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Abstract: We propose a coupled thermoelastic approach based on the Lord-Shulman (L-S) and
Maxwell’s formulations to study the wave propagation in functionally graded (FG) cylindrical panels
with piezoelectric layers under a thermal shock loading. The material properties of the FG core layer
feature a graded distribution throughout the thickness and vary according to a simple power law.
A layerwise differential quadrature method (LW-DQM) is combined with a non-uniform rational
B-spline (NURBS) multi-step time integration scheme to discretize the governing equations both in
the spatial and time domains. The compatibility conditions of the physical quantities are enforced at
the interfaces to describe their structural behavior in a closed form. A validation and comparative
analysis with the available literature, together with a convergence study, show the efficiency and
stability of the proposed method to handle thermoelastic problems. Numerical applications are herein
performed systematically to check for the sensitivity of the thermoelastic response to the material
graded index, piezoelectric layer thickness, external electrical voltage, opening angle, and shock
thermal loading, which would be very helpful for practical engineering applications.

Keywords: Lord-Shulman thermoelasticity; cylindrical panels; functionally graded; Piezoelectric
layers; LW-DQM; Multi-step time integration scheme

1. Introduction

Functionally graded (FG) cylindrical panels are largely used as structural members in many
industrial applications such as aerospace vehicles, nuclear equipment, petro-chemical structures,
among others. FG structures usually operate under high thermal conditions, which can yield a
vibratory motion, especially when subjected to a sudden variation of the thermal conditions. On the
other hand, the mechanical behavior and the vibration control of FG cylindrical panels can be improved
by introducing piezoelectric layers at their inner and/or outer surfaces. This requires an accurate
evaluation of the thermoelastic properties of FG cylindrical panels, with attached piezoelectric layers
under a thermal shock loading, for design and manufacturing purposes.

In this context, it is well known that a conventional Fourier heat conduction law is unable to
predict the temperature distribution and heat wave propagation within a continuum at the initial
phase. On the other hand, an uncoupled classical thermoelastic approach cannot accurately predict the
thermoelastic behavior of a body under a thermal shock. Countermeasures against these limitations
have encouraged the development of different coupled thermoelasticity theories [1–3]. Among them,
the Lord and Shulman (L-S) generalized thermoelasticity theory is one of the simplest formulations
applied in the literature [4–14], which includes a relaxation time and a coupling between thermal
and mechanical energies [1]. In this framework, some interesting thermoelastic studies based on an
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uncoupled classical thermoelasticity theory of FG cylindrical panels and shells can be found in [15–31].
These studies considered the possible presence of piezoelectric layers, and estimated the temperature
distribution of a body by means of a Fourier heat conduction law. On the other hand, many works, in
literature, have applied a non-Fourier heat transfer law or coupled theories to study the thermoelastic
response of FG structures [32–37]. More specifically, Entezari et al. [32] explored the capabilities of a
refined finite element approach based on the L-S generalized theory of thermoelasticity and Carrera
Unified Formulation (CUF) for the 3D thermoelastic analysis of FG disks exposed to a thermal shock
loading. Zhang et al. [33] employed a generalized fractional Cattaneo-type heat conduction model to
analyze the thermal shock problem of elastic FG strips with internal cracks, while using a Fourier and
Laplace transforms for an analytical computation of the thermoelastic field unknowns. Sator et al. [34]
presented a unified formulation for the bending response of FG plates under a transient thermal loading
in the framework of the L-S generalized thermoelasticity and two-dimensional plate theories. In their
work, the authors applied a meshless method and a Wilson time integration scheme to solve numerically
the governing equations of the problem. In line with the previous works, Pourasghar and Chen [35]
applied the non-Fourier heat conduction equations to determine the temperature distribution and the
induced thermal stresses and deformations, in carbon nanotube-reinforced composite cylindrical panels
subjected to a heat pulse. They assumed temperature-dependent material properties and applied a
differential quadrature method (DQM) to discretize the governing equations and solve the problem
numerically. Heydarpour and Malekzadeh [36] studied the propagation of thermoelastic waves in
laminated spherical shells with temperature-dependent material properties and FG layers under
thermal boundary conditions according to the L-S generalized thermoelasticity. Heydarpour et al. [37]
investigated the thermo-mechanical wave propagation in composite spherical shells reinforced with
multilayer functionally graded graphene platelets under a thermo-mechanical shock loading. They
formulated the problem in the context of L-S thermoelasticity together with a layerwise (LW) DQM,
where the governing equations were solved in the time domain both analytically and numerically.
The non-linear behavior of the shell structures under different loading conditions, makes the wave
propagation problem particularly sensitive to the selected mechanical and geometrical parameters.
This represents a key aspect of higher-order numerical approaches for shell structures [38–43].

To date, however, there has been a general lack of works applying coupled thermoelastic
approaches to FG cylindrical panels with surface piezoelectric layers under a thermal shock. Due
to its practical importance and usefulness from a research and practical engineering standpoint, this
issue is investigated in the present paper. In order to describe the high transient nature of a thermal
loading, especially at the initial phase of its application, the problem is formulated according to the L-S
thermoelasticity theory, with a special emphasis on the heat wave propagation. The material properties
of FG panels are assumed to vary throughout the thickness, and a layerwise (LW) approach is adopted
to simulate the variation of field variables throughout the thickness, due to its high accuracy and
computational efficiency compared to a conventional finite element method (FEM) or finite difference
method (FDM), as verified for different engineering problems. The LW theory, indeed, has been largely
proved to be an efficient tool for the study of the response and transverse the shear and normal stress
distributions of laminated composites. It represents a refined approach that considers the effects of
thickness at a reduced computational cost. Based on a LW theory, the shear strains are discontinuous,
and hence the shear stresses can be continuous at the interface of two adjacent layers. This represents a
clear advantage of the LW approach with respect to higher order shear deformation theories. At the
same time, the successful employment of the DQM for different structural and fluid problems has
largely been proved in literature [11,20,36,43–52].

Accordingly, a LW-DQM is proposed to discretize the governing equations in the spatial domain,
which are solved using a multi-step Non-Uniform-Rational-B-Spline (NURBS)-based technique.
The correctness and accuracy of the present approach is endowed with a convergence study and
comparative analysis of results with respect to the available predictions from the literature in the
limit cases. Afterward, the effect of the material gradient index, relaxation time, opening angle,
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piezoelectric layer thickness, and external electrical voltage on the thermoelastic behavior of the system
is investigated parametrically.

The outline of the paper is as follows: in Section 2 we describe the theoretical basics and the
governing equations of the problem. In Section 3 we present the numerical procedure of a NURBS-based
multi-step method and DQM, whose numerical results are discussed and compared in Section 4 for
different mechanical, geometrical, and thermal parameters. The main conclusions of our work are,
finally, summarized in Section 5.

2. Governing Equations

Let us describe the mathematical problem and its governing equations for a long FG cylindrical
panel with an inner and outer piezoelectric layer. The laminated panel features an opening angle θ0, an
inner radius Ri, and an outer radius Ro, whereby hc is the FG layer thickness, hp is the piezoelectric layer
thickness, and for a total thickness h = hc + 2hp (see Figure 1). A cylindrical coordinate system (r, θ, z)
is chosen to identify the material points of the laminated panel in the undeformed configuration, as
visible in Figure 1. The FG core layer is assumed to change gradually throughout the radial direction,
namely, the mechanical properties vary continuously and smoothly from a ceramic-rich material (at
the inner surface) to a metal-rich material (at the outer surface) according to a power law distribution.
Thus, the effective material property P of the core is defined, accordingly, as

P(r) = Pc + (Pm − Pc)

(
r−Ri

Ro −Ri

)n

(1)

where n is a positive real number associated with the power law index (or the material property
gradient index).

Appl. Sci. 2020, 10, x FOR PEER REVIEW 3 of 26 

piezoelectric layer thickness, and external electrical voltage on the thermoelastic behavior of the 
system is investigated parametrically.  

The outline of the paper is as follows: in Section 2 we describe the theoretical basics and the 
governing equations of the problem. In Section 3 we present the numerical procedure of a NURBS-
based multi-step method and DQM, whose numerical results are discussed and compared in Section 
4 for different mechanical, geometrical, and thermal parameters. The main conclusions of our work 
are, finally, summarized in Section 5.  

2. Governing Equations  

Let us describe the mathematical problem and its governing equations for a long FG cylindrical 
panel with an inner and outer piezoelectric layer. The laminated panel features an opening angle 0θ
, an inner radius Ri, and an outer radius Ro, whereby hc is the FG layer thickness, hp is the piezoelectric 
layer thickness, and for a total thickness h = hc + 2hp (see Figure 1). A cylindrical coordinate system 
( )zr ,,θ  is chosen to identify the material points of the laminated panel in the undeformed 
configuration, as visible in Figure 1. The FG core layer is assumed to change gradually throughout 
the radial direction, namely, the mechanical properties vary continuously and smoothly from a 
ceramic-rich material (at the inner surface) to a metal-rich material (at the outer surface) according to 
a power law distribution. Thus, the effective material property P of the core is defined, accordingly, 
as  

( ) ( )
n

i

i
cmc RR

RrPPPrP 







−

−−+=
o

 (1) 

where n is a positive real number associated with the power law index (or the material property 
gradient index). 

(a) 

(b) 

Figure 1. (a) and (b): Geometry of the FG cylindrical panels embedded in piezoelectric layers. 

Long panels follow the plane strain assumptions, as employed thereinafter. Accordingly, the 
linear constitutive relations for the core (i.e., the FG layer) and the piezoelectric layers take the 
following form, respectively [30]: 

Figure 1. (a) and (b): Geometry of the FG cylindrical panels embedded in piezoelectric layers.

Long panels follow the plane strain assumptions, as employed thereinafter. Accordingly, the linear
constitutive relations for the core (i.e., the FG layer) and the piezoelectric layers take the following
form, respectively [30]:

σc
rr
σc
θθ
σc

rθ

 =


Cc

11 Cc
12 0

Cc
12 Cc

22 0
0 0 Cc

55




∂uc

∂r − α
c (∆T)c

1
r

(
∂vc

∂θ + uc
)
− αc (∆T)c

1
r

(
∂uc

∂θ − vc
)
+ ∂vc

∂r

, (2a)
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
σ

p
rr
σ

p
θθ
σ

p
rθ

 =


Cp

11 Cp
12 0

Cp
12 Cp

22 0
0 0 Cp

55




∂up

∂r − α
p (∆T)p

1
r

(
∂vp

∂θ + up
)
− αp (∆T)p

1
r

(
∂up

∂θ − vp
)
+ ∂vp

∂r

−


0
0
e4Eθ

, (2b)

{
Dr

Dθ

}
=

[
e3 e2 0
0 0 e4

]
∂uc

∂r
1
r

(
∂vc

∂θ + uc
)

1
r

(
∂uc

∂θ − vc
)
+ ∂vc

∂r

+

[
K33 0
0 K22

]{
Er

Eθ

}
+

{
P3(∆T)c

0

}
(2c)

where (i, j = r,θ) is the stress tensor components in the FG core (e = c) and piezoelectric layers (e = p);
u and v are the displacement components at an arbitrary material point of the panel along the r
and θ-directions, respectively; α denotes the thermal expansion coefficient; (∆T)e = Te

− T0 is the
temperature variation; T0 is the shell stress free temperature; Ce

i j(i, j = 1, 2, 5) is the material elastic
coefficients of the core and piezoelectric layers; Di and Ei (i = r,θ) are, the electric displacement
and electric field in the ith direction, respectively; and ei (i = 2, 3, 4), Kii (i = 2, 3) and P3 refer to the
piezoelectric, dielectric, and pyroelectric constants, respectively.

The following relations are introduced between the electric field Ei and the electric potential ψ in
piezoelectric layers:

Er = −
∂ψ

∂r
, (3a)

Eθ = −
∂ψ

r∂θ
(3b)

The FG cylindrical panel is subjected to an initial temperature T0 before the variation of the
thermal boundary conditions at the two external surfaces occurs. Under the plane strain assumptions,
the governing equations are independent of the axial coordinate variable z. Thus, for the FG core
layer and piezoelectric layers, the linearized coupled energy balance equation according to the L-S
thermoelasticity theory together with the equation of motion can be defined as [1].

Energy balance equation:

1
r
∂
∂r

(
rke ∂Te

∂r

)
+

1
r2
∂
∂θ

(
ke ∂Te

∂θ

)
= ρece

(
∂Te

∂t
+ τe

0
∂2Te

∂t2

)
+ αeT0

(
τe

0
∂2

∂t2 +
∂
∂t

)(
∂ue

∂r
+

ue

r
+
∂ve

r∂θ

)
. (4)

Equations of motion:
∂σe

rr
∂r

+
∂σe

rθ
r∂θ

+
σe

rr − σ
e
θθ

r
= ρe ∂

2ue

∂t2 (5)

∂σe
rθ
∂r

+
∂σe

θθ

r∂θ
+

2σe
rθ

r
= ρe ∂

2ve

∂t2 (6)

where αe = αe(3λe + 2µe), λe and µe are the Lamé constants of the layers (e = p, c); τe
0 (e = p, c) is the

relaxation time of the L-S theory, and t is the time.
Moreover, the piezoelectric layers are governed by the following electroelastic equation:

∂Dr

∂r
+

Dr

r
+
∂Dθ

r∂θ
= 0. (7)

Among different possibilities of assuming the thermal boundary conditions of the panel, in the
present work we consider a drastic variation for the transient temperature (at the inner surface) and for
the convection heat transfer (at the outer surface). In detail,
at

r = Ri: Tp = Ti
(
1− e−t/t0

)
(8a)

at
r = Ro: −kp ∂Tp

∂r
= ĥc(Tp

− T∞) (8b)
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where Ti is the temperature of the inner surface over a long period of time (i.e., t >> t0), t0 is a time
constant, T∞ is the ambient temperature, and ĥc denotes the convective heat transfer coefficient.

By neglecting the heat transfer from the straight edges of the panel (i.e., θ = 0 and θ = θ0), the
corresponding thermal condition becomes

∂Te

∂θ
= 0 e = p, c (9)

The mechanical boundary conditions at the inner and outer surfaces of the panels (r = Ri, Ro) are
defined as follows:

σ
p
rr = 0 or Cp

11
∂up

∂r
+

Cp
12

r

(
∂vp

∂θ
+ up

)
=

(
Cp

11 + Cp
12

)
αp (Tp

− T0) (10a)

σ
p
rθ = 0 or Cp

55

[
1
r

(
∂up

∂θ
− vp

)
+
∂vp

∂r

]
= e4Eθ (10b)

Moreover, the following thermal and mechanical compatibility conditions are enforced at the
interface between the FG core and piezoelectric layers of the panel (i.e., r = Ri + hp, r = Ro −

hp), respectively.
Tp(r, t) = Tc(r, t), (11a)

kp ∂Tp(r, t)
∂r

= kc ∂Tc(r, t)
∂r

(11b)

up(r, t) = uc(r, t), vp(r, t) = vc(r, t) (12a)

Cp
11
∂up

∂r +
Cp

12
r

(
∂vp

∂θ + up
)
−

(
Cp

11 + Cp
12

)
αp (Tp

− T0)= Cc
11
∂uc

∂r +
Cc

12
r

(
∂vc

∂θ + uc
)
−

(
Cc

11 + Cc
12

)
αc (Tc

− T0) (12b)

Cp
55

[
1
r

(
∂up

∂θ
− vp

)
+
∂vp

∂r

]
− e4Eθ =Cc

55

[
1
r

(
∂uc

∂θ
− vc

)
+
∂vc

∂r

]
(12c)

In this study, clamped boundary conditions are assumed at the edges θ = 0 and θ = θ0, namely,

ue = 0,ve = 0 (13a)

e = p, c (13b)

whereby the initial thermal and mechanical conditions are assumed, respectively, as follows:

Te(r, 0) = T0 (14a)

∂Te(r, t)
∂t

∣∣∣∣∣∣
t=0

= 0 (14b)

ue(r, 0) = 0 (15a)

ve(r, 0) = 0 (15b)

∂ue(r, t)
∂t

∣∣∣∣∣∣
t=0

= 0. (15c)

∂ve(r, t)
∂t

∣∣∣∣∣∣
t=0

= 0 (15d)

3. Solution Procedure

The analytical solution of the abovementioned governing equations of the problem with variable
coefficients is clearly difficult and cumbersome, whereas a semi-analytical or numerical method should
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be more convenient and suitable for use. Due to the computational efficiency and accuracy of the DQM
demonstrated in the literature for different heat transfer and structural problems [11,20,36,43–52], we
combined this method with the NURBS-based multi-step method in the current work to discretize
the governing equations in the spatial and time domains, respectively. Based on the DQM, the FG
core and piezoelectric layers are discretized into a set of Ne

ξ
(e = c, p) and Nθ grid points along the

r- and θ-directions, respectively. In this regard, the Gauss–Lobatto–Chebyshev grid generation rule
is employed [11,20,36,43–52]. Thus, the spatial derivatives involved in the differential equations
are discretized together with the corresponding thermo-mechanical boundaries and compatibility
conditions at the interface between the core and piezoelectric layers. For the sake of brevity, we describe
only the discretized form for the of energy balance from Equation (4), as also repeated for all the other
equations of the problem.

ρe
i c

e
i

[
dTe

i j
dt +

(
τe

0

)
i

d2Te
i j

dt2

]
+ αe

i T0
[(
τe

0

)
i
∂2

∂t2 +
∂
∂t

]  Ne
ξ∑

m=1
Aξimue

mj +
ue

i j
ri j

+ 1
ri j

Nθ∑
n=1

Aθjnve
in


= ke

i

Ne
ξ∑

m=1
BξimTe

mj +
2ke

i
ri

Ne
ξ∑

m=1
AξimTe

mj +
ke

i
r2
i

Nθ∑
n=1

AθjnTe
in

(16)

where e = c, p; i = 2, . . . , N̂e
ξ

(
= Ne

ξ
− 1

)
; j = 2, . . . , N̂θ(= Nθ − 1); and Aβi j and Bβi j (β = r,θ) represent

the first- and second-order weighting coefficients for the β-direction (β = r,θ), respectively, which is
computed here through the Lagrange polynomials.

Once the DQM discretization procedure is completed, we get the following system of ordinary
differential equations (ODEs) in the time domain:

M
d2D
dt2 + C

dD
dt

+ KD = f(t) (17)

where D is the vector of degrees of freedom (i.e., temperature and displacement components at grid
points); M, C, and K represent the mass, thermoelastic damping, and stiffness matrices, respectively;
and f(t) is the load vector.

A NURBS-based multi-step method [37] is here adopted to solve the system of ODE (17) according
to the initial conditions. The higher performance of this technique with respect to the conventional
finite difference-based schemes, such as the Newmark’s time integration scheme, has been recently
demonstrated by Heydarpour et al. [37]. To apply this method, the second-order system of Equation
(17) is transformed into a first-order one, as follows: dΨ1

dt = Ψ2 (18a)
M dΨ2

dt + CΨ2 + KΨ1 = f(t) (18b)

where Ψ1 = D and Ψ2 = dD
dt . Based on the present approach, a different multi-step scheme can be

generated by changing the order and/or the weighting coefficients (wi) of the NURBS curves. In this
study, a four-step scheme [37] with the weight coefficients w1 = 0.001, w2 = 0.001, w3 = 2 and w4 = 3
is considered to solve Equation (18a,b), the discretized form of which can be expressed as follows:

Ψ1,n+1 = Ψ1,n + ∆t(1.50002585Ψ2,n − 0.50005291Ψ2,n−1 + 0.00002827Ψ2,n−2 −0.00000120Ψ2,n−3) (19)

Ψ2,n+1 = Ψ2,n + ∆t
(
1.50002585Ψ̂n − 0.50005291Ψ̂n−1 + 0.00002827Ψ̂n−2 −0.00000120Ψ̂n−3

)
(20)

where ∆t is the time step size, and

Ψ̂ = M−1(−CΨ2 −KΨ1 + f(t)) (21)
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The solution process starts with the initial conditions to determine the unknown field variables at
the first four points. Subsequently, by employing the multi-step scheme, Equation (18a,b) is converted
into a system of linear algebraic equations whose solution is related to the field variables at the end of
each time step. By repeating the process, we are able to determine the displacement components and
temperature at the grid points of FG cylindrical panel.

4. Numerical Results

We start this section with a validation of the proposed approach, which is followed by a parametric
study that investigates the sensitivity of the thermoelastic response of the panel to the mechanical,
thermal, or geometrical input parameters. Unless otherwise mentioned, we consider Ti-6Al-4V and
ZrO2 in the numerical examples to be the metal and ceramic phases, respectively (Table 1), and we
introduce the following dimensionless parameters

Fo =
tα̂m

h2 , (22a)

τ =
τ0α̂m

h2 , (22b)

T∗ =
T − T∞

T∞
, (22c)

U =
u

(1− νc)αcT∞Rm
, (22d)

ξ =
r−Ri

Ro −Ri
, (22e)

Σii =
(1 + νc)

EcαcT∞
σii (22f)

with
i = r,θ. (22g)

where α̂m(= km/ρmcm) is the thermal diffusivity of the metal, and the following geometry and physical
parameters are assumed: Rm = 1 (m) , h = 0.35 m , T0 = T∞ = 300K, Ti = 800K, ĥc = 10 W/m2K,
t0 = 2s. The piezoelectric layers are made of lead zirconate titanate (PZT-4) with the mechanical
properties given in Table 2, in accordance with [30].

As a first example, we compare the CPU time necessary for a thermoelastic study of a FG cylindrical
panel, as provided by a NURBS-based multi-step time integration scheme and a Newmark’s method.

Table 3 gathers the convergence results for the dimensionless displacement, hoop stress, and
temperature at point ξ = 0.5, θ = 0.5θ0 versus the number of time steps Nt. As visible in Table 3, a
NURBS-based multi-step approach requires a lower CPU time compared to a classical Newmark’s
method. Accordingly, Figures 2 and 3 depict the convergence results from a transient thermoelastic study
of FG cylindrical panels with a piezoelectric layer under a thermal loading condition. In these figures,
the variations along the thickness direction of the dimensionless temperature, radial displacement, and
hoop stress components are reported versus the DQ number of grid points throughout the thickness(
Ne
ξ
= Nξ, e = c, p

)
and circumferential direction (Nθ). It is worth observing that nine grid points in

the radial direction per layer (i.e., Nξ = 9) and eleven grid points in the circumferential direction
yielded acceptable results. Hence, the values of Nξ = 9, Nθ = 11, and Nt = 300 are assumed hereafter
within the numerical investigation.
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Table 1. Material properties of ceramic (ZrO2) and metal (Ti-6Al-4V) [11].

Material Ti-6Al-4V ZrO2

k[W/mK] 18.1 2.036
ρ[kg/m 3

]
4410 5600

C[J/kgK] 808.3 615.6
E[GPa] 66.2 117
α[1/K] 10.3 × 10−6 7.11 × 10−6

ν 0.322 0.322

Table 2. Material properties of the lead zirconate titanate (PZT-4) [30].

115 d1 (coul/N) −3.92 × 10−12

C22 [GPa] 139 Vp 0.31
C55 [GPa] 25.6 Ep [GPa] 63
C12 [GPa] 74 ρp[kg/m 3

]
7500

e2 [coul/m2] −5.2 Cp [J/kgK] 350
e3 [coul/m2] 15.1 αpr[1/K] 2.62 × 10−6

e4 [coul/m2] 12.7 αpθ[1/K] 1.97 × 10−6

µ2[nF/m] 6.5 kpr[W/mK] 1.5
µ3[nF/m] 5.6 kpθ[W/mK] 2.1

P3 (coul/m2K) 5.4 × 10−5
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Table 3. Comparison between a NURBS-based multi-step technique and the Newmark’s scheme(
n = 1, hc/hp = 5, θ0 = 75◦, ψ = 0.03, ξ = 0.5, θ = 0.5θ0, F0 = 0.8, τ = 0.1

)
.

NURBS-Based Multi−Step Method Newmark’s Method (Galerkin Scheme)

Nt T* U Σθθ CPU Time (s) T* U Σθθ CPU Time (s)

10 0.523 0.704 −0.836 0.0024 0.311 0.456 −0.425 9.400
25 0.449 0.581 −0.732 0.0196 0.340 0.448 −0.616 18.106
50 0.405 0.549 −0.584 0.0263 0.339 0.473 −0.483 37.406
75 0.367 0.516 −0.529 0.0339 0.340 0.475 −0.486 53.471
100 0.352 0.489 −0.506 0.0408 0.341 0.475 −0.488 69.603
125 0.346 0.481 −0.497 0.0452 0.342 0.476 −0.490 81.531
200 0.342 0.476 −0.491 0.0584 0.342 0.476 −0.490 146.73
300 0.342 0.475 −0.489 0.0660 0.342 0.476 −0.490 343.89Appl. Sci. 2020, 10, x FOR PEER REVIEW 11 of 26 
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)
.

For validation purposes, we analyzed the FG hollow cylindrical shells under a thermal loading,
as a limit case of cylindrical panels. Therefore, by setting θ0 = 2π and enforcing the geometric and
physical compatibility conditions at θ = 0 and θ = θ0 = 2π, a FG cylindrical panel reverted to a



Appl. Sci. 2020, 10, 1397 10 of 22

cylindrical shell. This case study is here selected in agreement with [53], where a semi-analytical finite
element method was applied for the analysis of FG cylindrical shells under the following thermal
boundary and initial conditions:
at

r = Ri : T(r, z, t) = T0
(
1− e−0.5t

)
(23a)

r = Ro : k
∂T
∂r

+ hcT = 0 (23b)

at
z = 0, L : (23c)

T(r, z, t) = 0 (23d)

T(r, z, 0) = 0, (23e)

∂T(r, z, t)
∂t

∣∣∣∣∣∣
t=0

= 0. (23f)

As far as the material properties are concerned, they vary throughout the shell thickness from a
ceramic-rich material, at the inner surface, to a metal-rich material, at the outer surface, in accordance
with Equation (1). The metal and ceramic mechanical properties are listed in Table 4. The dimensionless
temperature and displacement distributions across the shell thickness are depicted in Figure 4 for a
varying material graded index n, where the accuracy of the proposed method against the uncoupled
theory proposed in [53] is confirmed by the very good agreement between results.

Table 4. Material properties of ceramic (Zirconia) and metal (steel) [53].

Material Zirconia Steel

k[W/cm ◦C] 2.09 20
ρ[kg/m3] 5700 8166

Cv[J/kg ◦C] 531.9 325.35
E[MPa] 168.06 207.79
α[1/◦C] 2.3 × 10−4 1.5 × 10−5

ν 0.298 0.3178
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The effect of the material gradient index n on the through-the-thickness variation and time 
histories of the thermoelastic field variables is plotted in Figures 5 and 6 for FG cylindrical panels 
with piezoelectric layers under a thermal shock at the inner surface. The heat wave front can easily 
be seen in Figures 5a and 6a, where panels with a pure metal core (i.e., 0n = ) feature a higher value 
of heat wave speed compared to the ones with nonhomogeneous cores (i.e., 0≠n ). In addition, the 

Figure 4. (a,b): Transient dimensionless temperature distributions and displacement field across
the thickness of an FG hollow cylinder subjected to a prescribed temperature at its inner surface(
Ri = 4cm, Ro = 6cm, L = 20cm, T = T/T0, η = 0.5

)
.
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The effect of the material gradient index n on the through-the-thickness variation and time
histories of the thermoelastic field variables is plotted in Figures 5 and 6 for FG cylindrical panels with
piezoelectric layers under a thermal shock at the inner surface. The heat wave front can easily be seen
in Figures 5a and 6a, where panels with a pure metal core (i.e., n = 0) feature a higher value of heat
wave speed compared to the ones with nonhomogeneous cores (i.e., n , 0). In addition, the heat wave
speed increases by increasing the metal content, or equivalently with a decreasing value of n.
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thermoelasticity theory (i.e., 0=τ ) or the L-S theory (i.e., the case with 0≠τ ) leads to significant 
differences in the numerical results, evaluated here in terms of temperature, radial displacement, and 
hoop stress. Moreover, the oscillating behavior of the temperature time histories for 0≠τ , (i.e., for 
a non-Fourier heat conduction law) plotted in Figure 8a, indicates the necessity of using the L-S 
theory for thermal shock loading problems. 

Figure 6. (a–c): Effect of the material gradient index n on the time histories of
the thermoelastic field variables for the FG cylindrical panels with piezoelectric layers(
hc/hp = 5, θ0 = 75◦, ψ = 0.03, ξ = 0.5, θ = 0.5θ0, τ = 0.2

)
.

Figures 7 and 8 also plot the effect of the dimensionless relaxation time τ on the thermoelastic
response of FG cylindrical panels with piezoelectric layers, revealing the through-the-thickness
variations and time histories of the thermoelastic field variables of a material point (ξ = 0.5, θ = 0.5θ0),
respectively. Based on Figures 7 and 8, it is clear that the use of either a classical thermoelasticity
theory (i.e., τ = 0) or the L-S theory (i.e., the case with τ , 0) leads to significant differences in
the numerical results, evaluated here in terms of temperature, radial displacement, and hoop stress.
Moreover, the oscillating behavior of the temperature time histories for τ , 0, (i.e., for a non-Fourier
heat conduction law) plotted in Figure 8a, indicates the necessity of using the L-S theory for thermal
shock loading problems.
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Figure 7. (a–c): Effect of the relaxation time on the distribution of the thermoelastic field
variables through the radial direction for the FG cylindrical panels with piezoelectric layers(
p = 1, hc/hp = 5, θ0 = 75◦, ψ = 0.03, θ = 0.5θ0, F0 = 0.8

)
.

The through-the-thickness heat wave propagation and the resulting variations in the mechanical
field variables of the FG cylindrical panels with piezoelectric layers are shown in Figure 9a–c for
different non-dimensional time levels Fo. The results clearly demonstrate that the model can simulate
thermoelastic wave propagation in multilayer panels. It is worth observing that the temperature and
the radial displacement increase with an increasing dimensionless time Fo.
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The through-the-thickness heat wave propagation and the resulting variations in the mechanical 
field variables of the FG cylindrical panels with piezoelectric layers are shown in Figure 9a–c for 
different non-dimensional time levels oF . The results clearly demonstrate that the model can 
simulate thermoelastic wave propagation in multilayer panels. It is worth observing that the 
temperature and the radial displacement increase with an increasing dimensionless time oF . 

Figure 8. (a–c): Time histories of the thermoelastic field variables against the relaxation time(
n = 1, hc/hp = 5, θ0 = 75◦, ψ = 0.03, ξ = 0.5, θ = 0.5θ0

)
.

In Figure 10, the effect of the core thickness-to-piezoelectric thickness ratio hc/hp on the
thermoelastic behavior of FG cylindrical panels is described, where an increased value of hc/hp

yields a general increase of all the field variables. A further systematic study considers the effect of the
panel opening angle θ0 on the through-the-thickness variation of the dimensionless thermoelastic field
variables, as depicted in Figure 11a–c. As expected, by increasing θ0, the radial displacement increases,
and the hoop stress component decreases, although the maximum values of the field variables involve
the same locations of the panel independently of θ0. Furthermore, in Figure 12a–c, we evaluate the
effect of the opening angle θ0 on the time histories for all thermoelastic field variables while considering
the material points ξ = 0.5 and θ = 0.5θ0. Also visible in Figures 11a and 12a, the distribution and
time histories of the temperature seem to be unaffected by a variation in θ0.
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Figure 10. (a–c): Effect of the core thickness-to-piezoelectric thickness ratio hc/hp on the distribution
of the thermoelastic field variables through the radial direction (n = 1, θ0 = 75◦, θ = 0.5θ0, ψ = 0.03,
F0 = 0.8, τ = 0.2).
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Figure 11. (a–c): Effect of the opening angle θ0 on the distribution of the thermoelastic field variables in the
radial direction (n = 1, hc/hp = 5, θ = 0.5θ0, ψ = 0.03, F0 = 0.8, τ = 0.2).
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cylindrical panels with piezoelectric layers to varying external electrical voltages (Figures 13 and 14). 
More specifically, we evaluated the through-the-thickness variations and time histories of the 
dimensionless thermoelastic field variables for three different values of external electrical voltage 
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Figure 12. (a–c): Time histories of the thermoelastic field variables against the opening angle θ0,(
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)
.

In the last parametric study, we checked the sensitivity of the thermoelastic response of
FG cylindrical panels with piezoelectric layers to varying external electrical voltages (Figures 13
and 14). More specifically, we evaluated the through-the-thickness variations and time histories of
the dimensionless thermoelastic field variables for three different values of external electrical voltage
ψ = 0; 0.03; 0.06. As clearly visible in Figures 13a and 14a, an increase in the external electrical voltage
did not affect the temperature variations, but it led to an overall decrease in radial displacement and
an increase of the hoop stress component.
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5. Conclusions

In this paper, we have proposed a coupled thermoelasticity theory of Lord–Shulman and
Maxwell’s equation, to examine thermoelastic wave propagation for FG cylindrical panels with inner
and outer surfaces bonded by piezoelectric layers, and subjected the panels to a thermal shock loading.
The coupled governing equations of the problem have been solved using a computationally efficient
and accurate numerical hybrid method built upon a discrete LW-DQM method and a NURBS-based
multi-step time integration scheme. The geometric and physical compatibility conditions have been
enforced exactly at the interfacial layers. The model is able to accurately simulate the variations of the
field variables throughout the thickness, as demonstrated by the fast rate of convergence of the numerical
results. A wide parametric study has considered the effects of the material graded index, piezoelectric
layer thickness, external electrical voltage, and opening angle on the thermoelastic behavior of FG
cylindrical panels, while providing the following promising conclusions for practical applications:

• The model can simulate thermoelastic wave propagation in multilayer panels.
• An increased material gradient index n decreases the heat wave speed.
• The classical thermoelasticity theory based on a null value of relaxation time is unable to accurately

predict the thermoelastic behavior of laminated panels under a thermal shock loading.
• An increased core thickness-to-piezoelectric thickness ratio hc/hp yields an increased value of all

the thermoelastic field variables.
• An increased opening angle of the panel θ0 increases the radial displacement and decreases the

hoop stress component.
• The location of the maximum values for the hoop stress is almost independent of the geometrical

opening angle θ0.
• The opening angle θ0 does not allow any sensitive variation in the distribution and time histories

of the temperature.
• An increased external electrical voltage decreases the radial displacement and increases the hoop

stress component without affecting the temperature variation.
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