Usefulness of Potentially Probiotic L. lactis Isolates from Polish Fermented Cow Milk for the Production of Cottage Cheese
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Culture Conditions
2.2. Screening for Lactococcus lactis
2.3. DNA Extraction and PCR Amplification of the 16S rRNA Region
2.4. Biochemical Characterisation
2.5. Probiotic Features of L. lactis Strains
2.5.1. Acid and Bile Tolerance
2.5.2. Antimicrobial Activity
2.5.3. Autoaggregation/Coaggregation
2.6. Haemolytic Activity
2.7. Technological Features of L. lactis
2.7.1. Ability of the Selected Strains to Acidify Milk and Form a Clot
2.7.2. Rheological Properties of Milk Clot
2.7.3. Organoleptic and Flavour Evaluation
2.8. Statistical Analysis
3. Results and Discussion
3.1. Screening for Lactococcus lactis
3.2. Identification of Lactococcus lactis by Species-Specific PCR
3.3. Metabolism of Carbon Sources
3.4. Enzymatic Activity
3.5. Probiotic Potential of Lactococcus Strains A13 and A14
3.5.1. Acid and Bile Tolerance
3.5.2. Antibacterial Activity
3.5.3. Autoaggregation/Coaggregation
3.6. Haemolytic Activity
3.7. Technological Features of L. lactis
3.7.1. Ability of Strains to Acidify Milk and Form a Clot
3.7.2. Rheological Properties of Milk Clot
3.7.3. Sensory Evaluation of Cheese
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jay, J.M. Fermentation and fermented dairy products. Mod. Food Microbiol. 2000, 56, 113–130. [Google Scholar] [CrossRef]
- Fesseha, H. Probiotics and its potential role in poultry production: A review. Vet. Med.-Open J. 2019, 4, 69–76. [Google Scholar] [CrossRef]
- Lim, S.-M.; Im, D.-S. Screening and characterization of probiotic lactic acid bacteria isolated from Korean fermented foods. J. Microbiol. Biotechnol. 2009, 19, 178–186. [Google Scholar] [CrossRef] [Green Version]
- Quigley, L.; O’Sullivan, O.; Stanton, C.; Beresford, T.P.; Ross, R.P.; Fitzgerald, G.F.; Cotter, P.D. The complex microbiota of raw milk. FEMS Microbiol. Rev. 2013, 37, 664–698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karakas-Sen, A.; Karakas, E. Isolation, identification and technological properties of lactic acid bacteria from raw cow milk. Biosci. J. 2018, 34, 385–399. [Google Scholar] [CrossRef] [Green Version]
- Yerlikaya, O. Probiotic potential and biochemical and technological properties of Lactococcus lactis ssp. lactis strains isolated from raw milk and kefir grains. J. Dairy Sci. 2019, 102, 124–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bylund, G. Dairy Processing Handbook; Tetra Pak Processing Systems AB: Lund, Sweden, 1995; pp. 233–240. [Google Scholar]
- Abarquero, D.; Renes, E.; Combarros-Fuertes, P.; Fresno, J.M.; Tornadijo, M.E. Evaluation of technological properties and selection of wild lactic acid bacteria for starter culture development. LWT 2022, 171, 114121. [Google Scholar] [CrossRef]
- Dolci, P.; Ferrocino, I.; Giordano, M.; Pramotton, R.; Vernetti-Prot, L.; Zenato, S.; Barmaz, A. Impact of Lactococcus lactis as starter culture on microbiota and metabolome profile of an Italian raw milk cheese. Int. Dairy J. 2020, 110, 104804. [Google Scholar] [CrossRef]
- Galli, V.; Venturi, M.; Mari, E.; Guerrini, S.; Granchi, L. Selection of yeast and lactic acid bacteria strains, isolated from spontaneous raw milk fermentation, for the production of a potential probiotic fermented milk. Fermentation 2022, 8, 407. [Google Scholar] [CrossRef]
- Sałański, P.; Kowalczyk, M.; Bardowski, J.K.; Szczepankowska, A.K. Health-promoting nature of Lactococcus lactis IBB109 and Lactococcus lactis IBB417 strains exhibiting proliferation inhibition and stimulation of interleukin-18 expression in colorectal cancer cells. Front. Microbiol. 2022, 13, 822912. [Google Scholar] [CrossRef] [PubMed]
- Tsigkrimani, M.; Panagiotarea, K.; Paramithiotis, S.; Bosnea, L.; Pappa, E.; Drosinos, E.H.; Skandamis, P.N.; Mataragas, M. Microbial ecology of sheep milk, artisanal Feta, and Kefalograviera cheeses. Part II: Technological, safety, and probiotic attributes of lactic acid bacteria isolates. Foods 2022, 11, 459. [Google Scholar] [CrossRef] [PubMed]
- Taeok, K.; Shakti, C.M.; Chae-Rim, J.; So-Rim, K.; O-Hyun, B.; Young, H.J.; Jungwoo, Y.; Soo-Jung, K. Safety evaluation of Lactococcus lactis IDCC 2301 isolated from homemade cheese. Food Sci. Nutr. 2022, 10, 67–74. [Google Scholar]
- Altieri, C.; Ciuffreda, E.; Di Maggio, B.; Sinigaglia, M. Lactic acid bacteria as starter cultures. In Starter Cultures in Food Production; Speranza, B., Bevilacqua, A., Corbo, M.R., Sinigaglia, M., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2017; pp. 1–15. [Google Scholar]
- Nomura, M.; Kobayashi, M.; Narita, T.; Kimoto-Nira, H.; Okamoto, T. Phenotypic and molecular characterization of Lactococcus lactis from milk and plants. J. Appl. Microbiol. 2006, 101, 396–405. [Google Scholar] [CrossRef]
- Kacem, M.; Zadi-Karami, H.; Karama, N.E. Identification of lactic acid bacteria isolated from milk and fermented olive oil in western Algeria. Actes Inst. Agron. Vet. (Maroc.) 2003, 23, 135–141. [Google Scholar]
- Zycka-Krzesinska, J.; Boguslawska, J.; Aleksandrzak-Piekarczyk, T.; Jopek, J.; Bardowski, J.K. Identification and characterization of tetracycline resistance in Lactococcus lactis isolated from Polish raw milk and fermented artisanal products. Int. J. Food Microbiol. 2015, 211, 134–141. [Google Scholar] [CrossRef] [PubMed]
- Altschul, S.F.; Boguski, M.S.; Gish, W.; Wootton, J.C. Issues in searching molecular sequence databases. Nat. Genet. 1994, 6, 119–129. [Google Scholar] [CrossRef] [PubMed]
- Gebreselassie, N.; Abay, F.; Beyene, F. Biochemical and molecular identification and characterization of lactic acid bacteria and yeasts isolated from Ethiopian naturally fermented buttermilk. J. Food Sci. Technol. 2016, 53, 184–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, M.Y.; Lee, C.; Seo, M.J.; Roh, S.W.; Lee, S.H. Characterization of a potential probiotic bacterium Lactococcus raffinolactis WiKim0068 isolated from fermented vegetable using genomic and in vitro analyses. BMC Microbiol. 2020, 20, 136. [Google Scholar] [CrossRef]
- Bhushan, B.; Tomar, S.K.; Chauhan, A. Techno-functional differentiation of two vitamin B 12 producing Lactobacillus plantarum strains: An elucidation for diverse future use. Appl. Microbiol. Biotechnol. 2017, 101, 697–709. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Qiao, L.; Liu, R.; Liao, H.; Gao, C. Potential probiotic properties of lactic acid bacteria isolated from the intestinal mucosa of healthy piglets. Ann. Microbiol. 2017, 67, 239–254. [Google Scholar] [CrossRef]
- Enan, G.; Abdel-Shafi, S.; Ouda, S.; Negm, S. Novel antibacterial activity of Lactococcus lactis Subspecies lactis Z11 isolated from Zabady. Int. J. Biomed. Sci. 2013, 9, 174–180. [Google Scholar] [PubMed]
- Polak-Berecka, M.; Waśko, A.; Paduch, R.; Skrzypek, T.; Sroka-Bartnicka, A. The effect of cell surface components on adhesion ability of Lactobacillus rhamnosus. Antonie Van Leeuwenhoek 2014, 106, 751–762. [Google Scholar] [CrossRef] [PubMed]
- Fusieger, A.; Martins, M.C.F.; Freitas, R.; Nero, L.N.; Carvalho, A.F. Technological properties of Lactococcus lactis subsp. lactis bv. diacetylactis obtained from dairy and non-dairy niches. Braz. J. Microbiol. 2020, 51, 313–321. [Google Scholar] [CrossRef] [PubMed]
- Glibowski, P.; Pikus, S. Amorphous and crystal inulin behavior in a water environment. Carbohydr. Pol. 2011, 83, 635–639. [Google Scholar] [CrossRef]
- PN-A-86300: 1991; Milk and Dairy Products. Unripened Curd Cheeses. Polski Komitet Normalizacyjny: Warsaw, Poland, 1991.
- Kimoto-Nira, H.; Aoki, R.; Mizumachi, K.; Sasaki, K.; Naito, H.; Sawada, T.; Suzuki, C. Interaction between Lactococcus lactis and Lactococcus raffinolactis during growth in milk: Development a new starter culture. J. Dairy Sci. 2012, 95, 2176–2185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rasovic, M.B.; Mayrhofer, S.; Martinovic, A.; Dȕrr, K.; Domig, K.J. Lactococci of local origin as potential starter cultures for traditional montenegreen cheese production. Food Technol. Biotechnol. 2017, 55, 55–66. [Google Scholar]
- Dahou, A.A.; Bekada, A.A.; Homrani, A. Identification of a Lactococcus lactis isolated from a fresh local cheese of the western Algerian steppe “J’ben of Naama”. Asian J. Dairy Food Res. 2021, DR-208, 1–5. [Google Scholar] [CrossRef]
- Maślak, E.; Złoch, M.; Arendowski, A.; Sugajski, M.; Janczura, I.; Rudnicka, J.; Walczak-Skierska, J.; Buszewska-Forajta, J.; Rafińska, K.; Pomastowski, P.; et al. Isolation and identification of Lactococcus lactis and Weissella cibara strains from fermented beetroot and an investigation of their properties as potential starter cultures and probiotics. Foods 2022, 11, 2257. [Google Scholar] [CrossRef]
- Alharbi, N.; Alsaloom, A.N. Characterization of lactic bacteria isolated from raw milk and their antibacterial activity against bacteria as the cause of clinical bovine Mastitis. J. Food Qual. 2021, 2021, 6466645. [Google Scholar] [CrossRef]
- Müller, T.; Müller, M.; Behrendt, U. Leucine arylamidase activity in the phyllosphere and the litter layer of a Scots pine forest. FEMS Microbiol. Ecol. 2004, 47, 153–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monteagudo-Mera, A.; Caro, I.; Rodríguez-Aparicio, L.B.; Rúa, J.; Ferrero, M.A.; García-Armesto, M.R. Characterization of certain bacterial strains for potential use as starter or probiotic cultures in dairy products. J. Food Prot. 2011, 74, 1379–1386. [Google Scholar] [CrossRef] [PubMed]
- Xia, A.N.; Me, X.S.; Tang, H.J.; Zhang, X.Z.; Lei, S.M.; Liu, Y.G. Probiotic and related properties of a novel lactic acid bacteria strain isolated from fermented rose jam. LWT 2021, 136, 110327. [Google Scholar] [CrossRef]
- Kumari, M.; Singh, P.; Nataraj, B.H.; Kokkiligadda, A.; Naithani, H.; Ali, S.A.; Nagpal, R. Fostering next-generation probiotics in human gut by targeted dietary modulation: An emerging perspective. Food Res. Int. 2021, 150, 110716. [Google Scholar] [CrossRef]
- Kondrotiene, K.; Lauciene, L.; Andruleviciute, V.; Kasetiene, N.; Serniene, L.; Sekmokiene, D.; Malakauskas, M. Safety assessment and preliminary in vitro evaluation of probiotic potential of Lactococcus lactis strains naturally present in raw and fermented milk. Curr. Microbiol. 2020, 77, 3013–3023. [Google Scholar] [CrossRef]
- Gunyakti, A.; Asan-Ozusaglam, M. Lactobacillus gasseri from human milk with probiotic potential and some technological properties. LWT 2019, 109, 261–269. [Google Scholar] [CrossRef]
- Faye, T.; Tamburello, A.; Vegarud, G.E.; Skeie, S. Survival of lactic acid bacteria from fermented milks in an in vitro digestion model exploiting sequential incubation in human gastric and duodenum juice. J. Dairy Sci. 2012, 95, 558–566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, N.-K.; Han, K.J.; Son, S.-H.; Eom, S.J.; Lee, S.-K.; Paik, H.-D. Multifunctional effect of probiotic Lactococcus lactis KC24 isolated from kimchi. LWT 2015, 64, 1036–1041. [Google Scholar] [CrossRef]
- Nikolic, M.; Jovcic, B.; Kojic, M.; Topisirovic, L. Surface properties of Lactobacillus and Leuconostoc isoaltes from homemade cheeses showing auto-aggregation ability. Eur. Food Res. Technol. 2010, 231, 925–931. [Google Scholar] [CrossRef]
- Glibowski, P.; Mleko, S.; Wesołowska-Trojanowska, M. Gelation of single heated vs. double heated whey protein isolate. Int. Dairy J. 2006, 16, 1113–1118. [Google Scholar] [CrossRef]
- Glibowski, P.; Mleko, S.; Waśko, A.; Kristinsson, H.G. Effect of two stage heating on Na+-induced gelation of whey protein isolate. Milchwissenschaft 2006, 61, 252–255. [Google Scholar]
Temperature | Salt | ||||||
---|---|---|---|---|---|---|---|
Strain | 10 °C | 30 °C | 37 °C | 45 °C | 2%NaCl | 4%NaCl | 6.5%NaCl |
A1 | + | ++ | ++ | - | ++ | ++ | + |
A2 | + | ++ | ++ | - | ++ | ++ | + |
A3 | + | ++ | + | - | ++ | ++ | + |
A4 | + | ++ | ++ | - | ++ | ++ | + |
A5 | + | ++ | ++ | - | ++ | ++ | + |
A6 | + | ++ | ++ | - | ++ | ++ | + |
A7 | - | + | ++ | - | ++ | ++ | + |
A8 | + | ++ | + | - | ++ | ++ | + |
A9 | + | ++ | ++ | - | ++ | ++ | + |
A10 | + | ++ | ++ | - | ++ | ++ | + |
A11 | + | ++ | ++ | - | ++ | ++ | + |
A12 | + | ++ | ++ | - | ++ | ++ | + |
A13 | + | +++ | +++ | - | ++ | ++ | ++ |
A14 | + | +++ | +++ | - | ++ | ++ | ++ |
A15 | + | ++ | + | - | ++ | ++ | + |
A16 | + | ++ | ++ | - | ++ | ++ | + |
A17 | + | ++ | ++ | - | ++ | ++ | + |
A18 | + | ++ | ++ | - | ++ | ++ | + |
A19 | + | ++ | + | - | ++ | ++ | + |
A20 | + | ++ | ++ | - | ++ | ++ | + |
A21 | + | ++ | ++ | - | ++ | ++ | + |
A22 | + | ++ | ++ | - | ++ | ++ | + |
A23 | - | ++ | ++ | - | ++ | ++ | + |
A24 | + | ++ | + | - | ++ | ++ | + |
A25 | + | ++ | ++ | - | ++ | ++ | + |
A26 | + | ++ | ++ | - | ++ | ++ | + |
Carbon Source | Isolate | ||
---|---|---|---|
A1, A2, A4, A6, A10, A11, A13, A14, A15, A16, A18, A19, A21, A22, A24, A25 | A3, A7, A8, A20, A23 | A5, A9, A12, A17, A26 | |
Glycerol | - | - | - |
Erythritol | - | - | - |
D-arabinose | - | - | - |
L-arabinose | - | - | - |
D-ribose | + | + | + |
D-xylose | - | - | - |
L-xylose | - | - | - |
D-adonitol | - | - | - |
Methyl β-D-xylopyranoside | - | - | - |
D-galactose | + | + | + |
D-glucose | + | + | + |
D-fructose | + | + | + |
D-mannose | + | + | + |
L-sorbose | - | - | - |
L-rhamnose | - | - | - |
Dulcitol | - | - | - |
Inositol | - | - | - |
D-mannitol | - | - | - |
D-sorbitol | - | - | - |
Methyl α-D-mannopyranoside | - | - | - |
Methyl α-D-glucopyranoside | - | - | - |
N-acetyl-glucosamine | + | + | + |
Amygdaline | + | + | + |
Arbutyne | + | + | + |
Esculin | + | + | + |
Salicin | + | + | + |
D-cellobiose | + | + | + |
D-maltose | + | + | + |
D-lactose | + | + | + |
D-melibiose | + | - | + |
D-saccharose | - | - | - |
D-trehalose | - | - | - |
Inulin | - | - | - |
D-melezitose | - | - | - |
D-raffinose | - | - | - |
Starch | + | + | - |
Glycogen | + | - | - |
Xylitol | + | - | - |
Gentiobiose | + | - | - |
D-turanose | + | + | + |
D-liksose | - | - | - |
D-tagatose | - | - | - |
D-fucose | - | - | - |
L-fucose | - | - | - |
D-arabitol | - | - | - |
L-arabitol | - | - | - |
Potassium gluconate | + | + | + |
Potassium 2-ketogluconate | - | - | - |
Potassium 5-ketogluconate | - | - | - |
Enzyme | Isolate | ||
---|---|---|---|
A1, A3, A4, A7, A8, A10, A11, A13, A14, A16, A17, A18, A20, A22, A23, A25, A26 | A6, A19, A24 | A2, A5, A9, A12, A15, A21 | |
Alkaline phosphatase | 1 | 0 | 2 |
Esterase (C4) | 2 | 0 | 1 |
Esterase lipase (C8) | 0 | 1 | 0 |
Lipase (C14) | 1 | 0 | 1 |
Leucine arylamidase | 3 | 4 | 2 |
Valine arylamidase | 1 | 1 | 0 |
Cystine arylamidase | 0 | 1 | 0 |
Trypsin | 0 | 0 | 0 |
α-Chymotrypsin | 1 | 0 | 1 |
Acid phosphatase | 5 | 4 | 5 |
Naphthol-AS-BI-phosphohydrolase | 2 | 2 | 2 |
α-Galactosidase | 0 | 0 | 0 |
β-Galactosidase | 0 | 0 | 0 |
β-Glucuronidase | 0 | 0 | 0 |
α-Glucosidase | 0 | 0 | 0 |
β-Glucosidase | 0 | 0 | 0 |
N-acetyl-β-glucosaminidase | 0 | 0 | 0 |
α-Mannosidase | 0 | 0 | 0 |
α-Fucosidase | 0 | 0 | 0 |
Stress Agent | Exposition Time (h) | Viability (Log CFU 1/mL) | ||
---|---|---|---|---|
L. lactis A13 | L. lactis A14 | L. rhamnosus GG | ||
pH7 | 0 | 8.82 ± 0.14 2a | 8.60 ± 0.13 a | 8.54 ± 0.18 b |
pH7 | 2 | 9.20 ± 0.21 b | 8.95 ± 0.10 a | 9.01 ± 0.12 a |
pH7 | 3 | 9.33 ± 0.25 c | 9.24 ± 0.22 a | 9.16 ± 0.13 a |
pH3 | 0 | 8.81 ± 0.15 c | 8.60 ± 0.12 c | 8.49 ± 0.15 a |
pH3 | 2 | 7.76 ± 0.13 b | 6.75 ± 0.12 b | 8.67 ± 0.12 a |
pH3 | 3 | 7.18 ± 0.15 a | 6.40 ± 0.11 a | 8.54 ± 0.14 a |
pH2 | 0 | 8.85 ± 0.14 c | 8.60 ± 0.13 c | 8.52 ± 0.12 c |
pH2 | 2 | 5.52 ± 0.15 b | 4.91 ± 0.04 b | 6.81 ± 0.15 b |
pH2 | 3 | 4.42 ± 0.08 a | 4.52 ± 0.03 a | 5.31 ± 0.08 a |
BS 3 0.3% | 0 | 8.80 ± 0.15 a | 8.64 ± 0.11 a | 8.71 ± 0.13 a |
BS 0.3% | 2 | 8.91 ± 0.11 a | 8.55 ± 0.14 a | 8.82 ± 0.11 ab |
BS 0.3% | 3 | 9.06 ± 0.13 a | 8.45 ± 0.10 a | 8.97 ± 0.12 b |
BS 1% | 0 | 8.74 ± 0.12 b | 8.64 ± 0.12 a | 8.79 ± 0.12 a |
BS 1% | 2 | 8.83 ± 0.14 a | 8.03 ± 0.14 a | 8.64 ± 0.11 a |
BS 1% | 3 | 8.97 ± 0.16 ab | 7.96 ± 0.16 ab | 8.78 ± 0.16 a |
Pathogens | Antibacterial Activity (Inhibition Zone [mm]) | |
---|---|---|
L. lactis A13 | L. lactis A14 | |
Salmonella anatum Salmonella enterica Escherichia coli Bacillus cereus Listeria monocytogenes Staphylococcus aureus Enterococcus faecalis | 12 ± 1.1 1d 13 ± 1.0 e 4 ± 2.3 a - - 7 ± 2.0 b 11 ± 1.2 c | 8 ± 1.3 d 12 ± 2.0 e 4 ± 1.5 a - - 5 ± 2.5 b 7 ± 1.3 c |
Bacteria | Autoaggregation (%) | Co-Aggregation (%) | ||
---|---|---|---|---|
5 h | 24 h | 5 h | 24 h | |
L. lactis A13 L. lactis A14 S. aureus S. anatum A13 + S. aureus A13 + S. anatum A14 + S. aureus A14 + S. anatum | 8.52 ± 1.43 1 7.49 ± 2.79 12.03 ± 3.84 31.81 ± 1.89 - - - - | 28.15 ± 0.36 38.46 ± 3.33 45.74 ± 5.73 66.91 ± 0.77 - - - - | - - - - 13.70 ± 0.01 27.80 ± 0.01 15.76 ± 0.02 29.39 ± 0.02 | - - - - 28.91 ± 0.06 38.57 ± 0.02 44.57 ± 0.01 45.14 ± 0.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pytka, M.; Kordowska-Wiater, M.; Wajs, J.; Glibowski, P.; Sajnaga, E. Usefulness of Potentially Probiotic L. lactis Isolates from Polish Fermented Cow Milk for the Production of Cottage Cheese. Appl. Sci. 2022, 12, 12088. https://doi.org/10.3390/app122312088
Pytka M, Kordowska-Wiater M, Wajs J, Glibowski P, Sajnaga E. Usefulness of Potentially Probiotic L. lactis Isolates from Polish Fermented Cow Milk for the Production of Cottage Cheese. Applied Sciences. 2022; 12(23):12088. https://doi.org/10.3390/app122312088
Chicago/Turabian StylePytka, Monika, Monika Kordowska-Wiater, Justyna Wajs, Paweł Glibowski, and Ewa Sajnaga. 2022. "Usefulness of Potentially Probiotic L. lactis Isolates from Polish Fermented Cow Milk for the Production of Cottage Cheese" Applied Sciences 12, no. 23: 12088. https://doi.org/10.3390/app122312088