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Abstract: The vibrational behavior of viscoelastic nanoplates with a corrugated geometry is a key topic
of practical interest. This problem is addressed here for wrinkled nanoplates with small corrugations
related to incorrect manufacturing. To this end, a new One-Variable First-order Shear Deformation
plate Theory (OVFSDT) is proposed in a combined form with a non-local strain gradient theory. The
Kelvin–Voigt model is employed to describe the viscoelastic behavior of the nanoplate, whereby the
frequency equations are solved numerically according to Navier’s approach, for simply-supported
nanostructures. A comparative evaluation between the proposed theory and other approaches in the
literature is successfully performed. It follows a large parametric study of the vibration response for
varying geometry corrugations and non-local parameters.

Keywords: Kelvin-Voigt model; non-local strain gradient theory; one-variable first-order shear
deformation plate theory; vibrational behavior; viscoelastic nanoplate; wrinkled model

1. Introduction

Wrinkles represent one of the major defects of metal sheets that can emerge during a
manufacturing process (e.g., deep drawing, hot and cold rolling, etc.), with adverse effects on their
mechanical performances. For instance, during a hot rolling process of a metal sheet, some possible
corrugations can yield to deleterious residual stresses. Since the cooling coefficient at the mid-planes
features a higher velocity than the one at the external surfaces, this can affect the microstructure of the
plate. The wrinkles with large dimensions could be preventable, but fine corrugations remain almost
unavoidable. In the last case, corrugated sheets with very fine corrugations are generally turned into
pieces, while featuring an unpredictable behavior in machinery. This means that the effect of wrinkling
can be of extreme importance for the mechanical behavior of metal sheets. Among many possible
waviness configurations of a sheet, the sinusoidal waveform is one of the most common configuration
after a cold rolling process, with an undefined wave number. These sinusoidal waves can be also
characterized by different shapes, with one-side or more-side corrugations. A simple assumption of
corrugated geometry considers the wave as a coil break, or as a central buckle [1].

With the advent of modern technologies such as nanotechnologies, the production of sheets with
very small dimensions has increased significantly, including, for example, the adoption of nanosheets
in advanced composites and electronic pieces, which make nanoparticles an extremely important
component. Therefore, wrinkling and irregularities in nanosheets due to different manufacturing
processes represent important issues to be treated. The great importance and complexity of waviness
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within nanosheets and nanoplates has attracted most researchers to the study of their vibration
behavior, as it is useful for many practical engineering applications, as sensors, transducers or
NanoElectroMechanical Systems (NEMS). Kamarian et al. [2] studied the natural frequencies of
composite conical shells based on a Generalized Differential Quadrature (GDQ) method. The shells
were reinforced with agglomerated nanotubes and a First-order Shear Deformation plate Theory
(FSDT) was employed. The agglomeration effect on the free vibration behavior of laminated composite
doubly-curved shells was also evaluated by Tornabene et al. [3], where the laminated structures were
reinforced with nanotubes with a functionally graded distribution along the thickness. The additional
work by Banić et al. [4] checked for the effect of the Winkler–Pasternak matrix on the vibrations
of plates and shells strengthened by agglomerated nanotubes, while applying the GDQ approach
to solve numerically the problem. The stability of nanocomposite-stiffened cylindrical shells was
investigated by Nejati et al. [5], whose structures included a waviness geometry, and they were
reinforced by functionally graded nanotubes with temperature-dependent properties. Malikan et al. [6]
recently studied the thermal buckling behavior of double-layered nanoplates under a shear in-plane
loading, and combined the FSDT with Eringen’s differential law to approach the problem and to
determine the critical temperature. In a similar way, Malikan [7] applied the FSDT to study the
coupled electro-mechanical behavior of nanoplates. To consider the small scale effect on the structural
response, a modified couple stress theory was adopted successfully by the author. In two further
works by Malikan [8,9], the non-uniform buckling response of composite nanoplates and microplates
was analyzed both analytically and numerically. Malikan and Nguyen [10] also examined the
electro-magnetic nanoplates in a hygrothermal environment, by using a new plate theory in conjunction
with a non-local strain gradient model. In this context, many other analytical and numerical works
have focused on the vibration and buckling response of nanocomposite materials and structures also
in thermal conditions, see e.g., [11–30], among others.

It is undoubted that the presence of damping within materials at different scales can affect
significantly the overall structural response. For such a reason, the damping property must be carefully
characterized and applied for the numerical study of actual nanomaterials and structures. Surprisingly,
little attention has been devoted in the literature to this aspect, at least for nanoplates and nanoshells.
As a result, Ahmadi-Hashemi et al. [20] analyzed a nanoplate in forced vibrational conditions, by
assuming both an external and internal viscoelastic damping. The external damper was modeled as
a visco-Pasternak foundation, whereby the internal damper was treated by a Kelvin–Voigt model.
The Classical Plate Theory (CPT) in conjunction with the Eringen’s non-local continuum theory was
successfully applied, whilst a rectangular nanoplate with simply-supported boundary conditions was
examined according to the Navier’s technique. Wang et al. [21] investigated the eigen frequencies of a
bi-layer viscoelastic nanoplate by means of a non-local elasticity theory. They applied the CPT on the
non-linear strains, whereas the natural and resonant frequencies were computed by considering the
Galerkin analytical method for clamped and simple boundaries. Zenkour and Sobhy [22] presented a
free vibration analysis of a non-local viscoelastic nanoplate considering piezoelectricity placed on the
viscoelastic medium in a hygrothermal environment. The Simple FSDT (S-FSDT) in a sinusoidal form
was considered together with a non-local elasticity theory.

In the present work, instead, we propose an original study on the vibrational response of
nanoplates with sinusoidal corrugations. The structural damping is considered by applying a
Kelvin–Voigt linear model, whereas a modified version of FSDT is proposed in a combined form
with the non-local strain gradient theory to tackle the problem. Besides this, the numerical results
are extracted according to the Navier’s approach for simply supported nanoplates. For comparative
purposes, the numerical results are verified against the outcomes of molecular dynamics-based
simulations. Furthermore, the numerical results have been obtained for different geometrical and
mechanical parameters, including a varying number of corrugations, as well as different viscoelastic
coefficients and waviness configurations. The paper is organized as follows. First, we present the
problem formulation and the governing equations in Section 2, whose solution procedure is proposed
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in Section 3. Next, the numerical parametric investigation is presented and discussed in Section 4,
whereas the main conclusions are drawn in Section 5.

2. Modeling Assumptions

2.1. Problem Definition

The analysis considers a corrugated plate with length Lx, width Ly and thickness h, as shown in
Figure 1a. More details about the corrugations are shown in Figure 1b, where the parameter defines the
length of half wave of a sinusoidal wave, and refers to the height of the sinusoidal wave. To derive the
constitutive equations, we adopt a new One-Variable First-order Shear Deformation Theory (OVFSDT)
which is compared to some further plate theories from literature. According to the proposed theory,
the displacement field U(x, y, z, t), V(x, y, z, t), W(x, y, z, t) is defined as


U(x, y, z, t )
V(x, y, z, t)
W(x, y, z, t)

 =


u(x, y, t)− z ∂w(x,y,t)

∂x
v(x, y, t)− z ∂w(x,y,t)

∂y

w(x, y, t) + A ∂2w(x,y,t)
∂x2 + B ∂2w(x,y,t)

∂y2

 (1)

where ϕ and ψ are the rotations around the y and x axis, respectively, while u, v and w denote the
variations of the kinematic quantities along the x, y and z axis, respectively. In addition, we define
A = Eh2/

(
12G

(
1− υ2)), B = h2(E + G

(
1− υ2))/(12G

(
1− υ2)).
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Figure 1. Corrugated nanoplate: (a) 3D view, and (b) in-plane geometry.

By applying the Hamilton’s principle, we define the potential energy V of the domain as [2,20]

δV = δ

t∫
0

(S + Ω− T )dt = 0 (2)

where δ refers to the variation of the energy quantities, S is the strain energy, T is the kinetic energy,
and Ω is the work related to external forces or foundations, here neglected in the following.

The strain energy S in Equation (2) can be computed as

δS =
y

v
σij δεijdV = 0 (3)

σij and εij being the stress and strain tensors, respectively [6]. Based on the OVFSDT, the strain tensor
is defined as follows
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

εxx

εyy

γxz

γyz

γxy

γxy


=



∂u
∂x − z ∂2w

∂x2 + 1
2

(
A ∂3w

∂x3 + B ∂3w
∂x∂y2 +

∂w
∂x

)2

∂v
∂y − z ∂2w

∂y2 + 1
2

(
A ∂3w

∂x2∂y + B ∂3w
∂y3 + ∂w

∂y

)2

A ∂3w
∂x3 + B ∂3w

∂x∂y2

A ∂3w
∂x2∂y + B ∂3w

∂y3(
∂u
∂y + ∂v

∂x

)
− 2z ∂2w

∂x∂y +
(

A ∂3w
∂x3 + B ∂3w

∂x∂y2 +
∂w
∂x

)(
A ∂3w

∂x2∂y + B ∂3w
∂y3 + ∂w

∂y

)


(4)

In addition, the kinetic energy T can be determined as [2,20]

T =
1
2

∫
A

∫ h/2

−h/2
ρ(z, T)

((
∂U
∂t

)2
+

(
∂V
∂t

)2
+

(
∂W
∂t

)2
)

dzdA = 0 (5)

whose variation reads

δT =
∫

A

∫ h/2
−h/2 ρ(z, T)

((
−z2 ∂4w

∂x2∂t2 − z2 ∂4w
∂y2∂t2 − ∂2w

∂t2 − A2 ∂6w
∂x4∂t2 − B2 ∂6w

∂y4∂t2 − 2A ∂4w
∂x2∂t2 +

−2B ∂4w
∂y2∂t2 −2AB ∂6w

∂x2∂y2∂t2

)
δw
)

dzdA = 0
(6)

The enforcement of δV = 0 yields to the following governing equations of the problem

δw = 0 ;

− ∂2 Mx
∂x2 −

∂2 My
∂y2 − 2

∂2 Mxy
∂x∂y + A ∂3Qx

∂x3 + B ∂3Qx
∂x∂y2 + A

∂3Qy
∂x2∂y + B

∂3Qy
∂y3 +

+Nx

(
A2 ∂6w

∂x6 + B2 ∂6w
∂x2∂y4 +

∂2w
∂x2 + 2AB ∂6w

∂x4∂y2 + 2A ∂4w
∂x4 + 2B ∂4w

∂x2∂y2

)
+

+Ny

(
A2 ∂6w

∂x4∂y2 +B2 ∂6w
∂y6 + ∂2w

∂y2 + 2AB ∂6w
∂x2∂y4 + 2A ∂4w

∂x2∂y2 + 2B ∂4w
∂y4

)
+

+Nxy

(
2A2 ∂6w

∂x5∂y+4AB ∂6w
∂x3∂y3 + 4A ∂4w

∂x3∂y +2B2 ∂6w
∂x∂y5 + 4B ∂4w

∂x∂y3 + 2 ∂2w
∂x∂y

)
+

−I2

(
∂4w

∂x2∂t2 +
∂4w

∂y2∂t2

)
− I0

(
∂2w
∂t2 + A2 ∂6w

∂x4∂t2 + B2 ∂6w
∂y4∂t2 +

+2A ∂4w
∂x2∂t2 + 2B ∂4w

∂y2∂t2 + 2AB ∂6w
∂x2∂y2∂t2

)
= 0

(7)

The second moments of inertia I0, I2 in Equation (7) are defined as

(I0, I2 ) =
∫

A
ρ(z, T)

(
1, z2

)
dA (8)

The additional quantities N, M and Q in Equation (7) refer to the axial, flexural and shear internal
actions along the x, y and z axes, namely

(Nx, Ny, Nxy) =
∫ h/2
−h/2

(
σx, σy, σxy

)
dz

(Mx, My, Mxy) =
∫ h/2
−h/2

(
σx, σy, σxy

)
zdz(

Qx, Qy

)
=
∫ h/2
−h/2

(
σxz, σyz

)
dz

(9)

2.2. Non-Local Strain Gradient Theory

Non-localities and small scales represent two important aspects that can be considered within
a quantum mechanics approach. Since it is not straightforward to study the mechanical behavior of
the nanostructures, many elasticity theories commonly require some strong simplifications according
to continuum mechanics. In this framework, herein, we apply a non-local strain gradient model to
investigate the nanoscale effects. A similar elasticity model includes both non-local and strain gradient
impressive effects for nanoplates [10,31,32], as follows

(
1− µ∇2

)
σij = Cijkl

(
1− l2∇2

)
εkl ; µ(nm) = (e0a)2, ∇2 =

∂2

∂x2 +
∂2

∂y2 (10)



Appl. Sci. 2018, 8, 1432 5 of 12

l and µ being the length scale and non-local parameter, respectively.
In order to account for the wavy configuration of the nanoplate, we introduce an equivalent

bending stiffness in the model [33–35]. Thus, for a sinusoidal wavy nanoplate, the corrugation
is assumed as z = F sin(πx/c), whereas the equivalent mechanical properties for the orthotropic
plate read

υy = υ, υx = c
L
(

1+6(1−υ2 )( F
h )

2)υy

Ex =
E(1−υxυy )

(1−υ2)
c
L , Ey =

υy
υx

Ex, Eυ = υEx

Qx = Ex
1−υxυy

, Qy =
Ey

1−υxυy
, Qυ = Eυ

1−υxυy

Ax = Eh
1+6( F

h )
2
(1−υ2)

(
( L

c )
2− L

2πc sin( 2πL
c )

) , Ay = Eh L
c , Aυ = υy Ax, Axy = Gxyh

Dx = Qxh3

12 , Dy =
Qyh3

12 , Dυ = υDx, Dxy =
Gxyh3

12
Hx = Gxz h, Hy = Gyzh, Gxy = E

2(1+υ)

(11)

where L represents the length of the half wave of sinusoidal curve
(∫ c

0

√
1 + F2 π2

c2 cos2
(

π
c x
)

dx
)

, υ

and E refer to the Poisson’s ratio and elasticity modulus, respectively, and Aij and Dij denote the
extensional and flexural equivalent stiffness of the waviness nanoplate, respectively.

2.3. The Linear Viscoelastic Model

A Kelvin–Voigt linear model is herein applied in the equilibrium equations, according to the
following procedure. The stress-strain relation for viscoelastic models reads as follows

pEσ = qEε (12)

pE and qE being the viscoelastic operators. A Kelvin–Voigt model includes the Newtonian damper
and the Hookean elastic spring arranged in parallel [20–22]

pE = 1, qE = E + g
∂

∂t
⇒ σ(t) = E

(
1 + g

∂

∂t

)
ε(t) (13)

where g is the viscoelastic structural damping coefficient.
Thereafter, by substituting Equations (10), (11), (13) into Equation (9), the resulting non-local

stresses are readily obtained as

(
1− µ∇2 )



Nxx

Nyy

Nxy

Mxx

Myy

Mxy

Qy

Qx


=



Ax Aυ 0 0 0 0 0 0
Aυ Ay 0 0 0 0 0 0
0 0 Axy 0 0 0 0 0
0 0 0 Dx Dυ 0 0 0
0 0 0 Dυ Dy 0 0 0
0 0 0 0 0 Dxy 0 0
0 0 0 0 0 0 Hy 0
0 0 0 0 0 0 0 Hx


(
1− l2∇2)(1 + g ∂

∂t

)



1
2

(
A ∂3w

∂x3 + B ∂3w
∂x∂y2 +

∂w
∂x

)2

1
2

(
A ∂3w

∂x2∂y + B ∂3w
∂y3 + ∂w

∂y

)2(
A ∂3w

∂x3 + B ∂3w
∂x∂y2 +

∂w
∂x

)(
A ∂3w

∂x2∂y + B ∂3w
∂y3 + ∂w

∂y

)
− ∂2w

∂x2

− ∂2w
∂y2

− ∂2w
∂x∂y

A ∂3w
∂x2∂y + B ∂3w

∂y3

A ∂3w
∂x3 + B ∂3w

∂x∂y2



(14)

3. Analytical Approach

The analytical treatment of the problem is based on the Navier’s approach. In detail, a simple
supported plate is here studied, whose displacement field w is discretized by a double series function
as follows [10]

w(x, y, t ) =
∞

∑
m=1

∞

∑
n=1

Wmn exp(iωnt) sin
(

mπ

Lx
x
)

sin
(

nπ

Ly
y
)

(15)



Appl. Sci. 2018, 8, 1432 6 of 12

where Wmn is the unknown amplitude, ωn denotes the natural frequencies, m and n refer to the
half-wave integers, and t refers to time. By substituting Equation (15) into the motion equations and
by neglecting the non-linear terms, we obtain the following algebraic equations(

(1 + giωn)K−ω2
nM
)

Wmn = 0 (16)

M and K being the mass and stiffness matrix, respectively.

4. Numerical Results and Discussion

In this section, we check first the accuracy of the proposed OVFSDT-based approach by means of
a comparative evaluation between our numerical predictions and those available from the literature.
More specifically, due to a complete lack of results about corrugated nanoplates, we here compare our
results with those ones obtained for flat nanosheets. Among a large variety of possible approaches
adopted in literature for the vibration study of graphene plates, the molecular dynamics and the
non-local GDQ-based FSDT, as proposed in [36], have been here selected as efficient and accurate
methods for comparative purposes.

The comparative results are summarized in Tables 1 and 2, for a grapheme nanoplate with
a zigzag hexagonal arrangement, or an armchair arrangement, respectively, assuming a Young’s
modulus E = 1 TPa, a Poisson’s ratio υ = 0.16, a constant thickness h = 0.34 nm, two different
non-local parameters µ = 1.41 nm2 and µ = 1.34 nm2. As visible in these two tables, the very good
agreement between results reflects the accuracy of the proposed formulation to approach a similar
problem, provided that non-local parameters are adequately selected. Note that few discrepancies
between results can be mainly related to the different solution method of the governing equations, e.g.,
a Navier’s approach instead of a GDQ. These differences become even more negligible for increasing
lengths Lx = Ly as visible in Tables 1 and 2. Some possible effects can be also related to the selected
plate theory, as evaluated comparatively in Table 3 according to a CPT, FSDT, or a Third-order Shear
Deformation Theory (TSDT) [23], as well as according to a three-dimensional elasticity [37] and the
S-FSDT [38].

More specifically, the dimensionless natural frequency ω = ωh
√

ρ/G is computed for
two different length-ratios Lx/Ly (i.e., Lx/Ly = 1 and 2, respectively), where two different
length-to-thickness ratios Lx/h = 10 and Lx/h = 20 are assumed, while varying the non-local
parameter µ = 0, 1, 2. Based on Table 3, our results resemble very well those presented in [23,37,38],
especially when treating thin plates. A general decrease in the natural frequency is also observed for
an increasing non-local parameter, and a fixed geometry, independently of the selected plate theory.

Table 1. Numerical results based on the one-variable first-order shear deformation plate theory
(OVFSDT), molecular dynamics, and non-local FSDT. E = 1 TPa, ν = 0.16, h = 0.34 nm, µ = 1.41 nm2.

Natural Frequency (THz)

Present-Non-Local, Navier
Non-Local-FSDT, GDQ [36] Zigzag Graphene, MD [36] Lx = Ly (nm)

OVFSDT

0.0592339 0.0584221 0.0587725 10
0.0287035 0.0282888 0.0273881 15
0.0153208 0.0164593 0.0157524 20
0.0103514 0.0107085 0.0099480 25
0.0074258 0.0075049 0.0070655 30
0.0055703 0.0055447 0.0052982 35
0.0043250 0.0042608 0.0040985 40
0.0034512 0.0033751 0.0032609 45
0.0028157 0.0027388 0.0026194 50

GDQ: Generalized Differential Quadrature.
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Table 2. Numerical results based on the OVFSDT, molecular dynamics, and non-local FSDT. E = 1 TPa,
υ = 0.16, h = 0.34 nm, µ = 1.34 nm2.

Natural Frequency (THz)

Present-Non-Local, Navier
Non-Local-FSDT, GDQ [36] Armchair Graphene, MD [36] Lx = Ly (nm)

OVFSDT

0.0603135 0.0592359 0.0595014 10
0.0290542 0.0284945 0.0277928 15
0.0154374 0.0165309 0.0158141 20
0.0104078 0.0107393 0.0099975 25
0.0074558 0.0075201 0.0070712 30
0.0055876 0.0055531 0.0052993 35
0.0043356 0.0042657 0.0041017 40
0.0034580 0.0033782 0.0032614 45
0.0028202 0.0027408 0.0026197 50

Table 3. Comparative evaluation between OVFSDT and other non-local plate models from literature.
E = 1.02 TPa, υ = 0.3, h = 0.34 nm.

Theories

Non-Dimensional Natural Frequency (ω = ωh
√

ρ
G )

Lx/Ly = 1 Lx/Ly = 2

Lx/h = 10 Lx/h = 20 Lx/h = 10 Lx/h = 20

µ = 0
nm2

µ = 1
nm2

µ = 2
nm2

µ = 0
nm2

µ = 1
nm2

µ = 2
nm2

µ = 0
nm2

µ = 1
nm2

µ = 2
nm2

µ = 0
nm2

µ = 1
nm2

µ = 2
nm2

[37]-case 1 0.0955 0.0873 0.0809 0.0240 0.0220 0.0203 0.0599 0.0565 0.0536 0.0150 0.0142 0.0135
[37]-case 2 0.0931 0.0850 0.0788 0.0239 0.0218 0.0202 0.0589 0.0556 0.0528 0.0150 0.0141 0.0134
[37]-case 3 0.0931 0.0851 0.0789 0.0239 0.0218 0.0202 0.0589 0.0556 0.0528 0.0150 0.0141 0.0134
[37]-case 4 0.0931 0.0851 0.0789 0.0239 0.0218 0.0202 0.0589 0.0556 0.0528 0.0150 0.0141 0.0134

Non-local-CPT
[23] 0.0963 0.0880 0.0816 0.0241 0.0220 0.0204 0.0602 0.0568 0.0539 0.0150 0.0142 0.0135

Non-local-FSDT
[23] 0.0930 0.0850 0.0788 0.0239 0.0218 0.0202 0.0589 0.0556 0.0527 0.0150 0.0141 0.0134

Non-local-TSDT
[23] 0.0935 0.0854 0.0791 0.0239 0.0218 0.0202 0.0591 0.0557 0.0529 0.0150 0.0141 0.0134

Non-local-S-FSDT
[38] 0.0930 0.0850 0.0787 0.02386 0.0218 0.0202 0.0588 0.0555 0.0527 0.0149 0.0141 0.0134

Non-local-Present,
OVFSDT 0.0928 0.0849 0.0780 0.02337 0.0217 0.02019 0.0589 0.0552 0.0521 0.0145 0.0140 0.0134

CPT: Classical Plate Theory; FSDT: First-order Shear Deformation plate; TSDT: Third-order Shear Deformation
Theory; SFSDT:Simple FSDT; OVFSDT: One-Variable First-order Shear Deformation plate Theory.

After this preliminary check about the consistency of the proposed OVFSDT, we continue to apply
this approach for a corrugated viscoelastic nanoplate with mechanical and geometrical properties, as
summarized in Table 4.

Table 4. Material properties of the viscoelastic nanoplate [36].

Elastic properties
E = 1 TPa, υ = 0.16

Density
ρ = 2250 kg/m3

Dimensional values
h = 0.34 nm, Lx = Ly = 10 nm

Figure 2 shows the variation of the natural frequency with the non-local parameter µ (Figure 2a)
and dimensionless length scale l∗ = l/h (Figure 2b) within the proposed formulation, where both flat
and curved geometries are compared in the presence or not of the viscoelastic damping parameter,
namely g = 0.5 Ns/m2 or g = 0 Ns/m2. The nanoplate features two sinusoidal corrugations with
amplitude F = 0.5h (i.e., dimensionless amplitude F∗ = F/h = 0.5) and semi-length c = 0.25Lx.
Based on Figure 2, an increased non-local coefficient µ yields to a reduced natural frequency, whereas
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an increasing length scale parameter l∗ gets to an increased natural frequency of the nanostructure
because of its increased stiffness, under the non-local strain gradient theory. This agrees with findings
by Malikan and Nguyen [10]. Moreover, the natural frequency of the flat nanostructure is lower than
the corrugated one, for the same fixed non-local coefficient µ (Figure 2a) and dimensionless length scale
l∗ (Figure 2b). Remarkably, all the curves in Figure 2 are almost scalable with the varying geometry and
damping parameter. A negligible increase in the natural frequency is also observed for an increasing
viscoelastic damping parameter g. Note that the equations based on the nonlocal strain gradient theory
revert to the classical mechanics ones, when the length scale and nonlocal parameter are exactly the
same (i.e., when l is equal to e0a). Based on a comparative evaluation of Figure 2a,b, it is worth noting
that the response of the nonlocal parameter µ compared to the length scale l∗, is more sensitive for
each fixed geometry and damping parameters of the nanostructure.Appl. Sci. 2018, 8, x FOR PEER REVIEW  10 of 14 
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A complete overview of the vibrating response of the corrugated nanosheet with varying
geometries is plotted in Figures 3 and 4. More specifically, a different number of waves is considered
in Figure 3, while varying the amplitude between F∗ = 0.05 and F∗ = 0.5. As visible in Figure 3, an
increasing wave amplitude F, for a fixed number of corrugations, leads to an increased frequency and
stiffness of the nanoplate. The natural frequency seems to increase linearly up to a threshold value,
moving from a flat to a corrugated nanoplate with just one corrugation. This threshold value clearly
depends on the corrugation, since it increases for increasing magnitudes F. A meaningless increase
of the natural frequencies is also observed in Figure 3 after 1 corrugation, probably because further
corrugations do not affect significantly the stiffness of the structure. Figure 4 also shows the effect
of the damping on the structural response of a corrugated nanoplate with l∗ = 0.5, µ = 1.41 nm2,
c = 0.25Lx, where the natural frequency of the structure increases proportionally with the viscoelastic
damping. This increase is even more pronounced for increasing wave magnitudes F∗. This means that
the geometry of corrugations can affect the response of the nanostructure significantly, especially for
higher values of viscosity. Thus, the exact geometry of wrinkles and imperfections resulting from a
manufacturing process must carefully account for the structural study of a hyper-viscoelastic nanoplate.Appl. Sci. 2018, 8, x FOR PEER REVIEW  11 of 14 
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Another parametric investigation considers the combined effect of the dimensionless length scale
l∗ and wave amplitude F∗, for a corrugated nanoplate with 5 corrugations (i.e., for c = 0.1Lx), while
keeping fixed the non-locality µ = 1.41 nm2 and the viscosity g = 2 Ns/m2. This is shown in Figure 5,
whose curves translate upwards constantly as the length scale parameter increases. Furthermore,
the natural frequency increases monotonically as the dimensionless wave magnitude F∗ is increased,
independently of the length scale l∗. The results have been suitably repeated for a different number of
corrugations, which are not reported here for the sake of brevity.Appl. Sci. 2018, 8, x FOR PEER REVIEW  12 of 14 
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5. Conclusions

The vibration response of viscoelastic nanoplates was investigated for different corrugation
geometries, mainly related to incorrect manufacturing. To this end, the non-local strain gradient
equations were incorporated into an OVFSDT, while applying the Kelvin–Voigt model for a realistic
treatment of viscoelasticy. After a preliminary check of the accuracy of the proposed formulation,
we employed a parametric investigation to analyze the sensitivity of the structural response at the
nanoscale. Based on the numerical results, it is clear that the existence of corrugations within nanoplates
can yield to a significant increase in their natural frequency and stiffness. More specifically, the
structural response depends strictly on the corrugation geometry, especially for increasing values of
the internal viscoelastic damping and non-local parameter.
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