Energy Forecasting in a Public Building: A Benchmarking Analysis on Long Short-Term Memory (LSTM), Support Vector Regression (SVR), and Extreme Gradient Boosting (XGBoost) Networks
Abstract
:1. Introduction
- The study confirms the model’s performance in the absence of weather features which makes the model less computational cost. It is almost effortless to deploy from an engineering prospect since no sensors for weather conditions are needed;
- The multi-output allows a detailed scenario to respond to the electricity usage in the following hours.
2. Materials and Methods
2.1. Data Collection
2.2. Exploratory Data Analysis
2.3. Data Preprocess
2.4. Machine Learning Models
2.5. Hyper-Parameter Tuning
2.6. Metrics
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
The no. of Inputs | The no. of Outputs | Testing R2 | RMSE | CV (%) | MAE |
---|---|---|---|---|---|
1 | 1 | 0.953518 | 2.620952 | 14.25236 | 1.700528 |
2 | 1 | 0.951107 | 2.691193 | 14.66036 | 1.760021 |
4 | 1 | 0.949834 | 2.732484 | 14.87774 | 1.809715 |
3 | 1 | 0.948978 | 2.752481 | 14.99133 | 1.793756 |
9 | 1 | 0.948214 | 2.789799 | 15.24027 | 1.836671 |
8 | 1 | 0.947892 | 2.796634 | 15.26033 | 1.859448 |
7 | 1 | 0.947191 | 2.812954 | 15.33542 | 1.843559 |
5 | 1 | 0.945543 | 2.850398 | 15.52231 | 1.84593 |
6 | 1 | 0.944791 | 2.873362 | 15.65309 | 1.864009 |
1 | 2 | 0.928819 | 3.245625 | 17.69942 | 2.078487 |
9 | 2 | 0.929776 | 3.249956 | 17.77945 | 2.12982 |
8 | 2 | 0.928676 | 3.272915 | 17.88575 | 2.147037 |
2 | 2 | 0.926786 | 3.295525 | 17.9669 | 2.120674 |
4 | 2 | 0.92628 | 3.314742 | 18.0658 | 2.15817 |
7 | 2 | 0.926563 | 3.318645 | 18.11707 | 2.146832 |
3 | 2 | 0.924467 | 3.351245 | 18.26608 | 2.153108 |
6 | 2 | 0.923579 | 3.382362 | 18.44958 | 2.180407 |
5 | 2 | 0.922765 | 3.396789 | 18.51793 | 2.178441 |
8 | 3 | 0.912832 | 3.618912 | 19.80815 | 2.382346 |
9 | 3 | 0.91182 | 3.643122 | 19.95959 | 2.387658 |
7 | 3 | 0.908606 | 3.702905 | 20.24705 | 2.397612 |
1 | 3 | 0.90163 | 3.817739 | 20.83863 | 2.398218 |
6 | 3 | 0.902258 | 3.826442 | 20.90294 | 2.456909 |
2 | 3 | 0.900004 | 3.853622 | 21.02873 | 2.444086 |
4 | 3 | 0.899262 | 3.877127 | 21.15628 | 2.470191 |
5 | 3 | 0.899529 | 3.8759 | 21.15871 | 2.484479 |
3 | 3 | 0.898187 | 3.893086 | 21.24173 | 2.465941 |
1 | 4 | 0.873442 | 4.332329 | 23.67179 | 2.704412 |
2 | 4 | 0.869945 | 4.397046 | 24.02154 | 2.760474 |
1 | 5 | 0.843701 | 4.815976 | 26.34899 | 2.989854 |
2 | 5 | 0.839289 | 4.889294 | 26.74877 | 3.036636 |
1 | 6 | 0.817151 | 5.20917 | 28.54327 | 3.232244 |
1 | 7 | 0.794325 | 5.523127 | 30.31602 | 3.44357 |
1 | 8 | 0.776903 | 5.747819 | 31.61279 | 3.621202 |
1 | 9 | 0.76303 | 5.915412 | 32.61033 | 3.764738 |
Algorithms | Hyperparameters | Searching Space | Optimal Value |
---|---|---|---|
LSTM | The no. of LSTM layers | 1–8 | 4 |
The no. of units for LSTM layer 1 | 32–256 | 128 | |
The no. of units for LSTM layer 2 | 32–256 | 64 | |
The no. of units for LSTM layer 3 | 32–256 | 64 | |
The no. of units for LSTM layer 4 | 32–256 | 192 | |
The no. of dense layers | 1–8 | 3 | |
The no. of units for dense layer 1 | 32–256 | 89 | |
The no. of units for dense layer 2 | 32–256 | 40 | |
The no. of units for dense layer 3 | 32–256 | 73 | |
Learning rate | 1 × 10−1–1 × 10−6 | 0.001347157 | |
XGBoost | subsample | 1 × 10−3–5 × 10−1 | 0.1 |
No. of estimators | 1–2000 | 60 | |
Min samples split | 2–50 | 0.1 | |
Max depth | 2–50 | 5 | |
Learning rate | 0.1–0.9 | 0.1 | |
eta | 1 × 10−3–5 × 10−1 | 0.8 | |
Colsample bytree | 1 × 10−3–5 × 10−1 | 0.8 | |
SVR | Epsilon | 1 × 10−2–2 × 10−1 | 0.16 |
C | 1–2000 | 943 | |
Kernel | rbf | rbf |
References
- GBC, U. UKGBC’s Vision for a Sustainable Built Environment Is One That Mitigates and Adapts to Climate Change. 2022. Available online: https://www.ukgbc.org/climate-change-2/ (accessed on 8 August 2022).
- Evans, S. Analysis: UK’s CO2 Emissions Have Fallen 29% over the Past Decade. 2020. Available online: https://www.carbonbrief.org/analysis-uks-co2-emissions-have-fallen-29-per-cent-over-the-past-decade/ (accessed on 8 August 2022).
- Langevin, J.; Harris, C.B.; Reyna, J.L. Assessing the potential to reduce US building CO2 emissions 80% by 2050. Joule 2019, 3, 2403–2424. [Google Scholar] [CrossRef]
- Singh, S.; Yassine, A. Big data mining of energy time series for behavioral analytics and energy consumption forecasting. Energies 2018, 11, 452. [Google Scholar] [CrossRef]
- Amasyali, K.; El-Gohary, N.M. A review of data-driven building energy consumption prediction studies. Renew. Sustain. Energy Rev. 2018, 81, 1192–1205. [Google Scholar] [CrossRef]
- Zhao, H.-X.; Magoulès, F. A review on the prediction of building energy consumption. Renew. Sustain. Energy Rev. 2012, 16, 3586–3592. [Google Scholar] [CrossRef]
- Clarke, J.A. Energy Simulation in Building Design; Routledge: London, UK, 2007. [Google Scholar]
- McQuiston, F.C.; Parker, J.D.; Spitler, J.D. Heating, Ventilating, and Air Conditioning: Analysis and Design; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- ISO EN 13790:2008; Energy Performance of Buildings—Calculation of Energy Use for Space Heating and Cooling. International Organization for Standardization: Milan, Italy, 2008.
- Tealab, A. Time series forecasting using artificial neural networks methodologies: A systematic review. Future Comput. Inform. J. 2018, 3, 334–340. [Google Scholar] [CrossRef]
- Pisner, D.A.; Schnyer, D.M. Support vector machine. In Machine Learning; Elsevier: Amsterdam, The Netherlands, 2020; pp. 101–121. [Google Scholar]
- Peng, L.; Wang, L.; Xia, D.; Gao, Q. Effective energy consumption forecasting using empirical wavelet transform and long short-term memory. Energy 2022, 238, 121756. [Google Scholar] [CrossRef]
- Jin, N.; Yang, F.; Mo, Y.; Zeng, Y.; Zhou, X.; Yan, K.; Ma, X. Highly accurate energy consumption forecasting model based on parallel LSTM neural networks. Adv. Eng. Inform. 2022, 51, 101442. [Google Scholar] [CrossRef]
- Shahani, N.M.; Zheng, X.; Liu, C.; Hassan, F.U.; Li, P. Developing an XGBoost Regression Model for Predicting Young’s Modulus of Intact Sedimentary Rocks for the Stability of Surface and Subsurface Structures. Front. Earth Sci 2021, 9, 761990. [Google Scholar] [CrossRef]
- Ciulla, G.; D’Amico, A. Building energy performance forecasting: A multiple linear regression approach. Appl. Energy 2019, 253, 113500. [Google Scholar] [CrossRef]
- Solomon, D.M.; Winter, R.L.; Boulanger, A.G.; Anderson, R.N.; Wu, L.L. Forecasting Energy Demand in Large Commercial Buildings Using Support Vector Machine Regression; Department of Computer Science, Columbia University: New York, NY, USA, 2011. [Google Scholar]
- Edwards, R.E.; New, J.; Parker, L.E. Predicting future hourly residential electrical consumption: A machine learning case study. Energy Build. 2012, 49, 591–603. [Google Scholar] [CrossRef]
- Qiong, L.; Peng, R.; Qinglin, M. Prediction model of annual energy consumption of residential buildings. In Proceedings of the 2010 International Conference on Advances in Energy Engineering, Beijing, China, 19–20 June 2010; pp. 223–226. [Google Scholar]
- Hawkins, D.; Hong, S.M.; Raslan, R.; Mumovic, D.; Hanna, S. Determinants of energy use in UK higher education buildings using statistical and artificial neural network methods. Int. J. Sustain. Built Environ. 2012, 1, 50–63. [Google Scholar] [CrossRef]
- Leung, M.C.; Tse, N.C.F.; Lai, L.L.; Chow, T.T. The use of occupancy space electrical power demand in building cooling load prediction. Energy Build. 2012, 55, 151–163. [Google Scholar] [CrossRef]
- Platon, R.; Dehkordi, V.R.; Martel, J. Hourly prediction of a building’s electricity consumption using case-based reasoning, artificial neural networks and principal component analysis. Energy Build. 2015, 92, 10–18. [Google Scholar] [CrossRef]
- Jain, R.; Damoulas, T.; Kontokosta, C. Towards data-driven energy consumption forecasting of multi-family residential buildings: Feature selection via the lasso. In Computing in Civil and Building Engineering; ASCE: Alexander, AL, USA, 2014; pp. 1675–1682. [Google Scholar]
- Bzdok, D.; Krzywinski, M.; Altman, N. Points of Significance: Machine learning: A primer. Nat Methods 2017, 14, 1119–1120. [Google Scholar] [CrossRef] [PubMed]
- Jordan, M.I.; Mitchell, T.M. Machine learning: Trends, perspectives, and prospects. Science 2015, 349, 255–260. [Google Scholar] [CrossRef]
- Boukerche, A.; Zheng, L.; Alfandi, O. Outlier detection: Methods, models, and classification. ACM Comput. Surv. CSUR 2020, 53, 1–37. [Google Scholar] [CrossRef]
- Vinutha, H.; Poornima, B.; Sagar, B. Detection of outliers using interquartile range technique from intrusion dataset. In Information and Decision Sciences; Springer: Berlin/Heidelberg, Germany, 2018; pp. 511–518. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Bennett, J.; Lanning, S. The netflix prize. In Proceedings of the KDD Cup and Workshop 2007, San Jose, CA, USA, 12 August 2007; p. 35. [Google Scholar]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Liashchynskyi, P.; Liashchynskyi, P. Grid search, random search, genetic algorithm: A big comparison for NAS. arXiv 2019, arXiv:1912.06059. [Google Scholar]
- Bergstra, J.; Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 2012, 13, 281–305. [Google Scholar]
- Kreider, J.F.; Haberl, J.S. Predicting hourly building energy use: The great energy predictor shootout—Overview and discussion of results. In Proceedings of the 1994 American Society of Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE) Annual Meeting, Orlando, FL, USA, 25–29 June 1994. [Google Scholar]
- Chai, T.; Draxler, R.R. Root mean square error (RMSE) or mean absolute error (MAE)?–Arguments against avoiding RMSE in the literature. Geosci. Model Dev. 2014, 7, 1247–1250. [Google Scholar] [CrossRef]
- Karunasingha, D.S.K. Root mean square error or mean absolute error? Use their ratio as well. Inf. Sci. 2022, 585, 609–629. [Google Scholar] [CrossRef]
- Piepho, H.P. A coefficient of determination (R2) for generalized linear mixed models. Biom. J. 2019, 61, 860–872. [Google Scholar] [CrossRef] [PubMed]
- Chicco, D.; Warrens, M.J.; Jurman, G. The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Comput. Sci. 2021, 7, e623. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.Q.; Du, Y.; Wang, J. LSTM based long-term energy consumption prediction with periodicity. Energy 2020, 197, 117197. [Google Scholar] [CrossRef]
- Sideratos, G.; Ikonomopoulos, A.; Hatziargyriou, N.D. A novel fuzzy-based ensemble model for load forecasting using hybrid deep neural networks. Electr. Power Syst. Res. 2020, 178, 106025. [Google Scholar] [CrossRef]
Model | The no. of Inputs | The no. of Outputs | Testing R2 | RMSE | CV (%) | MAE |
---|---|---|---|---|---|---|
LSTM | 4 | 1 | 0.9187 | 3.4789 | 18.9421 | 2.2101 |
SVR | 1 | 1 | 0.9535 | 2.6210 | 14.2823 | 1.7005 |
XGBoost | 4 | 1 | 0.9470 | 2.8042 | 15.2683 | 1.8401 |
Reference | Temporal Granularity | Building | Features | Data Size | Best Performance |
---|---|---|---|---|---|
[38] | Hourly | Cooling system | Eight features | 33,189 samples | RMSE: 1.55 |
[16] | Hourly | Commercial | Seven weather conditions | 27.5 months | R2: 0.95 |
[17] | Hourly | Residential | 140 sensors | One year | CV: 20.05% |
[22] | Sub-hourly | Residential | Temperature, date, cosine of the hour, sine of the hour | 84 days | CV: 14.88% |
Hourly | CV: 12.03% | ||||
SVR—Our study | Sub-hourly | Residential | Electricity consumption, Date and time | One year | CV: 14.25% R2: 0.95 RMSE: 2.6210 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, J.; Algahtani, M.; Kaewunruen, S. Energy Forecasting in a Public Building: A Benchmarking Analysis on Long Short-Term Memory (LSTM), Support Vector Regression (SVR), and Extreme Gradient Boosting (XGBoost) Networks. Appl. Sci. 2022, 12, 9788. https://doi.org/10.3390/app12199788
Huang J, Algahtani M, Kaewunruen S. Energy Forecasting in a Public Building: A Benchmarking Analysis on Long Short-Term Memory (LSTM), Support Vector Regression (SVR), and Extreme Gradient Boosting (XGBoost) Networks. Applied Sciences. 2022; 12(19):9788. https://doi.org/10.3390/app12199788
Chicago/Turabian StyleHuang, Junhui, Mohammed Algahtani, and Sakdirat Kaewunruen. 2022. "Energy Forecasting in a Public Building: A Benchmarking Analysis on Long Short-Term Memory (LSTM), Support Vector Regression (SVR), and Extreme Gradient Boosting (XGBoost) Networks" Applied Sciences 12, no. 19: 9788. https://doi.org/10.3390/app12199788