Three-Dimensional Thermoelasticity Analysis of Viscoelastic FGM Plate Embedded in Piezoelectric Layers under Thermal Load
Abstract
:1. Introduction
2. Governing Equations
2.1. Temperature Field
2.2. FGM Layer
3. Solution Procedure
3.1. Temperature Gradient
3.2. FGM Layer
3.3. Piezoelectric Layer
4. Numerical Results and Discussion
5. Conclusions
- Increasing the length-to-thickness ratio leads to decrease in deflections and increase in stresses.
- In the absence of an applied voltage when , the effect of the piezoelectric layer thickness on the thermo-elastic behavior becomes negligible.
- Stiffness of the plate decreases by increasing and, accordingly, stresses and the deflection decrease.
- The effect of a temperature difference in the lower region is more significant than in the upper region due to the thermal barrier behavior of the FGM core at the upper surface.
- Increasing the relaxation time constant causes the stiffness of the viscoelastic plate and, accordingly, stress components to increase and the displacement to decrease.
- Increasing the relaxation time constant causes the rate of convergence to the elastic behaviour to decrease.
- The effect of the applied voltage near the outer region of the FGM layer is more significant due to the actuator layer’s effect.
- Deflection of the plate increases by increasing the applied voltage.
- Through-thickness distribution of deflection is linear in piezoelectric and FGM layers with different slope.
- Increasing the time constant causes delay in the steady state condition for stresses and displacement.
- Increasing the time constant causes a decrease in the transverse displacement .
- The maximum values of transverse normal stress are not at the mid-thickness of the plate, which is due to the FGM property.
Author Contributions
Funding
Conflicts of Interest
Nomenclature
a, b, h | Plate dimensions in x-, y-, and z-directions |
Subscripts designating FGM, actuator, and sensor layers, respectively | |
Temperature distribution | |
, | Temperature at the bottom and top surfaces, respectively |
, | Temperature at the bottom and top surface of FGM layer, respectively |
Thermal conductivity coefficient for FGM layer | |
Thermal expansion coefficient | |
Stress–temperature coefficients in x-, y-, and z-directions | |
Pyroelectric constant | |
Relaxation moduli coefficients | |
Electric displacement | |
Elasticity constant | |
Electric field in x-, y-, and z-directions | |
Young’s modulus | |
Piezoelectric coefficient | |
Dielectric constants | |
d1 | Piezoelectric modulus |
Thermal conductivity coefficient for piezoelectric layer in the x-, y-, and z-directions | |
Thicknesses of the FGM and piezoelectric layers | |
Half-wave numbers in the x- and y-directions | |
Displacement components in the x-, y- and z-directions | |
Normal stresses | |
Shear stresses | |
Normal strains | |
Shear strains | |
Relaxation time constant | |
State vectors of the FGM and piezoelectric layers | |
Electric voltage | |
Poisson’s ratio |
Appendix A
References
- Jagtap, K.R.; Lal, A.; Singh, B.N. Stochastic nonlinear bending response of functionally graded material plate with random system properties in thermal environment. Int. J. Mech. Mater. Des. 2012, 8, 149–167. [Google Scholar] [CrossRef]
- Alibeigloo, A.; Emtehani, A. Static and free vibration analyses of carbon nanotube-reinforced composite plate using differential quadrature method. Meccanica 2015, 50, 61–76. [Google Scholar] [CrossRef]
- Alibeigloo, A. Three-dimensional thermoelasticity analysis of graphene platelets reinforced cylindrical panel. Eur. J. Mech. A/Solids 2020, 81, 103941. [Google Scholar] [CrossRef]
- Phung-Van, P.; Thai, C.H.; Abdel-Wahab, M.; Nguyen-Xuan, H. Optimal design of FG sandwich nanoplates using size-dependent isogeometric analysis. Mech. Mater. 2019, 142, 103277. [Google Scholar] [CrossRef]
- Beg, M.S.; Yasin, M.Y. Bending, free and forced vibration of functionally graded deep curved beams in thermal environment using an efficient layerwise theory. Mech. Mater. 2021, 159, 103919. [Google Scholar] [CrossRef]
- Wang, Y.; Feng, C.; Yang, J.; Zhou, D.; Liu, W. Static response of functionally graded graphene platelet–reinforced composite plate with dielectric property. J. Intell. Mater. Syst. Struct. 2020, 31, 2211–2228. [Google Scholar] [CrossRef]
- Brischetto, S.; Torre, R. 3D Stress Analysis of Multilayered Functionally Graded Plates and Shells under Moisture Conditions. Appl. Sci. 2022, 12, 512. [Google Scholar] [CrossRef]
- Amiri Delouei, A.; Emamian, A.; Karimnejad, S.; Sajjadi, H.; Jing, D. Two-dimensional analytical solution for temperature distribution in FG hollow spheres: General thermal boundary conditions. Int. Commun. Heat Mass Transf. 2020, 113, 104531. [Google Scholar] [CrossRef]
- Amiri Delouei, A.; Emamian, A.; Karimnejad, S.; Sajjadi, H. A closed-form solution for axisymmetric conduction in a finite functionally graded cylinder. Int. Commun. Heat Mass Transf. 2019, 108, 104280. [Google Scholar] [CrossRef]
- Khan, Y.; Akram, S.; Athar, M.; Saeed, K.; Muhammad, T.; Hussain, A.; Imran, M.; Alsulaimani, H.A. The Role of Double-Diffusion Convection and Induced Magnetic Field on Peristaltic Pumping of a Johnson–Segalman Nanofluid in a Non-Uniform Channel. Nanomaterials 2022, 12, 1051. [Google Scholar] [CrossRef]
- Saeed, K.; Akram, S.; Ahmad, A.; Athar, M.; Imran, M.; Muhammad, T. Impact of partial slip on double diffusion convection and inclined magnetic field on peristaltic wave of six-constant Jeffreys nanofluid along asymmetric channel. Eur. Phys. J. Plus 2022, 137, 364. [Google Scholar] [CrossRef]
- Akram, S.; Razia, A.; Umair, M.Y.; Abdulrazzaq, T.; Homod, R.Z. Double-diffusive convection on peristaltic flow of hyperbolic tangent nanofluid in non-uniform channel with induced magnetic field. Math. Methods Appl. Sci. 2022. [Google Scholar] [CrossRef]
- Akram, S.; Athar, M.; Saeed, K.; Imran, M.; Muhammad, T. Slip impact on double-diffusion convection of magneto-fourth-grade nanofluids with peristaltic propulsion through inclined asymmetric channel. J. Therm. Anal. Calorim. 2022, 147, 8933–8946. [Google Scholar] [CrossRef]
- Akram, S.; Athar, M.; Saeed, K.; Umair, M.Y. Nanomaterials effects on induced magnetic field and double-diffusivity convection on peristaltic transport of Prandtl nanofluids in inclined asymmetric channel. Nanomater. Nanotechnol. 2022, 12, 18479804211048630. [Google Scholar] [CrossRef]
- Akram, S.; Athar, M.; Saeed, K.; Razia, A. Impact of slip on nanomaterial peristaltic pumping of magneto-Williamson nanofluid in an asymmetric channel under double-diffusivity convection. Pramana 2022, 96, 1–13. [Google Scholar] [CrossRef]
- Alibeigloo, A. Thermoelasticity analysis of functionally graded beam with integrated surface piezoelectric layers. Compos. Struct. 2010, 92, 1535–1543. [Google Scholar] [CrossRef]
- Alibeigloo, A.; Chen, W.Q. Elasticity solution for an FGM cylindrical panel integrated with piezoelectric layers. Eur. J. Mech. A/Solids 2010, 29, 714–723. [Google Scholar] [CrossRef]
- Kiani, Y.; Rezaei, M.; Taheri, S.; Eslami, M.R. Thermo-electrical buckling of piezoelectric functionally graded material Timoshenko beams. Int. J. Mech. Mater. Des. 2011, 7, 185–197. [Google Scholar] [CrossRef]
- Brischetto, S.; Carrera, E. Static analysis of multilayered smart shells subjected to mechanical, thermal and electrical loads. Meccanica 2013, 48, 1263–1287. [Google Scholar] [CrossRef]
- Alibeigloo, A. Three-dimensional thermoelasticity solution of functionally graded carbon nanotube reinforced composite plate embedded in piezoelectric sensor and actuator layers. Compos. Struct. 2014, 118, 482–495. [Google Scholar] [CrossRef]
- Alibeigloo, A. Thermoelastic solution for static deformations of functionally graded cylindrical shell bonded to thin piezoelectric layers. Compos. Struct. 2011, 93, 961–972. [Google Scholar] [CrossRef]
- Feri, M.; Alibeigloo, A.; Zanoosi, A.A.P. Three dimensional static and free vibration analysis of cross-ply laminated plate bonded with piezoelectric layers using differential quadrature method. Meccanica 2016, 51, 921–937. [Google Scholar] [CrossRef]
- Kulikov, G.M.; Plotnikova, S.V. An analytical approach to three-dimensional coupled thermoelectroelastic analysis of functionally graded piezoelectric plates. J. Intell. Mater. Syst. Struct. 2017, 28, 435–450. [Google Scholar] [CrossRef]
- Heydarpour, Y.; Malekzadeh, P.; Dimitri, R.; Tornabene, F. Thermoelastic analysis of functionally graded cylindrical panels with piezoelectric layers. Appl. Sci. 2020, 10, 1397. [Google Scholar] [CrossRef] [Green Version]
- Moradi-Dastjerdi, R.; Behdinan, K. Thermo-electro-mechanical behavior of an advanced smart lightweight sandwich plate. Aerosp. Sci. Technol. 2020, 106, 106142. [Google Scholar] [CrossRef]
- Zeng, S.; Peng, Z.; Wang, K.; Wang, B.; Wu, J.; Luo, T. Nonlinear Analyses of Porous Functionally Graded Sandwich Piezoelectric Nano-Energy Harvesters under Compressive Axial Loading. Appl. Sci. 2021, 11, 11787. [Google Scholar] [CrossRef]
- Xiang, H.J.; Shi, Z.F. Static analysis for functionally graded piezoelectric actuators or sensors under a combined electro-thermal load. Eur. J. Mech. -A/Solids 2009, 28, 338–346. [Google Scholar] [CrossRef]
- Koutsawa, Y.; Haberman, M.R.; Daya, E.M.; Cherkaoui, M. Multiscale design of a rectangular sandwich plate with viscoelastic core and supported at extents by viscoelastic materials. Int. J. Mech. Mater. Des. 2009, 5, 29–44. [Google Scholar] [CrossRef]
- Cai, Y.; Sun, H. Thermo-viscoelastic analysis of three-dimensionally braided composites. Compos. Struct. 2013, 98, 47–52. [Google Scholar] [CrossRef]
- Norouzi, H.; Alibeigloo, A. Three dimensional static analysis of viscoelastic FGM cylindrical panel using state space differential quadrature method. Eur. J. Mech.-A/Solids 2017, 61, 254–266. [Google Scholar] [CrossRef]
- Malikan, M.; Dimitri, R.; Tornabene, F. Effect of sinusoidal corrugated geometries on the vibrational response of viscoelastic nanoplates. Appl. Sci. 2018, 8, 1432. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Wu, P.; Liu, W.; Fang, H. Analytical Solutions for Functionally Graded Sandwich Plates Bonded by Viscoelastic Interlayer Based on Kirchhoff Plate Theory. Int. J. Appl. Mech. 2020, 12, 2050062. [Google Scholar] [CrossRef]
- Liu, C.; Shi, Y. A thermo-viscoelastic analytical model for residual stresses and spring-in angles of multilayered thin-walled curved composite parts. Thin-Walled Struct. 2020, 152, 106758. [Google Scholar] [CrossRef]
- Chen, J.; Han, R.; Liu, D.; Zhang, W. Active Flutter Suppression and Aeroelastic Response of Functionally Graded Multilayer Graphene Nanoplatelet Reinforced Plates with Piezoelectric Patch. Appl. Sci. 2022, 12, 1244. [Google Scholar] [CrossRef]
- Hetnarski, R.B.; Eslami, M.R.; Gladwell, G. Thermal Stresses: Advanced Theory and Applications; Springer: Berlin/Heidelberg, Germany, 2009; Volume 41. [Google Scholar]
- Sadd, M.H. Elasticity: Theory, Applications, and Numerics; Academic Press: Cambridge, MA, USA, 2009; ISBN 0-08-092241-4. [Google Scholar]
- Li, C.; Guo, H.; Tian, X.; He, T. Generalized thermoviscoelastic analysis with fractional order strain in a thick viscoelastic plate of infinite extent. J. Therm. Stress. 2019, 42, 1051–1070. [Google Scholar] [CrossRef]
- Alibeigloo, A. Thermo-elasticity solution of functionally graded plates integrated with piezoelectric sensor and actuator layers. J. Therm. Stress. 2010, 33, 754–774. [Google Scholar] [CrossRef]
- Abate, J.; Whitt, W. Numerical inversion of Laplace transforms of probability distributions. ORSA J. Comput. 1995, 7, 36–43. [Google Scholar] [CrossRef] [Green Version]
- Norouzi, H.; Alibeigloo, A. Three-dimensional thermoviscoelastic analysis of a FGM cylindrical panel using state space differential quadrature method. J. Therm. Stress. 2018, 41, 383–398. [Google Scholar] [CrossRef]
- Brischetto, S.; Leetsch, R.; Carrera, E.; Wallmersperger, T.; Kröplin, B. Thermo-mechanical bending of functionally graded plates. J. Therm. Stress. 2008, 31, 286–308. [Google Scholar] [CrossRef]
- Reddy, J.; Cheng, Z.-Q. Three-dimensional thermomechanical deformations of functionally graded rectangular plates. Eur. J. Mech. -A/Solids 2001, 20, 841–855. [Google Scholar] [CrossRef]
Elasticity Constant [109 Nm−2] | |||||||||
---|---|---|---|---|---|---|---|---|---|
Sensor (PZT-4) | 139 | 78 | 74 | 139 | 74 | 115 | 25.6 | 25.6 | 30.5 |
Actuator (Ba2 NaNb5 O15) | 239 | 104 | 50 | 274 | 52 | 135 | 65 | 66 | 76 |
Piezoelectric coefficients [coul·m−2] | |||||||||
Sensor | −5.2 | −5.2 | 15.1 | 12.7 | 12.7 | ||||
Actuator | −0.4 | −0.3 | 4.3 | 3.4 | 2.8 | ||||
Dielectric constants [10−9 farads·m−1] | η1 | η2 | η3 | ||||||
Sensor | 6.5 | 6.5 | 5.6 | ||||||
Actuator | 1.96 | 2.01 | 0.28 | ||||||
Thermal conductivity | |||||||||
Sensor | 2.1 | 3.15 | |||||||
Actuator | 8.6 | 12.9 | |||||||
Thermal expansion [] | |||||||||
Sensor | 1.97 | 2.62 | |||||||
Actuator | 4.39 | 2.45 | |||||||
Piezoelectric modulus pyroelectric constant: | |||||||||
Sensor | −3.92 | 5.4 | |||||||
Actuator | −3.92 | 5.4 |
[41] | [42] | [38] | Present | [41] | [42] | [38] | Present | |
---|---|---|---|---|---|---|---|---|
3.043 | 3.043 | 3.0431 | 3.043 | 28.54 | 28.53 | 28.53 | 28.53 | |
2.144 | 2.143 | 2.1443 | 2.143 | 28.46 | 28.45 | 28.448 | 28.45 | |
1.901 | 1.901 | 1.9012 | 1.900 | 28.44 | 28.43 | 28.432 | 28.43 | |
−1.681 | −1.681 | −1.681 | −1.681 | −1.703 | −1.703 | −1.7027 | −1.703 | |
−0.6822 | −0.6822 | −0.6823 | −0.6860 | −0.8080 | −0.8081 | −0.8081 | −0.808 | |
0.08266 | 0.08240 | 0.08242 | 0.08241 | 0.08553 | 0.08528 | 0.08527 | −0.08552 | |
−1018 | −1018 | −1018 | −1018 | −1003 | −1003 | −1003 | −1003 | |
−204.7 | −204.8 | −204.82 | −204.821 | −251.2 | −251.2 | −251.208 | −251.2084 | |
−74.03 | −73.53 | −73.525 | −73.525 | −76.59 | −76.10 | −76.12 | −76.1239 | |
4.203 | 4.186 | 4.1875 | 4.1875 | 0.3135 | 0.3122 | 0.3123 | 0.3123 | |
6.300 | 6.217 | 6.23 | 6.2342 | 0.1178 | 0.04067 | 0.04051 | 0.4051 |
0 | 0.2 | 0.4 | 0.6 | 0.8 | 1 | ||
---|---|---|---|---|---|---|---|
600 | −20.620 | −20.850 | −21.100 | −21.392 | −21.706 | −22.040 | |
800 | −15.547 | −16.507 | −17.509 | −18.574 | −19.576 | −20.704 | |
900 | −13.856 | −15.088 | −16.403 | −17.635 | −18.929 | −20.265 | |
600 | 5.6785 | 6.0438 | 6.1482 | 6.3048 | 6.4092 | 6.5658 | |
800 | 22.015 | 22.276 | 22.380 | 22.484 | 22.589 | 22.797 | |
900 | 27.443 | 27.704 | 27.756 | 27.860 | 28.017 | 28.173 | |
600 | 0 | 0.4945 | 0.7732 | 0.7438 | 0.4281 | 0 | |
800 | 0 | 0.4155 | 0.7031 | 0.7167 | 0.4301 | 0 | |
900 | 0 | 0.3892 | 0.6798 | 0.7076 | 0.4307 | 0 | |
600 | −199.79 | −181.63 | −239.87 | −257.41 | −258.66 | −202.92 | |
800 | −137.79 | −124.63 | −187.27 | −225.47 | −248.64 | −199.16 | |
900 | −117.12 | −105.22 | −169.73 | −214.82 | −246.14 | −197.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feri, M.; Krommer, M.; Alibeigloo, A. Three-Dimensional Thermoelasticity Analysis of Viscoelastic FGM Plate Embedded in Piezoelectric Layers under Thermal Load. Appl. Sci. 2023, 13, 353. https://doi.org/10.3390/app13010353
Feri M, Krommer M, Alibeigloo A. Three-Dimensional Thermoelasticity Analysis of Viscoelastic FGM Plate Embedded in Piezoelectric Layers under Thermal Load. Applied Sciences. 2023; 13(1):353. https://doi.org/10.3390/app13010353
Chicago/Turabian StyleFeri, Maziyar, Michael Krommer, and Akbar Alibeigloo. 2023. "Three-Dimensional Thermoelasticity Analysis of Viscoelastic FGM Plate Embedded in Piezoelectric Layers under Thermal Load" Applied Sciences 13, no. 1: 353. https://doi.org/10.3390/app13010353