved Infusions as Functional Beverage Bases. Applied Sciences, 13(20), 11392. https://doi.org/10.3390/app132011392